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Abstract  (AUROC) of 0.84 ± 0.11 and driving above the WHO-recommended 
blood alcohol concentration limit of 0.05 g/dL with an AUROC of 

Alcohol consumption poses a signifcant public health challenge, 
0.80 ± 0.10. Our models rely on well-known physiological drunk 

presenting serious risks to individual health and contributing to 
driving patterns. To the best of our knowledge, we are the frst to (1)

over 700 daily road fatalities worldwide. Digital interventions can 
rigorously evaluate the potential of (2) driver monitoring cameras 

play a crucial role in reducing these risks. However, reliable drunk 
and real-time vehicle data for detecting drunk driving in a (3) real 

driving detection systems are vital to efectively deliver these in-
vehicle. 

terventions. To develop and evaluate such a system, we conducted 
an interventional study on a test track to collect real vehicle data 
from 54 participants. Our system reliably identifes non-sober driv-
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1  Introduction  
Alcohol represents a signifcant public health challenge. Approxi-
mately 5% of global deaths can be attributed to alcohol consump-

tion. Research has shown that alcohol has an impact on 27 diferent 
causes of diseases, injuries, and fatalities (e.g., alcoholic cardiomy-

opathy, alcohol use disorder, cirrhosis of the liver) [122]. Conse-
quently, the Sustainable Development Goals (SDG) address harmful 
alcohol consumption [110]. More specifcally, target 3.5 calls for the 
mitigation of harmful alcohol use. Digital interventions (e.g., mo-

bile apps to address irresponsible drinking) ofer a viable pathway 
to address this objective [5, 48, 98]. However, to implement such 
interventions efectively, accurate prediction of the blood alcohol 
concentration (BAC) is essential. 

With respect to mobility, alcohol-related road crashes result in 
more than 700 fatalities daily, accounting for 22% of fatal driving-
related incidents globally [112]. In line with SDG target 3.5, target 
3.6 aims to reduce mortality from road trafc accidents [110]. A 
potential solution could be driverless mobility. While predictions 
vary, experts concur that fully autonomous driving without any 
driver involvement is unlikely to be widely implemented in the 
coming decades [20, 38, 71]. Until complete autonomy is achieved, 
drunk driving remains ’the cancer of mobility’ and a core issue to 
be addressed [112]. 

There is a growing political commitment to addressing the high 
incidence of drunk driving accidents. In the United States (US), for 
instance, Congress has mandated that future vehicles be equipped 
with in-vehicle drunk driving detection and prevention systems 
[111]. To implement this mandate, the US National Highway Traf-
fc Safety Administration (NHTSA) issued an Advance Notice of 
Proposed Rulemaking (ANPRM) in December 2023 to collect input 
and feedback from all relevant stakeholders including the public. 
Thereby, NHTSA articulated their intention to enforce a system 
that operates “passively” (page 28 of [78]). 

Unfortunately, today, reliable methods for determining driver 
alcohol intoxication involve in-vehicle ignition interlock breatha-
lyzers. These devices are not considered "passive" under legislative 
defnitions [78]. Furthermore, they also come with signifcant costs. 
Installation costs range from 70 to 200 USD, and monthly mainte-

nance and calibration fees are between 60 and 100 USD [51, 88]. 
Therefore, a scalable and cost-efective approach for alcohol 

detection is still to be developed. Ideally, such a solution would 
utilize sensors already available in modern vehicles. These vehicles, 
for example, have a controller area network (CAN) bus system 
that facilitates communication among various vehicle components 
including sensors for controls (e.g., steering wheel angle sensor) and 
sensors monitoring vehicle state (e.g., vehicle speed). Furthermore, 
latest vehicles are equipped with driver monitoring camera (DMC) 
devices, which are mandated by laws in regions like the European 

Union (EU) [29] and are essential for achieving high ratings in 
safety tests across the world [2, 33, 74]. In this work, we develop 
and evaluate a machine learning (ML) system designed to detect 
drunk driving by utilizing DMC and real-time CAN data, which are 
standard features in modern vehicles. 

1.1  Contributions  
To develop and evaluate the drunk driving detection system, we 
conducted a randomized controlled trial involving � = 54 partici-
pants who drove a real car on a test track under varying BAC levels. 
Using this data, we derived a drunk driving detection model that 
performs two classifcation tasks: determining whether the driver 
is under the infuence of alcohol, and whether the BAC exceeds the 
World Health Organization (WHO)-recommended limit of 0.05 g/dL. 
This work builds upon latest simulator fndings [54] and aims to 
investigate, if these fndings can be replicated leveraging a real car. 
More specifcally, the goal is to analyze if existing simulator-based 
features and ML pipelines can be transferred into a real vehicle envi-
ronment, and what adaptations might be necessary. In addition, the 
work is geared towards understanding the magnitude of potential 
performance degradations and their practical implications. 

Contributions: (1) We demonstrate that the performance of our 
real vehicle drunk driving detection system is comparable to previ-
ous simulator-based fndings, which rely on selected features not 
available in cars today. Additionally, our system does not leverage 
high quality lab cameras. Instead, we built upon lower quality video 
data that is captured by industry-standard driver monitoring cam-

eras. (2) To cope with feature and camera limitations, we extended 
existing work and derived two additional types of camera features. 
Moreover, to match the performance of the simulator fndings, we 
also included CAN data as a second modality. (3) We demonstrate 
strong generalization capabilities to unseen drivers who were not 
part of the ML training set. (4) The analysis of our predictive model 
shows that our classifcation relies upon well-known physiological 
patterns that are associated with drunk driving. (5) By incorporat-
ing two control groups, we address potential placebo efects and 
compensatory behaviors as well as infuences such as training and 
drowsiness efects. 

Novelty: To the best of our knowledge, we are the frst to im-

plement and rigorously evaluate a drunk driving detection system 
in real vehicles, utilizing DMC and real-time CAN bus data. Previ-
ous research has primarily focused on statistical analyses of drunk 
driving (e.g., [46, 53, 106]), detection systems have previously been 
developed based on simulator studies only (e.g., [52, 54, 59]). 

Signifcance: As society and policymakers seek efective strate-
gies to mitigate harmful alcohol consumption and prevent drunk 
driving, we ofer a solution that leverages existing vehicle hardware 
to accurately predict a driver’s BAC, serving as a foundation for 
successful digital interventions (e.g., mobile app interventions or 
vehicle-triggered safety measures). Committed to incremental sci-
ence and replication, we have published the source code to foster fur-
ther research and development in this feld: https://github.com/im-

ethz/CHI25_Drunk-Driving-Detection-in-a-Real-Vehicle.git 

https://doi.org/10.1145/3706598.3714007
https://github.com/im-ethz/CHI25_Drunk-Driving-Detection-in-a-Real-Vehicle.git
https://github.com/im-ethz/CHI25_Drunk-Driving-Detection-in-a-Real-Vehicle.git
https://github.com/im
https://doi.org/10.1145/3706598.3714007
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Drunk Driving Detection in a Real Vehicle 

2  Related  work  
This section surveys critical research on alcohol detection and 
drunk driving interventions within the Human-Computer Interac-
tion (HCI) feld. The subsequent sections delve into the evolution 
of driver-state detection technologies and specifc drunk driving 
detection methods. 

2.1  Alcohol  detection  and  harmful  use  
prevention  

Alcohol consumption and drunk driving are recognized as impor-

tant public health concerns. The HCI community has explored a 
variety of approaches to address harmful drinking behaviors, both 
inside and outside vehicular contexts. In previous studies, partic-
ipants’ BAC was detected using data from smartphone activities 
during daily living, achieving an area under the receiver operating 
characteristic curve (AUROC) of 0.80 [58]. Similar approaches em-

ploying smartphone interactions have also been utilized in other 
research [68, 70]. SoberMotion combined smartphone technology 
with a breathalyzer to prevent individuals convicted of driving 
under the infuence from operating vehicles while impaired [125]. 
Additionally, wearable sensors on wristbands have been employed 
for alcohol detection purposes [126]. The SoberComm program as-
sists alcohol-dependent patients by facilitating the communication 
of alcohol-use data to family members and treatment teams [124]. 
Furthermore, other initiatives have aimed to support participants 
in reducing their risk to engage in harmful drinking through digital 
interventions [40, 65]. This prior research demonstrates that detect-
ing alcohol use through human-computer interactions is feasible, 
and can serve as a basis for digital interventions that ultimately 
reduce harm. 

2.2  Driver  state  detection  
Today, driver state detection is core to active vehicle safety. While 
passive vehicle safety systems such as crumple zones aim to miti-

gate the efects of collisions and safeguard passengers, active vehicle 
safety systems such as emergency braking systems proactively avert 
accidents. Active safety systems fall into the category of advanced 
driver-assistance systems (ADAS), which encompass safety and 
comfort features. ADAS cover a wide range of interventions, from 
audiovisual warnings to full vehicle control. Thereby, driver state 
information is used to deploy, improve or personalize interven-
tions [12, 31]. Consequently, detecting the driver’s state becomes 
essential. 

The predominant systems for driver state detection within mod-

ern vehicles focus on detecting driver drowsiness and distraction. 
They are typically categorized into three main types: physiological, 
DMC-based, and CAN data-based [49, 85]. Systems based on phys-
iological parameters monitor biometric signals such as heart rate 
and brain activity to evaluate the driver’s condition. DMC-based 
systems analyze the physical actions of the driver, including gaze 
direction, head movements, and facial expressions, using driver-
monitoring cameras and computer vision technologies. Systems 
based on CAN data track changes in driving behavior, such as 
steering actions and lane-keeping. 

Currently, both DMC and CAN-based systems individually ac-
count for approximately 44% each of the market’s available drowsi-
ness detection products, hence making up 88% of the total mar-

ket [22]. However, DMCs become a standard feature in new vehicles. 
Their increasing availability and superior detection performance 
have led to rapid adoption in modern commercial drowsiness detec-
tion systems [22]. Furthermore, DMCs play a vital role in detecting 
distractions, such as texting [49]. 

Detection systems utilizing DMC-data typically fall into two cat-
egories. The frst approach involves deriving human-interpretable 
features, such as the percentage of on-road versus of-road glances, 
to train a ML model [127]. The second, more recent approach, em-

ploys deep learning techniques, which use raw images directly as 
input for the ML model, as exemplifed by Guo et al. [39]. 

2.3  Drunk  driving  detection  
Extensive research has focused on the statistical analysis of drunk 
driving, examining both driver-vehicle interactions and physiologi-
cal metrics of drivers [46, 47]. Studies conducted on test tracks also 
contribute to this body of knowledge. For instance, one study ex-
plored the efects of alcohol intoxication on eye movement metrics, 
utilizing diverse DMC confgurations [53]. The fndings indicated 
that higher levels of intoxication correlate with prolonged dura-
tions of glances, blinks, and fxations, and an increased focus of 
the driver’s gaze on the road area. Another recent test track study 
demonstrated that alcohol impacts drivers’ on/of-road gaze behav-
ior [106]. 

Conversely, fewer studies have addressed the detection of drunk 
driving. To the best of our knowledge, no such study has been con-
ducted on a test track. Existing studies have employed simulators 
(e.g., a seat and driver controls mounted on a fxed frame in front 
of a display [60], or a real but stationary car positioned in front of 
a wide-angle screen [62, 63, 102]), focusing on behavioral metrics 
such as pedal usage and steering, alongside simulated vehicle states 
like velocity. However, the rigor of these studies varies, and some 
face validity issues. For instance, some studies have employed gog-
gles designed to simulate intoxication efects, rather than actual 
alcohol consumption [42, 43]. Moreover, the fdelity of the simula-

tors varies. Some studies have incorporated driver-facing camera 
data, employing various camera system types (e.g., commercial 
eye-tracking devices [13, 14, 59], augmented with infrared and RGB 
cameras [52]). A major limitation of all the presented studies is 
their lack of testing on data of drivers not previously included in 
the training set of the classifer. The small participant pools and 
the use of the same drivers for both training and evaluation raise 
concerns about the generalizability of these methods to new data 
from unseen drivers. 

To the best of our knowledge, only one detection method has 
been evaluated on out-of-sample subjects, proposed by Koch and 
Maritsch et al. [54]. It was developed from data gathered in a clinical 
simulator study with � = 30 participants [54]. It employed a sliding 
window approach for feature generation and logistic regression for 
making predictions. The proposed system successfully determined 
sobriety status with an AUROC of 0.88 and diferentiated between 
participants below or above the WHO-recommended BAC limit of 
0.05 g/dL with an AUROC of 0.79. 
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2.4  Importance  of  replication  and  real  vehicle  
studies  

The transferability of simulator fndings to real-world vehicles 
remains a debated issue within the domain. While some studies 
afrm their validity (e.g., [55, 61]), others report inconsistent out-
comes [47]. Such discrepancies are often attributed to the limited 
availability of comparable hardware and environmental variations 
in actual vehicles, potentially limiting simulator results’ gener-
alizability [129]. For example, diferences in outcomes between 
simulators and actual vehicles are shown for semi-autonomous 
driving scenarios [83]. In sum, three principal factors are posited 
to underlie these validation challenges: (1) the varying degrees 
of realism in simulated environments, dependent on simulator f-
delity [11, 19, 37]; (2) the absence of external infuences encountered 
in real-world driving [61]; and (3) modifed driver behavior due to 
the absence of genuine risk [27]. 

Previous literature has highlighted a replication crisis within the 
HCI feld [25, 113], driven by a strong emphasis on novelty [119]. 
In response, the RepliCHI series has been organized annually from 
2011 to 2014 [117–120] to foster incremental scientifc progress. 
Our study builds upon the core ideas of RepliCHI, serving as a 
replication conducted on a test track that builds upon methodolo-

gies previously established. We conducted a conceptual replication 
study [120], closely adhering to the methodology employed in the 
study by Koch and Maritsch et al. [54], which we regard as the state-
of-the-art and refer to as the “original study” herein. To enhance 
external validity, we implemented our study in a diferent environ-
ment (test track). Due to variations in sensor data availability in 
actual vehicles – for instance, industry-standard DMCs in place of 
high precision lab eye-tracking devices – we modifed certain ML 
features to adapt to the new environment, while maintaining the 
core elements of the original study. This adjustment facilitates a 
more realistic application. 

To our knowledge, this drunk driving detection study is the frst 
conducted on a real test track with intoxicated drivers aimed at 
developing a drunk driving detection system using real-time vehicle 
and driver monitoring camera data. The study was conducted as 
an interventional clinical trial. 

3  Data  collection  
We conducted a randomized, controlled, interventional single-center 
study (ClinicalTrials.gov NCT05796609), adhering strictly to the 
principles of the Helsinki Declaration, good clinical practice guide-
lines, Swiss health laws, and the Swiss ordinance on clinical re-
search. This study was registered and received approval from the 
local ethics committee in Bern, Switzerland (ID 2022-02245). It took 
place between April 2023 and July 2023. All participants provided 
informed consent after receiving a comprehensive explanation of 
the procedures involved in the study. The following section outlines 
the methodology of our study. 

3.1  Study  design  
We informed participants about the study’s purpose, which in-
cluded the potential administration of alcohol; however, we did not 
disclose the precise amount of alcohol administered or their target 
BAC. Alongside the treatment group, we involved a fully informed 

Table 1: Study design. 

Assignment Masking Treatment 

Treatment group single-blinded alcoholic drink 
Placebo group single-blinded placebo drink 
Reference group unblinded -

reference group that did not consume alcohol (open-label) and a 
placebo group that was not aware they received no alcohol (blinded). 
The treatment group ingested an alcoholic beverage, whereas the 
placebo group received a non-alcoholic placebo drink. When two 
participants attended the study simultaneously, our protocol strin-
gently forbade them from discussing their estimated BAC. 

Prior research on drunk driving supports the inclusion of placebo 
and reference groups in alcohol studies [36, 91, 105]. Despite this, 
the existence and signifcance of the placebo efect in such studies 
continue to be subjects of debate [34, 76]. In medical research, a 
placebo often demonstrates the efects of expectancy, typically 
leading to symptom alleviation due to the belief in the efcacy of a 
treatment [99]. Participants in these contexts usually have limited 
prior experience with the substance. In contrast, participants in 
this study brought previous alcohol experience, enabling them to 
rely on past experiences instead of forming new expectations. This 
background might lead to an inadvertent improvement in cognitive 
performance under placebo-controlled conditions if participants 
believe they are intoxicated [105]. 

Studies have employed blinded placebo groups using both within-
subject [59] and between-subjects designs [13]. Additionally, other 
research has utilized an open-label sober reference condition in 
both within-subject [54, 62] and between-subjects formats [63]. The 
open-label reference condition aligns more closely with real-world 
scenarios, as drivers typically know whether they are sober or in-
toxicated. Our data collection study encompassed both conditions. 
First, we introduced a placebo control group to address potential 
placebo efects and compensatory behaviors, thus ensuring consis-
tency with prior research. Next, we incorporated a reference control 
group to adjust for infuences such as training (e.g., familiarization 
with the vehicle and the test track) and drowsiness. This group 
additionally compensated for environmental variations on the test 
track, such as changes in sunlight exposure throughout the day, 
while eliminating any confounding placebo efects. We present the 
details of these conditions in Table 1. 

Following [30] and drawing on the design from the original 
study [54] and a related study [61], we determined the sample sizes 
of � = 25 for the treatment group and � = 10 for each control group. 
To account for potential dropout and technical failures, we adjusted 
the target sizes for the treatment and control groups to � = 32 and 
� = 12, respectively. 

3.2  Participants  
Eligibility criteria required participants to possess a driving license 
valid in Switzerland, be aged 21 or older, and have driven actively 
within the past six months. Further, they were required to have 
consumed alcohol at least occasionally during the same period. 
Exclusion criteria included health conditions that contraindicated 

https://ClinicalTrials.gov
https://ClinicalTrials.gov
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alcohol consumption, use of medications or drugs that interact with 
alcohol, and excessive alcohol consumption. 

Excessive alcohol consumption was assessed using two mea-

sures: (1) phosphatidylethanol (PEth) and (2) Alcohol Use Disorder 
Identifcation Test (AUDIT). PEth, an alcohol biomarker measured 
in a capillary blood sample, indicates chronic excessive alcohol 
consumption with values exceeding 200 ng/mL (further details in 
Section 3.3.1) [66, 93]. AUDIT, a 10-question screening tool devel-
oped by the WHO, detects hazardous or harmful alcohol consump-

tion [90]. We excluded participants who scored 15 or higher. 
Additional exclusion criteria included pregnancy, breastfeeding, 

or plans to become pregnant during the study. Participants with 
a history of excessive alcohol use, recent drug abuse, or a positive 
drug test were also excluded. Moreover, those unable to comply with 
study procedures due to language barriers, psychological disorders, 
or other impairments, as well as individuals who had participated 
in a drug study within the past 30 days, were deemed ineligible. 

Of the 72 participants initially recruited, a total of 55 met the 
eligibility criteria. We excluded one participant from the analysis 
due to errors in the recorded CAN data. Their characteristics are 
summarized in Table 2. A comprehensive study fow diagram is 
provided in Appendix A. 

3.3  Study  procedure  
3.3.1 Participant screening. We recruited participants through pub-
lic announcements and advertisements. Interested individuals reg-
istered online, and we randomly selected participants for a phone 
screening. During the screening, the study team explained the 
study’s purpose, answered participants’ questions, and evaluated 
them against the inclusion and exclusion criteria. Eligible partic-
ipants then attended a screening visit, where the study team col-
lected capillary blood and urine samples to exclude excessive al-
cohol consumption by blood PEth concentrations [100], and to 
exclude pregnancy and drug abuse by urine tests. 

The second visit served as the designated study day. To main-

tain standardized conditions across all participants, subjects were 
required to arrive in a fasted state (i.e., no food or caloric beverages 
for 4 hours). Initially, participants underwent a familiarization drive 
to get used to the study vehicle, the test track, and the procedure 
for receiving driving instructions to navigate the course. The actual 
baseline drive in a sober state, which later served as the negative 
class for classifcation, was then conducted frst. Subsequently, the 
alcohol administration procedure commenced for the treatment 
group. The control group participants followed the identical proce-
dure without receiving alcohol (either knowingly or unknowingly). 
To control for potential training efects, such as changes in driv-
ing behavior due to increased familiarity with the test track, the 
reference control group was introduced (see Section 3.1). While 
the control and placebo participants remained sober, the treatment 
group engaged in driving tasks at three diferent BAC levels. 

3.3.2 Alcohol administration and measurement. The study design 
involved three distinct driving sessions for participants over the 
course of the study day. Participants in the treatment group com-

pleted one drive while sober, one drive with a BAC exceeding 
the WHO-recommended legal limit of 0.05 g/dL [121], and one 
drive with a BAC below this threshold. The nomenclature for these 

phases—no alcohol, severe, and moderate—is consistent with the 
terminology used in the original study [54]. 

Following the initial sober driving session, participants in the 
treatment group underwent an alcohol administration process 
aimed at achieving a target BAC of 0.08 g/dL. This protocol ensured 
consistency with the conditions of the original study. We calculated 
the amount of alcohol administered individually for each partici-
pant, taking into account their sex, weight, age, and height, using 
the Widmark formula [10, 115, 116]. Treatment group participants 
consumed a mixed drink consisting of vodka and orange juice, and 
their BAC was regularly monitored via breath alcohol concentra-
tion (BrAC) measurements. The severe driving phase commenced 
after participants’ BAC peaked and subsequently dropped below 
0.075 g/dL. Following the second driving session, participants took 
a break to allow their BAC to decrease. The moderate driving phase 
began once their BAC dropped below 0.035 g/dL. The participants’ 
BAC are depicted in Figure 1. 

We measured the participants’ BAC using a professional breath 
alcohol measurement device. Until the debriefng, they were not 
informed of their BAC levels. We applied a conversion factor of 0.2 
between BrAC and BAC, following Swiss regulations (e.g., a BAC of 
0.08 g/dL corresponds to a BrAC of 0.4 mg/L) [26]. We used a Dräger 
6820 device, which is ofcially licensed for use by public safety 
agencies in Switzerland [103]. The frst measurement occurred 20 
minutes after alcohol consumption to avoid distortion caused by 
residual alcohol in the mouth [64]. 

The control group participants followed the same temporal pro-
cedure. The duration of the break and the waiting period before 
the driving phases were determined by the average time required 
for participants in the treatment group, rather than by the par-
ticipants’ BAC. Participants in the placebo group received plain 
orange juice. Until the debriefng, they were not informed that their 
beverage was a placebo containing no alcohol. No study beverage 
was administered to the reference group. 

During the initial screening, participants were informed that 
they might receive alcohol. However, they were blinded to their 
study group assignment, the target BAC, and the nature of the 
beverages provided. Following existing alcohol administration stud-
ies [41, 50], orange juice was mixed with vodka. Thereby, a bitter 
orange juice variant was chosen to mitigate the taste of vodka. To 
ensure the dominance of the orange favor, the vodka was stored at 
-18 degrees Celsius. Drinks were dispensed to both treatment and 
placebo group participants in neutral bottles featuring a narrow 
outlet to minimize air exposure. The volume of the drinks varied 
from 3.0 dL to 5.5 dL, tailored to the calculated alcohol volume re-
quired. Placebo participants received a corresponding volume of 
beverage, devoid of alcohol. 

3.3.3 Driving. A licensed driving instructor sat in the front passen-
ger seat during the drives. The driving instructor issued commands 
to the participants, who were tasked with operating the vehicle as 
they would in real trafc, such as employing turn signals. Blinded 
to both the study group assignment and the participants’ BAC, the 
driving instructor used dual pedals in case of emergencies to prevent 
injuries or damage. The driving instructor was tasked with inter-
vening if participants overlooked or failed to stop at intersections 
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Table 2: Participant characteristics reported as mean ± standard deviation. AUDIT: Alcohol Use Disorder Identifcation Test; 
PEth: phosphatidylethanol. 

Treatment group Placebo group Reference group 

� = 31 12 11 
Sex (self-reported) 16 female, 15 male 6 female, 6 male 6 female, 5 male 
Age [years] 37.5 ± 14.7 37.0 ± 17.0 36.5 ± 14.6 
Weight [kg] 77.5 ± 15.3 75.3 ± 19.3 72.7 ± 12.6 
Height [cm] 174.8 ± 8.0 170.5 ± 9.1 173.9 ± 10.1 
Driver experience [years] 18.5 ± 14.5 17.2 ± 17.4 17.4 ± 14.3 
Yearly driving distance [km] 14565 ± 12478 9000 ± 4848 9773 ± 6528 
Occupational drivers 8 0 1 
AUDIT score 4.81 ± 2.44 4.92 ± 2.02 3.82 ± 1.99 
PEth 
Participants below detection limit 5 ng/mL 3 2 4 
Participants below quantifcation limit 10 ng/mL 2 3 0 
Quantifable participants (above quantifcation 

48.0 ± 43.2 61.0 ± 77.5 72.2 ± 70.3
limit 10 ng/mL) [ng/mL] 

Treatment
n = 31

Placebo
n = 12

Reference
n = 11
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Reference
n = 11

Driving phase 3
moderate

Figure 1: Each subplot corresponds to a driving phase, showing the average measured BAC for each study group. Error bars 
indicate standard deviation, and a dashed gray line marks the WHO-recommended BAC limit. 

or crossroads. A study team member accompanied in the vehicle, 
supervising data collection and ensuring existing recordings. 

Participants drove in three phases, each with diferent BAC levels 
(constant for the placebo and reference groups). In each phase, they 
drove three scenarios (highway, rural, and urban; further details in 
Section 3.5) in a random order, covering both travel directions, also 
randomly assigned. These directions were labeled with numbers 
(e.g., urban 1 and urban 2). We briefy interrupted the drive between 
each scenario to measure participants’ BAC. 

3.4  Study  vehicle  and  data  recording  system  
The study vehicle was a 2020 Volkswagen Touran 1.5 TSI (Volk-
swagen AG, Wolfsburg, Germany) with an output of 110 kW. The 
vehicle featured an automatic transmission and was confgured 
with 7 seats. Dual pedals were installed to allow vehicle control 
from both front positions. 

We utilized two primary data sources: the data obtained from 
the DMC and the CAN bus communication recordings. The DMC 
employed was a near-infrared camera prototype (close to the com-

mercially available version), featuring active illumination provided 
by Robert Bosch GmbH (Robert Bosch GmbH, Stuttgart, Germany). 
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This camera was mounted on the steering column behind the steer-
ing wheel, capturing images at a rate of 50 frames per second 
(Figure 2c). Comparable systems have been integrated by various 
car manufacturers into their vehicles, such as Volvo [97] and Toy-
ota [108]. The camera’s parameters were calibrated daily prior to 
the commencement of each study session. 

Our study vehicle was also equipped with an embedded computer 
that interfaced with the vehicle’s CAN bus. The data from both the 
CAN bus and the DMC were processed and stored on an in-vehicle 
computer. 

3.5  Test  track  and  scenarios  
The study took place on a closed-of test track in Switzerland, which 
featured a variety of road structure types. The outer section of 
the track included broad curves and straight segments, while the 
inner section consisted of branched roads with sharp turns (Fig-
ure 2b [104]). The roads varied in width from 6 to 10 meters and 
were aligned with the surrounding terrain. In certain sections, mid-

dle lane markings were present, as shown in Figure 2a. 
To replicate diferent driving conditions, we introduced artifcial 

obstacles. We placed two stop signs at an intersection and added a 
crosswalk where participants were required to perform a full stop. 
Additionally, we simulated parked vehicles by placing cones on a 
section of the road. 

We relied upon three distinct driving scenarios: highway, rural, 
and urban. In the highway scenario, participants drove at a maxi-

mum speed of 80 km/h, navigating minimal turns, large curve radii, 
and predominantly straight road segments, with no stops or obsta-
cles encountered. The urban scenario allowed participants to drive 
up to 50 km/h and involved numerous turns with varying radii, as 
well as all the artifcially introduced obstacles. The rural scenario 
combined elements from the other two, with participants driving 
at a maximum speed of 60 km/h and encountering a stop sign at 
an intersection and one obstacle that required them to maneuver 
around it. We developed these scenarios in collaboration with the 
Automobile Club of Switzerland [3]. 

4  Machine  learning  detection  approach  
To establish a model that is comparable to the original study [54], 
we initially focused on developing a classifer trained and evaluated 
exclusively on the data from the treatment group. In the subsequent 
phase, we integrated data from participants in the placebo and 
reference groups into both the modeling and evaluation processes. 

In the following section, we provide a detailed description of our 
approach, which involves a sliding window combined with logistic 
regression [82]. The sliding window approach is frequently used 
for driver state detection [54, 61] but also for other tasks involving 
human interaction [44]. It ofers several advantages: The sliding 
windows enable the capture of temporal dependencies within the 
time series data, while the use of human-interpretable aggregation 
functions ensures that interpretability remains high. This inter-
pretability is further reinforced by the parsimonious logistic re-
gression model, which maintains simplicity and clarity through 
coefcient analysis. An overview of our approach is depicted in 
Figure 3. 

4.1  Feature  generation  
4.1.1 Input data. For our detection approach, we utilized data from 
two sensor modalities: DMC and CAN bus data. Unlike the original 
simulator study [54], where CAN signals contributed minimally to 
performance and were hence not included in the core analysis, we 
include both sensor modalities by default. Another reason to include 
both modalities is that we employ an industry-standard DMC in the 
feld, rather than high precision lab eye-tracking devices. Therefore, 
our analysis incorporates data from both modalities, and we conduct 
an ablation study to evaluate the performance of each modality 
independently. 

We employed a proprietary industry-standard algorithm, pro-
vided by Robert Bosch GmbH (Robert Bosch GmbH, Stuttgart, Ger-
many), to extract head and gaze features from the driver’s interac-
tions. This algorithm performed several key functions: it detected 
the driver’s face, localized the eye region, detected the pupil, and 
computed the gaze vector (Figure 2d). For head features, it iden-
tifed facial landmarks and calculated the head pose. The outputs 
included the positions of the eyes, gaze orientation, and a binary 
eye state (open or closed). Additionally, the algorithm provided 
comprehensive head pose data, encompassing both position and 
orientation. The recording frequency of the DMC may fuctuate 
during load peaks on the study computer. Thus, to ensure data 
consistency across the analysis, we resampled this data to a fxed 
frame rate of 50 Hz. If required, missing values underwent inter-
polation during resampling. We applied linear interpolation for 
numerical data and nearest-neighbor interpolation for categorical 
data. This process was restricted to instances involving up to fve 
consecutive missing entries, not exceeding 100 milliseconds. Any 
gaps exceeding fve consecutive missing values were omitted. 

We extracted controls signals (brake pedal pressure, gas pedal 
position, steering wheel angle, and steering wheel rotational ve-
locity) and vehicle dynamics signals (longitudinal velocity, yaw 
velocity, and longitudinal and lateral acceleration) from the CAN 
bus data. In the same way as for the DMC data, we resampled these 
signals to a fxed frame rate of 50 Hz to maintain consistency across 
all collected data. 

4.1.2 Data pre-processing. The head and eye data, resampled to 50 
Hz, formed the foundation for computing various groups of derived 
signals. A comprehensive list of all features derived from this data 
is available in the Appendix B. 

The frst feature group comprises periodically sampled (1) head 
movement features, which include both linear and rotational ve-
locities and accelerations. Each type of movement is represented 
by three spatial components along with a combined magnitude, 
providing a detailed characterization of head dynamics. We chose 
to exclude head position and orientation from our analysis due to 
their high individual variability. 

The second group of features encompasses periodically sampled 
(2) eye state indicators, represented by a single binary signal for 
each eye. These signals specify whether the left and right eyes are 
open or closed, providing information on the blink patterns. 

The third group of features consists of periodically sampled (3) 
eye movement characteristics. We specifcally focused on gaze ori-
entation, which is characterized by azimuth and elevation angles. 
From these, we calculated the velocity and acceleration in both 
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(a) (b)

(c) (d)

Figure 2: The fgures display the following: (a) the test track featuring a crosswalk where participants were required to stop; 
(b) a top-down perspective on the test track (©swisstopo); (c) the driver monitoring camera (DMC) mounted on the steering 
column; and (d) the output from the DMC, displaying detected facial landmarks (blue dots), the mid-eye coordinate system, 
and the detected gaze direction (orange arrow). 

directions, as well as their combined magnitude. Additionally, we 
introduced the gaze movement angle to capture the spatial relation-
ship between changes in azimuth and elevation. We defned the 
gaze movement angle as measure between a horizontal reference 
line and a line connecting the initial and fnal gaze positions. 

The fourth group of features involves (4) gaze events, classifed us-
ing the REMoDNaV algorithm (robust eye-movement classifcation 
for dynamic stimulation) [17]. We utilized classifed fxations and 
saccades. Fixations represent periods where the gaze remains rela-
tively stable at a specifc point, and saccades are rapid movements 
between fxations. REMoDNaV identifes fxations and saccades 
using a velocity-based algorithm and applies duration thresholds to 
the event candidates. We retained the REMoDNaV default thresh-
olds for the fxation and saccade classifcation: minimum fxation 
duration of 40 milliseconds and minimum saccade duration of 10 
milliseconds. The REMoDNaV algorithm not only identifes the 

duration of each event but also provides detailed metrics for each, 
including event amplitude, peak velocity, mean velocity, and median 
velocity. 

The ffth group of features includes (5) region-specifc gaze events, 
which are crucial for understanding the impact of alcohol consump-

tion on driver attention. Recognizing that diferent gaze regions 
hold varying relevance for driving tasks, we assigned classifed fx-
ations to one of ten predefned gaze regions, each calibrated specif-
cally to the study vehicle. These regions encompass the windscreen 
on both the driver and passenger sides, the left and right exterior 
mirrors, the interior mirror, the left and right front windows, the dri-
ver instruments, the navigation display, and the middle instrument 
cluster. This categorization facilitates a detailed analysis of how 
gaze behavior shifts across diferent areas of interest. Prior stud-
ies have demonstrated variations in gaze patterns across specifc 
regions as a result of alcohol consumption [96, 106]. 
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Figure 3: The fgure displays an overview of our machine learning (ML) system designed to perform two classifcation tasks. 
DMC: driver monitoring camera; CAN: controller area network. 

In relation to the CAN-based features, we distinguished between 
two primary types: (6) controls interaction and (7) vehicle dynamics. 
Beyond standard measures like position, velocity, and acceleration, 
we also calculated jerk — a critical signal in the automotive industry. 
Defned as the third derivative of position or the derivative of 
acceleration, jerk quantifes the rate of change of acceleration. It is 
widely used to evaluate ride comfort and vehicle stability [18, 45]. 
Consequently, for the CAN-based signals, we calculated velocity, 
acceleration, and jerk when these values were not pre-provided, 
ensuring comprehensive analysis capabilities for assessing vehicle 
behavior. 

4.1.3 Sliding window and feature calculation. To extract features 
that encapsulate the temporal dynamics of time-series data, we 
employed a sliding window approach alongside a suite of aggre-
gation functions. A window size of 60 seconds with a 1-second 
step size was chosen, as this confguration has proven efective in 
recent studies on impaired driving detection, such as the original 
simulator drunk driving detection [54], driver hypoglycemia detec-
tion [61], and drowsiness detection [128]. Consequently, we applied 
the aggregation functions over time-series segments comprising 
3,000 samples (50 Hz * 60 seconds). Windows containing less than 
75% of the expected samples were excluded (i.e., at the beginning or 
end of driving sequences). This approach strikes a balance between 
maximizing data inclusion and minimizing the incorporation of 
distorted data. 

We combined various statistical aggregation functions to capture 
temporal dynamics, enhance robustness, and maintain interpretabil-
ity. Specifcally, mean and median were used to measure central 
tendency, while standard deviation, interquartile range, and 0.05 
/ 0.95 quantiles served as measures of dispersion. Minimum and 
maximum values were deliberately excluded due to their sensitivity 
to outliers. To further characterize the data distribution within each 
window, we calculated skewness and kurtosis. Additionally, power 

(mean square value) and the number of sign changes were com-

puted, with the latter particularly motivated by the characteristics 
of CAN-bus-based controls interaction signals, as prior research in 
related domains of impaired driving suggests that the frequency 
of micro-corrections decreases in drowsy drivers [57]. In total, we 
generated 580 features. 

4.2  Predictive  modeling  
In line with the original simulator study, we conducted two bi-
nary classifcation tasks: Early Warning and Above Limit. The 
objective of the Early Warning task was to determine whether 
participants had a BAC exceeding 0.00 g/dL (positive class). Accord-
ingly, we labeled data from the treatment group participants’ frst 
phase as negative, while data from both the second and third phases 
were labeled as positive. The Above Limit task aimed to identify 
whether a participant’s BAC surpassed the WHO-recommended 
limit of 0.05 g/dL (positive class). Thus, we labeled data from the 
treatment group participants’ frst and third phases as negative, 
and data corresponding to a BAC above the WHO limit as positive. 
Subsequently, we standardized the features using z-score normal-

ization, transforming them to have a mean of 0.0 and a standard 
deviation of 1.0 based on the training data’s distribution. 

Our logistic regression model’s strength lies in its intrinsic in-
terpretability through coefcient analysis. We utilized Lasso (L1) 
regularization to enable the model to select relevant features while 
reducing others to zero, minimizing overftting and enhancing fea-
ture interpretability. We set the (inverse) regularization coefcient 
to the default value of 1.0, utilized log loss (binary cross-entropy) 
for model optimization, and maintained the decision threshold at 
the standard 0.5. We applied balanced weights to accommodate 
class imbalances. The implementation was performed using Python 
3.11.9 and Scikit-learn 1.4.2 [81]. 
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4.3  Model  evaluation  
Evaluating the model’s generalizability to unseen drivers is essential 
for its practical value. We employed a leave-one-subject-out (LOSO) 
cross-validation method [35], widely used in HCI research (e.g., [1, 
15, 114]), iterating over all participants, training the model on � − 1 
participants, and evaluating it on the remaining participant. This 
process was repeated for each participant, and performance metrics 
were reported as a macro-average, presented as mean ± standard 
deviation. 

Our primary performance evaluation metric was the AUROC 
[16], chosen for its threshold-agnostic nature and its ability to report 
across all possible classifcation thresholds. This metric efectively 
summarizes the model’s discrimination ability with a single value 
and is well-suited to handle imbalanced datasets [4]. Additionally, 
we reported the area under the precision-recall curve (AUPRC), bal-
anced accuracy, and F1 score (a balanced combination of precision 
and recall), consistent with the original simulator results [54]. 

To further validate our proposed system, we analyzed its robust-
ness against various design choices and parameter adjustments. 
Specifcally, we examined how performance varied with diferent 
window sizes, ranging from 5 to 300 seconds, in the sliding window 
approach. Additionally, we evaluated the individual performance 
of diferent feature groups to understand the impact of each. We 
also investigated how the choice of diferent classifers infuenced 
the overall performance. 

4.4  Control  groups  integration  
To enhance the validity of our drunk driving detection approach, 
we incorporated data from the placebo and reference group par-
ticipants, applying the same preprocessing and feature generation 
steps as for the treatment group. The placebo and reference groups 
were labeled as sober. 

We employed LOSO cross-validation again, training the model 
on � = 53 participants and testing it on the remaining partici-
pant, aiming to maintain comparable evaluation metrics. Since the 
sensitivity (true positive (TP) rate) is not defned for placebo and 
reference groups, we calculated the AUROC and AUPRC for the 
treatment group only. We replaced balanced accuracy with stan-
dard accuracy, enabling calculation across all participants, with the 
accuracy for control group participants refecting specifcity (true 
negative (TN) rate). The weighted F1 score, defned even for the 
control group participants, ensured the overall metric remained 
computable as weights for the undefned F1 score of the true-labeled 
class defaulted to zero. 

5  Results  
In the following, we present the results of our study organized 
into general performance evaluations, the impact of sensor modal-

ities, and a sensitivity analysis to validate the robustness of our 
ML models. The section concludes with an analysis of the feature 
contributions and the results of incorporating the control groups. 

5.1  Performance  evaluation  
The dataset consists of 148 596 samples for both classifcation tasks. 
For Early Warning, 66% of the samples belong to the positive 
class (i.e., labeled as non-sober), while for Above Limit, 33% of 

the samples are in the positive class (i.e., labeled as above the 
WHO-recommended limit of 0.05 g/dL). Figure 4a displays the per-
formance of our drunk driving detection system, utilizing a com-

bined DMC- and CAN-based approach. The Early Warning model, 
which assesses whether participants are sober, achieves an AUROC 
of 0.84 ± 0.11. Conversely, the Above Limit system, which deter-
mines if a driver’s BAC exceeds the WHO-recommended limit, 
records a slightly lower AUROC of 0.80 ± 0.10, with a comparably 
low standard deviation across all test participants. 

Additional performance metrics are detailed in Figure 5 (“DMC + 
CAN”). The AUPRC exhibits variability: Early Warning achieves 
0.91 ± 0.07, while Above Limit scores 0.67 ± 0.14, with the lower 
performance possibly attributed to the fewer positive samples in 
Above Limit. Both tasks display relatively similar balanced ac-
curacy and F1 score, with Early Warning recording a balanced 
accuracy of 0.74 ± 0.10 and an F1 score of 0.75 ± 0.12, while Above 
Limit achieves 0.69 ± 0.10 for both metrics. 

Figure 6 presents the confusion matrices for the two classifcation 
tasks, illustrating the proportion of each predicted class matching 
the true classes. Early Warning achieved relatively low rates of 
false positive (FP) and false negative (FN). Specifcally, the FN rate 
for moderately intoxicated individuals was higher at 30% compared 
to 17% for severely intoxicated drivers. This diference likely arises 
from the less pronounced symptoms in moderately intoxicated 
drivers compared to those who are severely intoxicated. For both 
moderate and severe intoxication levels, Above Limit exhibited 
marginally higher FP and FN rates. The proportion of FP among 
sober participants remained low at 16%. 

Figure 7 illustrates the performance of the two models across 
various driving scenarios, highlighting their consistent stability. 
The Early Warning model excels in rural environments but shows 
decreased performance in urban settings. Conversely, Above Limit 
achieves its best performance in urban scenarios and its lowest on 
highways. Overall, Early Warning tends to outperform Above 
Limit slightly. 

5.2  Comparison  of  DMC  and  CAN  approaches  
Figures 4b and 4c display the performance outcomes when employ-

ing DMC- and CAN-based features individually. Utilizing a single 
sensor modality generally results in lower performance. Combin-

ing the two modalities yields an AUROC of 0.84 ± 0.11 for Early 
Warning, whereas DMC achieves 0.79 ± 0.12 and CAN registers 
0.75 ± 0.13. Similarly, for Above Limit, the combined modalities 
achieve an AUROC of 0.80 ± 0.10, with DMC at 0.75 ± 0.10 and CAN 
at 0.72 ± 0.10. This pattern persists across both classifcation tasks: 
the combination of modalities performs best, followed by DMC, 
with CAN exhibiting the lowest performance. For Early Warning, 
the standard deviation in performance across participants mirrors 
this trend, whereas for Above Limit, it remains consistent. 

Figure 5 illustrates that the following two patterns are evident 
across all metrics: (1) the combined modality approach outperforms 
single modality methods, and (2) the performance metrics for Early 
Warning surpass those for Above Limit. Specifcally, the AUPRC 
for the combined approach registers 0.91 ± 0.07 for Early Warning 
and 0.67 ± 0.14 for Above Limit. The DMC-only method achieves 
an AUPRC of 0.88 ± 0.08 for Early Warning and 0.59 ± 0.13 for 
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Figure 4: The fgure displays subplots of receiver operating characteristic curves, averaged across all participants. The shaded 
areas represent the standard deviation among participants. The performance is reported as the area under the receiver operating 
characteristic curve (AUROC). A dashed gray line in each subplot represents the performance of a random classifer. Each 
row corresponds to a distinct classifcation task: Early Warning and Above Limit. Column (a) illustrates the combined 
performance of driver monitoring camera (DMC) and controller area network (CAN) sensors. Columns (b) and (c) show the 
individual performances of DMC and CAN sensors, respectively. 

Above Limit, while CAN scores 0.85 ± 0.09 for Early Warning 
and 0.57 ± 0.13 for Above Limit. Our proposed approach yields a 
balanced accuracy of 0.74 ± 0.10 for Early Warning and 0.69 ± 0.10 
for Above Limit. In a DMC-only setting, we record 0.69 ± 0.10 for 
Early Warning and 0.66 ± 0.08 for Above Limit. Utilizing only 
CAN, the performance measures at 0.66 ± 0.10 for Early Warning 
and 0.63 ± 0.08 for Above Limit. When both modalities are em-

ployed, the weighted F1 score reaches 0.75 ± 0.12 for Early Warn-

ing and 0.69 ± 0.10 for Above Limit. DMC attains 0.70 ± 0.12 for 
Early Warning and 0.66 ± 0.09 for Above Limit. The CAN-only 
strategy achieves 0.64 ± 0.12 for Early Warning and 0.62 ± 0.09 
for Above Limit. 

5.3  Robustness  analysis  
Figure 8 demonstrates the robustness of our detection system a-
gainst various design and parameter changes. First, we evaluated 

diferent window sizes used in the sliding window approach (Fig-
ure 8a). As anticipated, the AUROC improved with increasing win-
dow sizes, as they captured more information; however, the rate 
of improvement diminished beyond a certain point. We chose a 
window size of 60 seconds beforehand based on prior research 
( [54, 61, 128]), balancing performance with the need to minimize 
the delay in detection. Second, we trained classifers using each fea-
ture group individually (Figure 8b). In general, the feature groups 
provided complementary information, as their individual perfor-
mances were lower compared to when combined. Third, we com-

pared the results across diferent model choices (Figure 8c). Both 
linear models (logistic regression with lasso, ridge, or elastic net 
regularization) and non-linear models (support vector machine 
with radial basis function (RBF) kernel, random forest, gradient 
boosting, and multi-layer perceptron) exhibited relatively stable 
performance, with the random forest classifer yielding the lowest 
performance. The similarity in performance across models indicates 
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Figure 5: Each subplot corresponds to a classifcation task, illustrating the performance metrics area under the receiver operating 
characteristic curve (AUROC), area under the precision-recall curve (AUPRC), balanced accuracy, and F1 score (weighted by 
class). Each metric is evaluated for the three approaches: the combined driver monitoring camera (DMC) and controller area 
network (CAN) data model, and the individual DMC and CAN based models. Error bars represent the standard deviation across 
participants. 
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Figure 6: Each subplot displays the confusion matrix for one classifcation task’s model. The confusion matrices show the 
relative frequencies of predicted classes (horizontal axis) compared to actual classes (vertical axis). 

that our design decisions were robust. In general, in nearly all cases, 5.4  Interpretability  
Early Warning performed better than Above Limit. 

To analyze the impact of each feature, or feature group respectively, 
we conducted several analyses. First, we calculated the sum of the 
magnitude of coefcients normalized by the total sum, as shown 
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Figure 7: The fgure displays subplots of receiver operating characteristic curves for diferent scenarios, averaged across all 
participants. The performance is reported as the area under the receiver operating characteristic curve (AUROC). A dashed 
gray line in each subplot represents the performance of a random classifer. Each subplot corresponds to a distinct classifcation 
task: Early Warning and Above Limit. 
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Figure 8: The fgure presents our sensitivity analysis, where each subplot varies a specifc parameter or design decision 
to examine its impact on performance. Performance is quantifed using area under the receiver operating characteristic 
curve (AUROC). Error bars represent the standard deviations. The subplots detail diferent modifcations: (a) varying window 
sizes, (b) using only one feature group, and (c) employing diferent classifers. 

in Figure 9. Head movement (31% Early Warning, 20% Above feature group (Figure 8b). Notably, while head movement features 
Limit), eye movement (18% Early Warning, 17% Above Limit), had a high share of the absolute coefcient sum, the model relying 
gaze events (18% Early Warning, 18% Above Limit), and controls solely on this feature group performed poorly. This discrepancy 
interaction (21% Early Warning, 16% Above Limit) emerged as the could potentially be linked to the large number of features within 
feature groups with coefcient shares greater than 15%. Second, we this group. Third, we examined the top three features within the 
evaluated the performance of models trained exclusively on a single groups of eye movement, gaze events, and controls interaction 
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Figure 9: The fgure illustrates the importance of each feature group. Each subplot corresponds to a classifcation task’s model. 
The sum of the absolute values of the coefcients is calculated for each group and displayed as the percentage of the total sum. 

(Figure 10), as these groups appeared most infuential in the prior 
analyses. For instance, in the Early Warning model, the likelihood 
of predicting drunk behavior increased as the mean amplitude of 
saccades decreased, holding other factors constant (ceteris paribus). 

5.5  Control  group  incorporation  
In this section, we detail the outcomes achieved by incorporating 
both the treatment and the two control groups in our model’s train-
ing and evaluation phases. We report the AUROC and AUPRC only 
for participants in the treatment group, as these metrics were not 
defned for control group participants. Figure 11 illustrates the per-
formance of the two classifers trained across all participant groups 
but assessed on those from the treatment group. For Early Warn-

ing, the AUROC recorded was 0.80 ± 0.11, being slightly lower 
compared to using solely treatment group participants for training, 
where it was 0.84 ± 0.11. For Above Limit, the average AUROC 
remained constant, though the standard deviation slightly reduced 
(0.80 ± 0.09, compared to 0.80 ± 0.10 with only treatment partici-
pants). Figure 12a displays additional metrics. As previously noted, 
the AUPRC shows great variation. The Early Warning accuracy 
and F1 score deteriorated marginally. Conversely, for Above Limit, 
both accuracy and F1 score not only outperformed those of Early 
Warning, but also surpassed the metrics when training involved 
only treatment group participants. Figure 12b depicts the AUROC 
across diferent aggregation window sizes, noting that performance 
improves with larger window sizes, though the diminishing re-
turns efect is less pronounced than in models trained solely on the 
treatment group. 

6  Discussion  
In the following, we discuss the results of our study, exploring the 
implications and comparing them to existing literature. We discuss 
the interpretability of our model and assess the efectiveness of 
our system in realistic scenarios. We conclude with a discussion on 
the contributions of our study to public health and trafc safety, 
the limitations we encountered, and potential avenues for future 
research. 

6.1  Post-hoc  interpretation  
Our method, which employs logistic regression, provides the advan-
tage of allowing straightforward interpretation through coefcient 
analysis. In the following, we detail the most relevant coefcients 
and their interpretations. In general, research has indicated that 
drunk drivers exhibit diminished psychomotor skills, impaired per-
ception, and divided attention [69, 73]. Our model captured these 
symptoms: For example, we observed altered saccadic eye move-

ments under the infuence of alcohol, characterized by a reduction 
in the number of saccades [32], slower movements [79, 86], and 
decreased amplitudes [86], coupled with increased variability [92]. 
Additionally, fxation durations increased, corroborating prior stud-
ies [72, 96]. These patterns were consistent with those found in 
the original study [54] and other previous test track studies [53]. 
Analyzing interactions with vehicle control elements revealed that 
braking, accelerating, and steering were all impacted. Literature 
characterizes the actions of drunk drivers as more aggressive [101] 
and highlights their defcits in maintaining proper longitudinal and 
lateral positions [84]. The features identifed by our model, such as 
the standard deviation of steering wheel acceleration, refect these 
well-known behaviors. 
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Figure 10: The fgure highlights the three features with the largest absolute coefcients within each of the three most relevant 
feature groups. Error bars represent the minimum and maximum range of these coefcients obtained from cross-validation. 

6.2  Comparison  to  previous  work  
The system we proposed achieved an AUROC of 0.84 ± 0.11 in 
classifying sobriety (Early Warning) and 0.80 ± 0.10 for Above 
Limit, utilizing both DMC and CAN data. With exclusive reliance 
on DMC data, the AUROC values recorded were 0.79 ± 0.12 for 
Early Warning and 0.75 ± 0.10 for Above Limit. Utilizing only 
CAN bus data, we noted an AUROC of 0.75 ± 0.13 for Early Warn-

ing and 0.72 ± 0.10 for Above Limit. 
In a related study conducted by US NHTSA [59], researchers 

developed a CAN data-based classifer to predict whether a dri-
ver’s BAC was above or below 0.08 g/dL, achieving an AUROC 
of 0.77 ± 0.08. Our study, which classifes at a lower threshold 
(0.05 g/dL) and incorporates out-of-sample validation, matched this 
performance with an AUROC of 0.72 ± 0.10 when using CAN bus 
data alone, improving further upon integrating DMC data. 

Our objective was to adapt and apply the state-of-the-art ap-
proach of the original study to real vehicles, reproducing similar 
performance on the test track. Koch and Maritsch et al. achieved 

an AUROC of 0.88 ± 0.09 for Early Warning and 0.79 ± 0.10 for 
Above Limit using only DMC in a research-grade simulator with 
� = 30 participants driving under three BAC levels. When they com-

bined DMC and CAN data, their system showed slightly enhanced 
AUROC scores of 0.91 ± 0.07 for Early Warning and 0.81 ± 0.11 
for Above Limit. 

The original study and our test track study showed high con-
sistency in their detection performance. In line with the results 
of the original study, our confusion matrix revealed that the ML 
system demonstrated better performance for intoxication levels 
further away from the binary classifcation threshold. Specifcally, 
for Early Warning, the FN rate for moderately intoxicated partici-
pants was 30%. This rate decreased to 17% for participants who were 
severely intoxicated. A corresponding pattern emerged for Above 
Limit predictions, with a FP rate of 36% for moderately intoxicated 
participants and a FP rate of 16% for sober participants. This fnding 
is well-explainable, as greater diferences in intoxication lead to 
more pronounced diferences in symptoms [23], which makes the 
classifcation task easier. 
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Figure  11:  Performance  with  control  groups:  The  fgure  displays  subplots  of  receiver  operating  characteristic  curves,  averaged  
across  all  participants.  The  shaded  areas  represent  the  standard  deviation  among  participants.  The  performance  is  reported  
as  the  area  under  the  receiver  operating  characteristic  curve  (AUROC).  A  dashed  gray  line  in  each  subplot  represents  the  
performance  of  a  random  classifer.  Each  column  corresponds  to  a  distinct  classifcation  task:  Early  Warning  and  Above  
Limit.  
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Figure  12:  Performance  with  control  groups:  Subplot  (a)  illustrates  the  performance  metrics  area  under  the  receiver  operating  
characteristic  curve  (AUROC),  area  under  the  precision-recall  curve  (AUPRC),  accuracy,  and  F1  score  (weighted  by  class).  Error  
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Above  Limit.  Subplot  (b)  details  varying  window  sizes.  The  performance  is  quantifed  using  AUROC.  Error  bars  represent  the  
standard  deviations.  
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In literature, the generalizability of methodologies and results 
from simulator to the real vehicle remains a debated issue. Three 
primary factors potentially limit generalizability: the fdelity of 
the simulation environment [11, 19, 37], exclusion of real-world 
driving variables [61], and altered driver behavior due to no real 
risk [27]. Our use of industry-standard sensors, as opposed to high 
precision lab eye-tracking devices, enhanced the real-world appli-
cability of our fndings. We incorporated additional features such 
as region-specifc gaze events to accommodate the wider feld of 
view in actual vehicles, although some features like lateral lane po-
sitioning were inapplicable. By retaining the DMC-based features 
and incorporating CAN-based ones, we maintained performance 
parity with the original simulator study. 

Moreover, we went beyond the original study by avoiding an 
exclusive within-subject design, instead employing a mixed design 
with both control and reference groups to bolster our study’s robust-
ness. Considering mixed evidence on placebo efects [34, 76] and the 
potential for model learning from driver training and drowsiness, 
our design aimed to mitigate these infuences. Koch and Maritsch et 
al. addressed potential biases by implementing extensive simulator 
training and scheduling prolonged breaks to mitigate training and 
fatigue efects. We countered these potential biases by employing 
a reference control group that was fully informed (no placebo ef-
fect). Our study design emphasized the mitigation of learning biases 
from environmental changes, such as varying lighting conditions 
throughout the day. When incorporating the control groups, we 
successfully maintained consistent results, achieving an AUROC 
of 0.80 ± 0.11 for Early Warning and 0.80 ± 0.09 for Above Limit. 
This performance aligns with the mean AUROC scores observed in 
results without control groups. 

In summary, we developed and evaluated a ML system aimed 
at detecting drunk driving using DMCs and real-time vehicle data. 
Given the real-world vehicle setting, which precluded the use of 
high-precision laboratory hardware, we adapted existing and intro-
duced new features, incorporating real-time CAN vehicle data into 
our ML models. 

6.3  Risk  mitigation  interventions  
Upon predicting the driver’s intoxication status, a personalized 
digital intervention (e.g., in-vehicle drunk driver warning) can be 
initiated to mitigate harmful drinking behaviors [48]. Furthermore, 
drivers who underestimate their BAC have been identifed as par-
ticularly risky in previous studies [56]. For these individuals, an 
appropriate warning (such as auditory, visual, or tactile alerts) may 
efectively heighten awareness of their impairment. 

In scenarios where a driver knowingly operates a vehicle with 
an excessive BAC, the efcacy of warnings may be inherently lim-

ited. By incorporating BAC levels into the driver behavior model, 
ADAS in the vehicle can adjust for the impaired motor functions 
and delayed reaction times of the driver. For instance, a collision 
prevention system might trigger a brake maneuver earlier knowing 
that the driver is highly likely to be intoxicated. As a last resort, the 
vehicle could be brought to a stop, although this measure requires 
further refnement given the current FP rates in detection. 

6.4  Privacy  and  ethical  considerations  
Privacy discussions within the realm of information technology and 
surveillance (e.g., [67, 87]) concentrate on issues related to accessing 
private and personally identifable data [75]. The concept of privacy 
is linked to various rights, including the right to be let alone, the 
right to control one’s personal data, and the right to confdential-
ity [6]. More specifcally, regulators worldwide have put forward 
a set of core privacy principles (e.g., Brazil [77], Singapore [80], 
and the EU [28]). Personal data must be processed lawfully, fairly, 
and transparently, ensuring individuals are informed about how 
their data is used. It should be collected for specifc, legitimate 
purposes and not used in ways incompatible with those purposes. 
Data should be adequate, relevant, and limited to what is necessary, 
while being kept accurate and up-to-date. Personal data must not 
be stored longer than necessary. Finally, appropriate technical and 
organizational measures must protect data against unauthorized ac-
cess, loss, or damage, ensuring its security and confdentiality [28]. 

Continuous driver monitoring involves processing highly sensi-
tive data, thereby introducing substantial privacy risks. Notably, our 
detection approach does not rely on identifying a specifc person. 
We have deliberately avoided personalizing the system, for example, 
by not deriving and applying individualized decision thresholds. 
In addition, we have minimized the need to store data. Specif-
cally, we only need access to DMC and CAN data of the last 60 
seconds. Furthermore, all calculations can be conducted onboard 
in a closed-loop system on the edge (in-vehicle). Committed to the 
principles of open science, we have published the source code of 
our system and made every efort to ensure that its functionality is 
easily understandable and transparent. Ultimately, however, vehicle 
manufactures have to assure that our approach is implemented in 
line with the outlined privacy principles. In regions like the EU 
where DMCs are mandated, data protection regulations in context 
of DMCs [29] require that systems for drowsiness and distraction 
detection retain data only as needed for their intended functions 
within a closed-loop system. This data must never be shared with 
or accessible to external parties and must be promptly erased post-
processing [29]. These existing regulations are currently specifc to 
drowsiness and distraction detection and hence need to be extended 
to cover impairment detection systems. 

Beyond privacy concerns, the deployment of artifcial intelli-
gence and ML systems introduces several ethical challenges with 
signifcant societal implications [95]. For instance, biases in training 
data can result in unfair or discriminatory outcomes. Additionally, 
a lack of transparency in these systems might complicate eforts to 
understand or challenge their decisions, undermining accountabil-
ity. To mitigate these issues, we have implemented interpretable ML 
techniques and ensured our system was trained on a high-quality 
data set. The diversity of our study participants was a key prior-
ity, as detailed in Table 2. Nonetheless, we recognize the need to 
enhance diversity further, such as by including a broader range of 
ethnicities, as discussed in Section 6.6. 

6.5  Contributions  
Harmful alcohol consumption and drunk driving pose signifcant 
public health challenges, contributing to disease, injuries, and fatal-
ities. The advent of new vehicle generations equipped with DMCs 



           Deuber et al. 

         
         

           
          

          
        

        
         
 

        
         

        
       

           
        

       
            

             
          

          
       
 

               
         

          
           

         
          

         
       

         
        

         
           

           
         

        
          

          
    

           
         

         
          
       

       
       

 
           

       
          

          
           

        
       

        
       

            
         

            
           

             
          

         
          

          
        

            
        

         
          
        

         
          

         
        

       
        

         
           

         
           

          
           

          
           

        
        

        
         

        
          

          
        
         

     
          

        
           

    
            

            
       

        
           

        
        

           
          

           

CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

presents opportunities to enhance road safety. To further mitigate 
accidents, active safety systems that comprehend and interact with 
the driver are essential. Given the advantages of integrating a driver 
behavior model into ADAS, we explored the efcacy of transferring 
drunk driving detection to the real vehicle, assessed the attainable 
performance levels, and identifed the modifcations needed for 
such implementation. Additionally, we examined the impact of in-
cluding sober reference and placebo subjects on the performance 
metrics. 

By adapting existing features (e.g., transitioning from gaze po-
sitions on a simulator display to three-dimensional gaze vectors), 
introducing new features (e.g., rotational head velocities), and in-
corporating new feature types, specifcally region-specifc gaze 
event features and eye state features, along with the inclusion of 
CAN-based real-time vehicle data, we conceptually replicated the 
simulator-based approach, with necessary modifcations for the 
real-world setting. To the best of our knowledge, this work is the 
frst to conduct a test track study as a clinical trial with intoxicated 
participants, utilizing DMC and CAN bus data to detect drunk driv-
ing. Our choice of model not only facilitated generalizability but 
also demonstrated robust performance on previously unseen dri-
vers. 

6.6  Limitations  and  future  work  
Given our data set size of � = 54, the variety of the collected data 
with respect to participants and driving behavior is naturally con-
strained. Despite this limitation, we endeavored to attract a diverse 
range of participants in terms of age and gender through targeted 
recruitment strategies. Table 2 illustrates that these eforts were 
successful with respect to the reported variables. Thus, we consider 
our participant set to be representative of the demographic compo-

sition of Switzerland. However, certain participant characteristics, 
such as ethnicity, were not recorded. Previous research indicates 
that eye-tracking performance can vary across diferent ethnic 
groups [7], suggesting potential areas for further improvement in 
future replications of the study with a broader variety and inclusion 
of special cases. Other factors may also infuence driving and visual 
scanning behaviors. For instance, we hypothesize that our system 
might underperform with participants who have eye-related health 
issues. Moreover, studies have shown that the glance behaviors of 
older [24] and novice drivers [109] difer signifcantly from typical 
patterns, warranting additional investigation. 

In line with the objectives of the original study, our replication 
study concentrates on exploring the general potential of DMC- and 
CAN-based drunk driving detection systems. We employ basic ML 
models and our goal was not to conduct rigorous comparisons 
between individual models. Consequently, future research should 
investigate more advanced methodologies and perform detailed 
analyses to discern signifcant performance diferences across mod-

els. 
The utilization of both, DMC data and CAN bus data enhances 

detection performance, but also increases hardware requirements 
and costs, which may limit applicability. However, the CAN bus 
is a standard feature in modern vehicles, while DMCs are manda-

tory in certain regions [29] and necessary for achieving high safety 

ratings [2, 33, 74]. Consequently, leveraging these standard vehi-
cle systems assures cost-efectiveness. Although combining these 
modalities increases computational demand, our system does not 
require computationally intensive deep learning models frequently 
used in other studies for driver behavior analysis [94, 123]. In fact, 
the most resource-intensive component is extracting head and gaze 
features from the raw DMC images. The DMC operates at a frame 
rate of 50 Hz, while our drunk driving detection system assesses 
the driver’s state at 1 Hz. Thus, eye, head, and gaze features are 
extracted more frequently than the frequency at which our ML 
system predicts the driver’s state. However, in the automotive in-
dustry, real-time head and gaze detection systems that surpass our 
system’s 50 Hz frequency are commercially available [21] and have 
become standard in new vehicles. Therefore, utilizing a combina-

tion of CAN bus and DMC data for drunk driving detection not 
only improves performance but is also practically viable. 

The widespread adoption of fully autonomous vehicles in the 
coming decades is rather unlikely [20, 38, 71]. However, the inte-
gration of autonomous functionalities into the automotive market 
is progressing. Currently, Level 3 [89] autonomous cars (i.e., vehi-
cles that can handle driving tasks within specifc conditions, but 
require the driver to supervise) are commercially available, and 
forecasts indicate a growing prevalence of vehicles featuring au-
tonomy. Consequently, the nature of driver-vehicle interactions 
is evolving. Drivers are increasingly disengaging from the driv-
ing process, which can diminish their situational awareness. The 
impact of these changes on the two sensor modalities we utilize, 
DMC and CAN, varies, especially in vehicles with autonomous fea-
tures. Recent test track studies have analyzed the gaze behavior of 
drivers under the infuence of alcohol (i.e., no drunk driving detec-
tion) in both, manual and autonomous modes. Zemblys et al. [129] 
showed that while high-level glance features (e.g., areas of interest) 
vary depending on the driving mode, basic gaze metrics such as 
fxations and saccades remain consistent across modes. Notably, 
fxation durations increased with intoxication irrespective of the 
mode. Tivesten et al. [106] concentrated on non-driving-related 
tasks across diferent driving modes, focusing on high-level glance 
features. Their fndings also confrmed that intoxication afects 
gaze behavior regardless of the driving mode. However, with the 
ongoing advent of automation, the relevance of CAN features may 
diminish, potentially reducing the efcacy of CAN-based detection 
systems. In summary, our detection system, which utilizes both 
driver-environment interactions (DMC) and driver-vehicle interac-
tions (CAN), is designed to function efectively even without direct 
driver-vehicle interactions, relying solely on DMC data. However, 
more work is necessary to rigorously validate our results in the 
context of autonomous vehicles. 

While the validity of test track studies is generally high, it does 
not match the fdelity of real-world data [9]. During the test track 
study, we encountered environmental infuences (e.g., severe rain-
fall, signifcant temperature fuctuations) typical of summer weather 
in Switzerland. However, our test track study, for example, did not 
involve other road users, non-driving related tasks, distractions, 
or nighttime driving conditions. In discussing the transferability 
from the simulator to test track studies, we identifed three key 
simulator limitations: (1) varying degrees of realism [11, 19, 37], 
(2) the absence of external infuences [61], and (3) modifed driver 
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behavior due to the minimized risk situation [27]. These limita-

tions are also partially applicable to test track studies. Although our 
model demonstrated consistent performance across all test track 
driving scenarios, exploring these factors in real-world driving con-
texts, where driver’s glance behavior is infuenced more directly by 
the driving environment [107], would be valuable. Hence, while it 
entails higher risks and reduced experimental control, conducting 
studies in real-world contexts would provide higher validity [8]. 
Such data could be crucial for further validating our results and 
developing additional models. Consequently, we advocate for real-
world studies to frst validate our methods against FP in actual 
trafc conditions, and second, to generate a dataset featuring in-
toxicated drivers under real trafc conditions, naturally with legal 
exemptions, in alignment with local ethical standards, and with 
appropriate safety measures in place, such as a safety driver. 

7  Conclusion  
Society and policymakers are intensively exploring new strate-
gies to curtail harmful alcohol consumption and eliminate drunk 
driving, both recognized for their fatal outcomes. For efective digi-
tal interventions, precise BAC estimation is imperative. Utilizing 
existing and emerging sensors ofers a scalable and economical 
solution. Our test track study successfully replicated results from 
the state-of-the-art simulator study, afrming the generalizability 
of this approach. By employing human-interpretable features and a 
parsimonious model, we substantiated that the model is anchored 
in well-established physiological efects. Retaining DMC-based fea-
tures and incorporating CAN-based ones, our system demonstrated 
a robust method for detecting drunk driving. Moreover, we intro-
duced a novel study design with two control groups, efectively 
underlining the robustness of our system. Thus, our system sets the 
stage for pioneering digital interventions that aim to signifcantly 
reduce societal harm. 
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A  Participant  details  

Figure 13 illustrates the study fow diagram that outlines the recruitment process of our study, screening procedures, and subsequent 
group assignment. 

Assessed for eligibility in telephone interview (n = 61)

Completed screening visit (n = 60)

Excluded before screening visit (n = 1)
▪ Withdrawal due to personal 

reasons (n = 1)

Completed study day 

assigned to treatment 
group (n = 31)

Excluded after screening visit (n = 5)
▪ Withdrawal due to personal 

reasons (n = 1)

▪ Due to subsequent failure to meet 

inclusion criteria (n = 4)

Excluded in analysis (n = 1)
▪ Errors in the recorded CAN

bus data (n = 1)

Included in this study

(n = 31)

Completed study day  

assigned to placebo 
group (n = 12)

Completed study day 

assigned to reference 
group (n = 12)

Included in this study

(n = 12)

Included in this study

(n = 11)

Figure  13:  The  fgure  displays  our  study  fow  diagram.  
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B Feature Generation 
Figure 14 and 15 present comprehensive overviews of all features generated from DMC and CAN bus data, respectively. 
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▪ Front window left / right
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specific 
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features
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▪ Left eye

▪ Right eye
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Figure 14: The fgure displays an overview of all features generated from driver monitoring camera (DMC) data. We have fve 
distinct feature groups, each based on unique base signals to which aggregation functions were subsequently applied. 
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▪ Mean

▪ Median

▪ Standard deviation
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Figure 15: The fgure displays an overview of all features generated from controller area network (CAN) sensor data. We have 
two distinct feature groups, each based on unique base signals to which aggregation functions were subsequently applied. 
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