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Abstract

Alcohol consumption poses a significant public health challenge,
presenting serious risks to individual health and contributing to
over 700 daily road fatalities worldwide. Digital interventions can
play a crucial role in reducing these risks. However, reliable drunk
driving detection systems are vital to effectively deliver these in-
terventions. To develop and evaluate such a system, we conducted
an interventional study on a test track to collect real vehicle data
from 54 participants. Our system reliably identifies non-sober driv-
ing with an area under the receiver operating characteristic curve
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(AUROC) of 0.84 £ 0.11 and driving above the WHO-recommended
blood alcohol concentration limit of 0.05 g/dL with an AUROC of
0.80 +0.10. Our models rely on well-known physiological drunk
driving patterns. To the best of our knowledge, we are the first to (1)
rigorously evaluate the potential of (2) driver monitoring cameras
and real-time vehicle data for detecting drunk driving in a (3) real
vehicle.

CCS Concepts

« Human-centered computing — Empirical studies in HCI;
Ubiquitous and mobile computing; - Applied computing —
Consumer health.
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1 Introduction

Alcohol represents a significant public health challenge. Approxi-
mately 5% of global deaths can be attributed to alcohol consump-
tion. Research has shown that alcohol has an impact on 27 different
causes of diseases, injuries, and fatalities (e.g., alcoholic cardiomy-
opathy, alcohol use disorder, cirrhosis of the liver) [122]. Conse-
quently, the Sustainable Development Goals (SDG) address harmful
alcohol consumption [110]. More specifically, target 3.5 calls for the
mitigation of harmful alcohol use. Digital interventions (e.g., mo-
bile apps to address irresponsible drinking) offer a viable pathway
to address this objective [5, 48, 98]. However, to implement such
interventions effectively, accurate prediction of the blood alcohol
concentration (BAC) is essential.

With respect to mobility, alcohol-related road crashes result in
more than 700 fatalities daily, accounting for 22% of fatal driving-
related incidents globally [112]. In line with SDG target 3.5, target
3.6 aims to reduce mortality from road traffic accidents [110]. A
potential solution could be driverless mobility. While predictions
vary, experts concur that fully autonomous driving without any
driver involvement is unlikely to be widely implemented in the
coming decades [20, 38, 71]. Until complete autonomy is achieved,
drunk driving remains ’the cancer of mobility’ and a core issue to
be addressed [112].

There is a growing political commitment to addressing the high
incidence of drunk driving accidents. In the United States (US), for
instance, Congress has mandated that future vehicles be equipped
with in-vehicle drunk driving detection and prevention systems
[111]. To implement this mandate, the US National Highway Traf-
fic Safety Administration (NHTSA) issued an Advance Notice of
Proposed Rulemaking (ANPRM) in December 2023 to collect input
and feedback from all relevant stakeholders including the public.
Thereby, NHTSA articulated their intention to enforce a system
that operates “passively” (page 28 of [78]).

Unfortunately, today, reliable methods for determining driver
alcohol intoxication involve in-vehicle ignition interlock breatha-
lyzers. These devices are not considered "passive" under legislative
definitions [78]. Furthermore, they also come with significant costs.
Installation costs range from 70 to 200 USD, and monthly mainte-
nance and calibration fees are between 60 and 100 USD [51, 838].

Therefore, a scalable and cost-effective approach for alcohol
detection is still to be developed. Ideally, such a solution would
utilize sensors already available in modern vehicles. These vehicles,
for example, have a controller area network (CAN) bus system
that facilitates communication among various vehicle components
including sensors for controls (e.g., steering wheel angle sensor) and
sensors monitoring vehicle state (e.g., vehicle speed). Furthermore,
latest vehicles are equipped with driver monitoring camera (DMC)
devices, which are mandated by laws in regions like the European

Deuber et al.

Union (EU) [29] and are essential for achieving high ratings in
safety tests across the world [2, 33, 74]. In this work, we develop
and evaluate a machine learning (ML) system designed to detect
drunk driving by utilizing DMC and real-time CAN data, which are
standard features in modern vehicles.

1.1 Contributions

To develop and evaluate the drunk driving detection system, we
conducted a randomized controlled trial involving n = 54 partici-
pants who drove a real car on a test track under varying BAC levels.
Using this data, we derived a drunk driving detection model that
performs two classification tasks: determining whether the driver
is under the influence of alcohol, and whether the BAC exceeds the
World Health Organization (WHO)-recommended limit of 0.05 g/dL.
This work builds upon latest simulator findings [54] and aims to
investigate, if these findings can be replicated leveraging a real car.
More specifically, the goal is to analyze if existing simulator-based
features and ML pipelines can be transferred into a real vehicle envi-
ronment, and what adaptations might be necessary. In addition, the
work is geared towards understanding the magnitude of potential
performance degradations and their practical implications.

Contributions: (1) We demonstrate that the performance of our
real vehicle drunk driving detection system is comparable to previ-
ous simulator-based findings, which rely on selected features not
available in cars today. Additionally, our system does not leverage
high quality lab cameras. Instead, we built upon lower quality video
data that is captured by industry-standard driver monitoring cam-
eras. (2) To cope with feature and camera limitations, we extended
existing work and derived two additional types of camera features.
Moreover, to match the performance of the simulator findings, we
also included CAN data as a second modality. (3) We demonstrate
strong generalization capabilities to unseen drivers who were not
part of the ML training set. (4) The analysis of our predictive model
shows that our classification relies upon well-known physiological
patterns that are associated with drunk driving. (5) By incorporat-
ing two control groups, we address potential placebo effects and
compensatory behaviors as well as influences such as training and
drowsiness effects.

Novelty: To the best of our knowledge, we are the first to im-
plement and rigorously evaluate a drunk driving detection system
in real vehicles, utilizing DMC and real-time CAN bus data. Previ-
ous research has primarily focused on statistical analyses of drunk
driving (e.g., [46, 53, 106]), detection systems have previously been
developed based on simulator studies only (e.g., [52, 54, 59]).

Significance: As society and policymakers seek effective strate-
gies to mitigate harmful alcohol consumption and prevent drunk
driving, we offer a solution that leverages existing vehicle hardware
to accurately predict a driver’s BAC, serving as a foundation for
successful digital interventions (e.g., mobile app interventions or
vehicle-triggered safety measures). Committed to incremental sci-
ence and replication, we have published the source code to foster fur-
ther research and development in this field: https://github.com/im-
ethz/CHI25_Drunk-Driving-Detection-in-a-Real-Vehicle.git
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2 Related work

This section surveys critical research on alcohol detection and
drunk driving interventions within the Human-Computer Interac-
tion (HCI) field. The subsequent sections delve into the evolution
of driver-state detection technologies and specific drunk driving
detection methods.

2.1 Alcohol detection and harmful use
prevention

Alcohol consumption and drunk driving are recognized as impor-
tant public health concerns. The HCI community has explored a
variety of approaches to address harmful drinking behaviors, both
inside and outside vehicular contexts. In previous studies, partic-
ipants’ BAC was detected using data from smartphone activities
during daily living, achieving an area under the receiver operating
characteristic curve (AUROC) of 0.80 [58]. Similar approaches em-
ploying smartphone interactions have also been utilized in other
research [68, 70]. SoberMotion combined smartphone technology
with a breathalyzer to prevent individuals convicted of driving
under the influence from operating vehicles while impaired [125].
Additionally, wearable sensors on wristbands have been employed
for alcohol detection purposes [126]. The SoberComm program as-
sists alcohol-dependent patients by facilitating the communication
of alcohol-use data to family members and treatment teams [124].
Furthermore, other initiatives have aimed to support participants
in reducing their risk to engage in harmful drinking through digital
interventions [40, 65]. This prior research demonstrates that detect-
ing alcohol use through human-computer interactions is feasible,
and can serve as a basis for digital interventions that ultimately
reduce harm.

2.2 Driver state detection

Today, driver state detection is core to active vehicle safety. While
passive vehicle safety systems such as crumple zones aim to miti-
gate the effects of collisions and safeguard passengers, active vehicle
safety systems such as emergency braking systems proactively avert
accidents. Active safety systems fall into the category of advanced
driver-assistance systems (ADAS), which encompass safety and
comfort features. ADAS cover a wide range of interventions, from
audiovisual warnings to full vehicle control. Thereby, driver state
information is used to deploy, improve or personalize interven-
tions [12, 31]. Consequently, detecting the driver’s state becomes
essential.

The predominant systems for driver state detection within mod-
ern vehicles focus on detecting driver drowsiness and distraction.
They are typically categorized into three main types: physiological,
DMC-based, and CAN data-based [49, 85]. Systems based on phys-
iological parameters monitor biometric signals such as heart rate
and brain activity to evaluate the driver’s condition. DMC-based
systems analyze the physical actions of the driver, including gaze
direction, head movements, and facial expressions, using driver-
monitoring cameras and computer vision technologies. Systems
based on CAN data track changes in driving behavior, such as
steering actions and lane-keeping.
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Currently, both DMC and CAN-based systems individually ac-
count for approximately 44% each of the market’s available drowsi-
ness detection products, hence making up 88% of the total mar-
ket [22]. However, DMCs become a standard feature in new vehicles.
Their increasing availability and superior detection performance
have led to rapid adoption in modern commercial drowsiness detec-
tion systems [22]. Furthermore, DMCs play a vital role in detecting
distractions, such as texting [49].

Detection systems utilizing DMC-data typically fall into two cat-
egories. The first approach involves deriving human-interpretable
features, such as the percentage of on-road versus off-road glances,
to train a ML model [127]. The second, more recent approach, em-
ploys deep learning techniques, which use raw images directly as
input for the ML model, as exemplified by Guo et al. [39].

2.3 Drunk driving detection

Extensive research has focused on the statistical analysis of drunk
driving, examining both driver-vehicle interactions and physiologi-
cal metrics of drivers [46, 47]. Studies conducted on test tracks also
contribute to this body of knowledge. For instance, one study ex-
plored the effects of alcohol intoxication on eye movement metrics,
utilizing diverse DMC configurations [53]. The findings indicated
that higher levels of intoxication correlate with prolonged dura-
tions of glances, blinks, and fixations, and an increased focus of
the driver’s gaze on the road area. Another recent test track study
demonstrated that alcohol impacts drivers’ on/off-road gaze behav-
ior [106].

Conversely, fewer studies have addressed the detection of drunk
driving. To the best of our knowledge, no such study has been con-
ducted on a test track. Existing studies have employed simulators
(e.g., a seat and driver controls mounted on a fixed frame in front
of a display [60], or a real but stationary car positioned in front of
a wide-angle screen [62, 63, 102]), focusing on behavioral metrics
such as pedal usage and steering, alongside simulated vehicle states
like velocity. However, the rigor of these studies varies, and some
face validity issues. For instance, some studies have employed gog-
gles designed to simulate intoxication effects, rather than actual
alcohol consumption [42, 43]. Moreover, the fidelity of the simula-
tors varies. Some studies have incorporated driver-facing camera
data, employing various camera system types (e.g., commercial
eye-tracking devices [13, 14, 59], augmented with infrared and RGB
cameras [52]). A major limitation of all the presented studies is
their lack of testing on data of drivers not previously included in
the training set of the classifier. The small participant pools and
the use of the same drivers for both training and evaluation raise
concerns about the generalizability of these methods to new data
from unseen drivers.

To the best of our knowledge, only one detection method has
been evaluated on out-of-sample subjects, proposed by Koch and
Maritsch et al. [54]. It was developed from data gathered in a clinical
simulator study with n = 30 participants [54]. It employed a sliding
window approach for feature generation and logistic regression for
making predictions. The proposed system successfully determined
sobriety status with an AUROC of 0.88 and differentiated between
participants below or above the WHO-recommended BAC limit of
0.05 g/dL with an AUROC of 0.79.
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2.4 Importance of replication and real vehicle
studies

The transferability of simulator findings to real-world vehicles
remains a debated issue within the domain. While some studies
affirm their validity (e.g., [55, 61]), others report inconsistent out-
comes [47]. Such discrepancies are often attributed to the limited
availability of comparable hardware and environmental variations
in actual vehicles, potentially limiting simulator results’ gener-
alizability [129]. For example, differences in outcomes between
simulators and actual vehicles are shown for semi-autonomous
driving scenarios [83]. In sum, three principal factors are posited
to underlie these validation challenges: (1) the varying degrees
of realism in simulated environments, dependent on simulator fi-
delity [11, 19, 37]; (2) the absence of external influences encountered
in real-world driving [61]; and (3) modified driver behavior due to
the absence of genuine risk [27].

Previous literature has highlighted a replication crisis within the
HCI field [25, 113], driven by a strong emphasis on novelty [119].
In response, the RepliCHI series has been organized annually from
2011 to 2014 [117-120] to foster incremental scientific progress.
Our study builds upon the core ideas of RepliCHI, serving as a
replication conducted on a test track that builds upon methodolo-
gies previously established. We conducted a conceptual replication
study [120], closely adhering to the methodology employed in the
study by Koch and Maritsch et al. [54], which we regard as the state-
of-the-art and refer to as the “original study” herein. To enhance
external validity, we implemented our study in a different environ-
ment (test track). Due to variations in sensor data availability in
actual vehicles - for instance, industry-standard DMCs in place of
high precision lab eye-tracking devices — we modified certain ML
features to adapt to the new environment, while maintaining the
core elements of the original study. This adjustment facilitates a
more realistic application.

To our knowledge, this drunk driving detection study is the first
conducted on a real test track with intoxicated drivers aimed at
developing a drunk driving detection system using real-time vehicle
and driver monitoring camera data. The study was conducted as
an interventional clinical trial.

3 Data collection

We conducted a randomized, controlled, interventional single-center
study (ClinicalTrials.gov NCT05796609), adhering strictly to the
principles of the Helsinki Declaration, good clinical practice guide-
lines, Swiss health laws, and the Swiss ordinance on clinical re-
search. This study was registered and received approval from the
local ethics committee in Bern, Switzerland (ID 2022-02245). It took
place between April 2023 and July 2023. All participants provided
informed consent after receiving a comprehensive explanation of
the procedures involved in the study. The following section outlines
the methodology of our study.

3.1 Study design

We informed participants about the study’s purpose, which in-
cluded the potential administration of alcohol; however, we did not
disclose the precise amount of alcohol administered or their target
BAC. Alongside the treatment group, we involved a fully informed
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Table 1: Study design.

Assignment Masking Treatment

Treatment group single-blinded alcoholic drink
Placebo group single-blinded  placebo drink
Reference group  unblinded -

reference group that did not consume alcohol (open-label) and a
placebo group that was not aware they received no alcohol (blinded).
The treatment group ingested an alcoholic beverage, whereas the
placebo group received a non-alcoholic placebo drink. When two
participants attended the study simultaneously, our protocol strin-
gently forbade them from discussing their estimated BAC.

Prior research on drunk driving supports the inclusion of placebo
and reference groups in alcohol studies [36, 91, 105]. Despite this,
the existence and significance of the placebo effect in such studies
continue to be subjects of debate [34, 76]. In medical research, a
placebo often demonstrates the effects of expectancy, typically
leading to symptom alleviation due to the belief in the efficacy of a
treatment [99]. Participants in these contexts usually have limited
prior experience with the substance. In contrast, participants in
this study brought previous alcohol experience, enabling them to
rely on past experiences instead of forming new expectations. This
background might lead to an inadvertent improvement in cognitive
performance under placebo-controlled conditions if participants
believe they are intoxicated [105].

Studies have employed blinded placebo groups using both within-
subject [59] and between-subjects designs [13]. Additionally, other
research has utilized an open-label sober reference condition in
both within-subject [54, 62] and between-subjects formats [63]. The
open-label reference condition aligns more closely with real-world
scenarios, as drivers typically know whether they are sober or in-
toxicated. Our data collection study encompassed both conditions.
First, we introduced a placebo control group to address potential
placebo effects and compensatory behaviors, thus ensuring consis-
tency with prior research. Next, we incorporated a reference control
group to adjust for influences such as training (e.g., familiarization
with the vehicle and the test track) and drowsiness. This group
additionally compensated for environmental variations on the test
track, such as changes in sunlight exposure throughout the day,
while eliminating any confounding placebo effects. We present the
details of these conditions in Table 1.

Following [30] and drawing on the design from the original
study [54] and a related study [61], we determined the sample sizes
of n = 25 for the treatment group and n = 10 for each control group.
To account for potential dropout and technical failures, we adjusted
the target sizes for the treatment and control groups to n = 32 and
n = 12, respectively.

3.2 Participants

Eligibility criteria required participants to possess a driving license
valid in Switzerland, be aged 21 or older, and have driven actively
within the past six months. Further, they were required to have
consumed alcohol at least occasionally during the same period.
Exclusion criteria included health conditions that contraindicated
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alcohol consumption, use of medications or drugs that interact with
alcohol, and excessive alcohol consumption.

Excessive alcohol consumption was assessed using two mea-
sures: (1) phosphatidylethanol (PEth) and (2) Alcohol Use Disorder
Identification Test (AUDIT). PEth, an alcohol biomarker measured
in a capillary blood sample, indicates chronic excessive alcohol
consumption with values exceeding 200 ng/mL (further details in
Section 3.3.1) [66, 93]. AUDIT, a 10-question screening tool devel-
oped by the WHO, detects hazardous or harmful alcohol consump-
tion [90]. We excluded participants who scored 15 or higher.

Additional exclusion criteria included pregnancy, breastfeeding,
or plans to become pregnant during the study. Participants with
a history of excessive alcohol use, recent drug abuse, or a positive
drug test were also excluded. Moreover, those unable to comply with
study procedures due to language barriers, psychological disorders,
or other impairments, as well as individuals who had participated
in a drug study within the past 30 days, were deemed ineligible.

Of the 72 participants initially recruited, a total of 55 met the
eligibility criteria. We excluded one participant from the analysis
due to errors in the recorded CAN data. Their characteristics are
summarized in Table 2. A comprehensive study flow diagram is
provided in Appendix A.

3.3 Study procedure

3.3.1 Participant screening. We recruited participants through pub-
lic announcements and advertisements. Interested individuals reg-
istered online, and we randomly selected participants for a phone
screening. During the screening, the study team explained the
study’s purpose, answered participants’ questions, and evaluated
them against the inclusion and exclusion criteria. Eligible partic-
ipants then attended a screening visit, where the study team col-
lected capillary blood and urine samples to exclude excessive al-
cohol consumption by blood PEth concentrations [100], and to
exclude pregnancy and drug abuse by urine tests.

The second visit served as the designated study day. To main-
tain standardized conditions across all participants, subjects were
required to arrive in a fasted state (i.e., no food or caloric beverages
for 4 hours). Initially, participants underwent a familiarization drive
to get used to the study vehicle, the test track, and the procedure
for receiving driving instructions to navigate the course. The actual
baseline drive in a sober state, which later served as the negative
class for classification, was then conducted first. Subsequently, the
alcohol administration procedure commenced for the treatment
group. The control group participants followed the identical proce-
dure without receiving alcohol (either knowingly or unknowingly).
To control for potential training effects, such as changes in driv-
ing behavior due to increased familiarity with the test track, the
reference control group was introduced (see Section 3.1). While
the control and placebo participants remained sober, the treatment
group engaged in driving tasks at three different BAC levels.

3.3.2  Alcohol administration and measurement. The study design
involved three distinct driving sessions for participants over the
course of the study day. Participants in the treatment group com-
pleted one drive while sober, one drive with a BAC exceeding
the WHO-recommended legal limit of 0.05g/dL [121], and one
drive with a BAC below this threshold. The nomenclature for these
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phases—no alcohol, severe, and moderate—is consistent with the
terminology used in the original study [54].

Following the initial sober driving session, participants in the
treatment group underwent an alcohol administration process
aimed at achieving a target BAC of 0.08 g/dL. This protocol ensured
consistency with the conditions of the original study. We calculated
the amount of alcohol administered individually for each partici-
pant, taking into account their sex, weight, age, and height, using
the Widmark formula [10, 115, 116]. Treatment group participants
consumed a mixed drink consisting of vodka and orange juice, and
their BAC was regularly monitored via breath alcohol concentra-
tion (BrAC) measurements. The severe driving phase commenced
after participants’ BAC peaked and subsequently dropped below
0.075 g/dL. Following the second driving session, participants took
a break to allow their BAC to decrease. The moderate driving phase
began once their BAC dropped below 0.035 g/dL. The participants’
BAC are depicted in Figure 1.

We measured the participants’ BAC using a professional breath
alcohol measurement device. Until the debriefing, they were not
informed of their BAC levels. We applied a conversion factor of 0.2
between BrAC and BAC, following Swiss regulations (e.g., a BAC of
0.08 g/dL corresponds to a BrAC of 0.4 mg/L) [26]. We used a Dréger
6820 device, which is officially licensed for use by public safety
agencies in Switzerland [103]. The first measurement occurred 20
minutes after alcohol consumption to avoid distortion caused by
residual alcohol in the mouth [64].

The control group participants followed the same temporal pro-
cedure. The duration of the break and the waiting period before
the driving phases were determined by the average time required
for participants in the treatment group, rather than by the par-
ticipants” BAC. Participants in the placebo group received plain
orange juice. Until the debriefing, they were not informed that their
beverage was a placebo containing no alcohol. No study beverage
was administered to the reference group.

During the initial screening, participants were informed that
they might receive alcohol. However, they were blinded to their
study group assignment, the target BAC, and the nature of the
beverages provided. Following existing alcohol administration stud-
ies [41, 50], orange juice was mixed with vodka. Thereby, a bitter
orange juice variant was chosen to mitigate the taste of vodka. To
ensure the dominance of the orange flavor, the vodka was stored at
-18 degrees Celsius. Drinks were dispensed to both treatment and
placebo group participants in neutral bottles featuring a narrow
outlet to minimize air exposure. The volume of the drinks varied
from 3.0 dL to 5.5 dL, tailored to the calculated alcohol volume re-
quired. Placebo participants received a corresponding volume of
beverage, devoid of alcohol.

3.3.3 Driving. Alicensed driving instructor sat in the front passen-
ger seat during the drives. The driving instructor issued commands
to the participants, who were tasked with operating the vehicle as
they would in real traffic, such as employing turn signals. Blinded
to both the study group assignment and the participants’ BAC, the
driving instructor used dual pedals in case of emergencies to prevent
injuries or damage. The driving instructor was tasked with inter-
vening if participants overlooked or failed to stop at intersections
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Table 2: Participant characteristics reported as mean + standard deviation. AUDIT: Alcohol Use Disorder Identification Test;

PEth: phosphatidylethanol.

Treatment group

Placebo group Reference group

n= 31 12 11
Sex (self-reported) 16 female, 15 male 6 female, 6 male 6 female, 5 male
Age [years] 37.5+14.7 37.0+17.0 36.5+14.6
Weight [kg] 77.5+15.3 75.3+19.3 72.7+£12.6
Height [cm] 174.8 £ 8.0 170.5+£9.1 173.9+10.1
Driver experience [years] 18.5+14.5 17.2+17.4 17.4+14.3
Yearly driving distance [km] 14565 + 12478 9000 + 4848 9773 + 6528
Occupational drivers 8 0 1
AUDIT score 4.81+2.44 4.92+2.02 3.82+1.99
PEth
Participants below detection limit 5 ng/mL 3 2 4
Participants below quantification limit 10 ng/mL 2 3 0
Qu.ﬂem?lﬁable participants (above quantification 48.0+43.2 6104775 792 +70.3
limit 10 ng/mL) [ng/mL]
Driving phase 1 Driving phase 2 Driving phase 3
no alcohol severe moderate
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-
°
i
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Figure 1: Each subplot corresponds to a driving phase, showing the average measured BAC for each study group. Error bars
indicate standard deviation, and a dashed gray line marks the WHO-recommended BAC limit.

or crossroads. A study team member accompanied in the vehicle,
supervising data collection and ensuring existing recordings.

Participants drove in three phases, each with different BAC levels
(constant for the placebo and reference groups). In each phase, they
drove three scenarios (highway, rural, and urban; further details in
Section 3.5) in a random order, covering both travel directions, also
randomly assigned. These directions were labeled with numbers
(e.g., urban 1and urban 2). We briefly interrupted the drive between
each scenario to measure participants’ BAC.

3.4 Study vehicle and data recording system

The study vehicle was a 2020 Volkswagen Touran 1.5 TSI (Volk-
swagen AG, Wolfsburg, Germany) with an output of 110 kW. The
vehicle featured an automatic transmission and was configured
with 7 seats. Dual pedals were installed to allow vehicle control
from both front positions.

We utilized two primary data sources: the data obtained from
the DMC and the CAN bus communication recordings. The DMC
employed was a near-infrared camera prototype (close to the com-
mercially available version), featuring active illumination provided
by Robert Bosch GmbH (Robert Bosch GmbH, Stuttgart, Germany).
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This camera was mounted on the steering column behind the steer-
ing wheel, capturing images at a rate of 50 frames per second
(Figure 2c). Comparable systems have been integrated by various
car manufacturers into their vehicles, such as Volvo [97] and Toy-
ota [108]. The camera’s parameters were calibrated daily prior to
the commencement of each study session.

Our study vehicle was also equipped with an embedded computer
that interfaced with the vehicle’s CAN bus. The data from both the
CAN bus and the DMC were processed and stored on an in-vehicle
computer.

3.5 Test track and scenarios

The study took place on a closed-off test track in Switzerland, which
featured a variety of road structure types. The outer section of
the track included broad curves and straight segments, while the
inner section consisted of branched roads with sharp turns (Fig-
ure 2b [104]). The roads varied in width from 6 to 10 meters and
were aligned with the surrounding terrain. In certain sections, mid-
dle lane markings were present, as shown in Figure 2a.

To replicate different driving conditions, we introduced artificial
obstacles. We placed two stop signs at an intersection and added a
crosswalk where participants were required to perform a full stop.
Additionally, we simulated parked vehicles by placing cones on a
section of the road.

We relied upon three distinct driving scenarios: highway, rural,
and urban. In the highway scenario, participants drove at a maxi-
mum speed of 80 km/h, navigating minimal turns, large curve radii,
and predominantly straight road segments, with no stops or obsta-
cles encountered. The urban scenario allowed participants to drive
up to 50 km/h and involved numerous turns with varying radii, as
well as all the artificially introduced obstacles. The rural scenario
combined elements from the other two, with participants driving
at a maximum speed of 60 km/h and encountering a stop sign at
an intersection and one obstacle that required them to maneuver
around it. We developed these scenarios in collaboration with the
Automobile Club of Switzerland [3].

4 Machine learning detection approach

To establish a model that is comparable to the original study [54],
we initially focused on developing a classifier trained and evaluated
exclusively on the data from the treatment group. In the subsequent
phase, we integrated data from participants in the placebo and
reference groups into both the modeling and evaluation processes.

In the following section, we provide a detailed description of our
approach, which involves a sliding window combined with logistic
regression [82]. The sliding window approach is frequently used
for driver state detection [54, 61] but also for other tasks involving
human interaction [44]. It offers several advantages: The sliding
windows enable the capture of temporal dependencies within the
time series data, while the use of human-interpretable aggregation
functions ensures that interpretability remains high. This inter-
pretability is further reinforced by the parsimonious logistic re-
gression model, which maintains simplicity and clarity through
coeflicient analysis. An overview of our approach is depicted in
Figure 3.
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4.1 Feature generation

4.1.1 Input data. For our detection approach, we utilized data from
two sensor modalities: DMC and CAN bus data. Unlike the original
simulator study [54], where CAN signals contributed minimally to
performance and were hence not included in the core analysis, we
include both sensor modalities by default. Another reason to include
both modalities is that we employ an industry-standard DMC in the
field, rather than high precision lab eye-tracking devices. Therefore,
our analysis incorporates data from both modalities, and we conduct
an ablation study to evaluate the performance of each modality
independently.

We employed a proprietary industry-standard algorithm, pro-
vided by Robert Bosch GmbH (Robert Bosch GmbH, Stuttgart, Ger-
many), to extract head and gaze features from the driver’s interac-
tions. This algorithm performed several key functions: it detected
the driver’s face, localized the eye region, detected the pupil, and
computed the gaze vector (Figure 2d). For head features, it iden-
tified facial landmarks and calculated the head pose. The outputs
included the positions of the eyes, gaze orientation, and a binary
eye state (open or closed). Additionally, the algorithm provided
comprehensive head pose data, encompassing both position and
orientation. The recording frequency of the DMC may fluctuate
during load peaks on the study computer. Thus, to ensure data
consistency across the analysis, we resampled this data to a fixed
frame rate of 50 Hz. If required, missing values underwent inter-
polation during resampling. We applied linear interpolation for
numerical data and nearest-neighbor interpolation for categorical
data. This process was restricted to instances involving up to five
consecutive missing entries, not exceeding 100 milliseconds. Any
gaps exceeding five consecutive missing values were omitted.

We extracted controls signals (brake pedal pressure, gas pedal
position, steering wheel angle, and steering wheel rotational ve-
locity) and vehicle dynamics signals (longitudinal velocity, yaw
velocity, and longitudinal and lateral acceleration) from the CAN
bus data. In the same way as for the DMC data, we resampled these
signals to a fixed frame rate of 50 Hz to maintain consistency across
all collected data.

4.1.2  Data pre-processing. The head and eye data, resampled to 50
Hz, formed the foundation for computing various groups of derived
signals. A comprehensive list of all features derived from this data
is available in the Appendix B.

The first feature group comprises periodically sampled (1) head
movement features, which include both linear and rotational ve-
locities and accelerations. Each type of movement is represented
by three spatial components along with a combined magnitude,
providing a detailed characterization of head dynamics. We chose
to exclude head position and orientation from our analysis due to
their high individual variability.

The second group of features encompasses periodically sampled
(2) eye state indicators, represented by a single binary signal for
each eye. These signals specify whether the left and right eyes are
open or closed, providing information on the blink patterns.

The third group of features consists of periodically sampled (3)
eye movement characteristics. We specifically focused on gaze ori-
entation, which is characterized by azimuth and elevation angles.
From these, we calculated the velocity and acceleration in both



CHI 25, April 26-May 01, 2025, Yokohama, Japan

Deuber et al.

(d)

Figure 2: The figures display the following: (a) the test track featuring a crosswalk where participants were required to stop;
(b) a top-down perspective on the test track (©swisstopo); (c) the driver monitoring camera (DMC) mounted on the steering
column; and (d) the output from the DMC, displaying detected facial landmarks (blue dots), the mid-eye coordinate system,

and the detected gaze direction (orange arrow).

directions, as well as their combined magnitude. Additionally, we
introduced the gaze movement angle to capture the spatial relation-
ship between changes in azimuth and elevation. We defined the
gaze movement angle as measure between a horizontal reference
line and a line connecting the initial and final gaze positions.

The fourth group of features involves (4) gaze events, classified us-
ing the REMoDNaV algorithm (robust eye-movement classification
for dynamic stimulation) [17]. We utilized classified fixations and
saccades. Fixations represent periods where the gaze remains rela-
tively stable at a specific point, and saccades are rapid movements
between fixations. REMoDNaV identifies fixations and saccades
using a velocity-based algorithm and applies duration thresholds to
the event candidates. We retained the REMoDNaV default thresh-
olds for the fixation and saccade classification: minimum fixation
duration of 40 milliseconds and minimum saccade duration of 10
milliseconds. The REMoDNaV algorithm not only identifies the

duration of each event but also provides detailed metrics for each,
including event amplitude, peak velocity, mean velocity, and median
velocity.

The fifth group of features includes (5) region-specific gaze events,
which are crucial for understanding the impact of alcohol consump-
tion on driver attention. Recognizing that different gaze regions
hold varying relevance for driving tasks, we assigned classified fix-
ations to one of ten predefined gaze regions, each calibrated specifi-
cally to the study vehicle. These regions encompass the windscreen
on both the driver and passenger sides, the left and right exterior
mirrors, the interior mirror, the left and right front windows, the dri-
ver instruments, the navigation display, and the middle instrument
cluster. This categorization facilitates a detailed analysis of how
gaze behavior shifts across different areas of interest. Prior stud-
ies have demonstrated variations in gaze patterns across specific
regions as a result of alcohol consumption [96, 106].
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Figure 3: The figure displays an overview of our machine learning (ML) system designed to perform two classification tasks.

DMC: driver monitoring camera; CAN: controller area network.

In relation to the CAN-based features, we distinguished between
two primary types: (6) controls interaction and (7) vehicle dynamics.
Beyond standard measures like position, velocity, and acceleration,
we also calculated jerk — a critical signal in the automotive industry.
Defined as the third derivative of position or the derivative of
acceleration, jerk quantifies the rate of change of acceleration. It is
widely used to evaluate ride comfort and vehicle stability [18, 45].
Consequently, for the CAN-based signals, we calculated velocity,
acceleration, and jerk when these values were not pre-provided,
ensuring comprehensive analysis capabilities for assessing vehicle
behavior.

4.1.3 Sliding window and feature calculation. To extract features
that encapsulate the temporal dynamics of time-series data, we
employed a sliding window approach alongside a suite of aggre-
gation functions. A window size of 60 seconds with a 1-second
step size was chosen, as this configuration has proven effective in
recent studies on impaired driving detection, such as the original
simulator drunk driving detection [54], driver hypoglycemia detec-
tion [61], and drowsiness detection [128]. Consequently, we applied
the aggregation functions over time-series segments comprising
3,000 samples (50 Hz * 60 seconds). Windows containing less than
75% of the expected samples were excluded (i.e., at the beginning or
end of driving sequences). This approach strikes a balance between
maximizing data inclusion and minimizing the incorporation of
distorted data.

We combined various statistical aggregation functions to capture
temporal dynamics, enhance robustness, and maintain interpretabil-
ity. Specifically, mean and median were used to measure central
tendency, while standard deviation, interquartile range, and 0.05
/ 0.95 quantiles served as measures of dispersion. Minimum and
maximum values were deliberately excluded due to their sensitivity
to outliers. To further characterize the data distribution within each
window, we calculated skewness and kurtosis. Additionally, power

(mean square value) and the number of sign changes were com-
puted, with the latter particularly motivated by the characteristics
of CAN-bus-based controls interaction signals, as prior research in
related domains of impaired driving suggests that the frequency
of micro-corrections decreases in drowsy drivers [57]. In total, we
generated 580 features.

4.2 Predictive modeling

In line with the original simulator study, we conducted two bi-
nary classification tasks: EARLY WARNING and ABOVE LimiIT. The
objective of the EARLY WARNING task was to determine whether
participants had a BAC exceeding 0.00 g/dL (positive class). Accord-
ingly, we labeled data from the treatment group participants’ first
phase as negative, while data from both the second and third phases
were labeled as positive. The ABovE Limit task aimed to identify
whether a participant’s BAC surpassed the WHO-recommended
limit of 0.05 g/dL (positive class). Thus, we labeled data from the
treatment group participants’ first and third phases as negative,
and data corresponding to a BAC above the WHO limit as positive.
Subsequently, we standardized the features using z-score normal-
ization, transforming them to have a mean of 0.0 and a standard
deviation of 1.0 based on the training data’s distribution.

Our logistic regression model’s strength lies in its intrinsic in-
terpretability through coefficient analysis. We utilized Lasso (L1)
regularization to enable the model to select relevant features while
reducing others to zero, minimizing overfitting and enhancing fea-
ture interpretability. We set the (inverse) regularization coefficient
to the default value of 1.0, utilized log loss (binary cross-entropy)
for model optimization, and maintained the decision threshold at
the standard 0.5. We applied balanced weights to accommodate
class imbalances. The implementation was performed using Python
3.11.9 and Scikit-learn 1.4.2 [81].
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4.3 Model evaluation

Evaluating the model’s generalizability to unseen drivers is essential
for its practical value. We employed a leave-one-subject-out (LOSO)
cross-validation method [35], widely used in HCI research (e.g., [1,
15, 114]), iterating over all participants, training the model on n — 1
participants, and evaluating it on the remaining participant. This
process was repeated for each participant, and performance metrics
were reported as a macro-average, presented as mean + standard
deviation.

Our primary performance evaluation metric was the AUROC
[16], chosen for its threshold-agnostic nature and its ability to report
across all possible classification thresholds. This metric effectively
summarizes the model’s discrimination ability with a single value
and is well-suited to handle imbalanced datasets [4]. Additionally,
we reported the area under the precision-recall curve (AUPRC), bal-
anced accuracy, and F1 score (a balanced combination of precision
and recall), consistent with the original simulator results [54].

To further validate our proposed system, we analyzed its robust-
ness against various design choices and parameter adjustments.
Specifically, we examined how performance varied with different
window sizes, ranging from 5 to 300 seconds, in the sliding window
approach. Additionally, we evaluated the individual performance
of different feature groups to understand the impact of each. We
also investigated how the choice of different classifiers influenced
the overall performance.

4.4 Control groups integration

To enhance the validity of our drunk driving detection approach,
we incorporated data from the placebo and reference group par-
ticipants, applying the same preprocessing and feature generation
steps as for the treatment group. The placebo and reference groups
were labeled as sober.

We employed LOSO cross-validation again, training the model
on n = 53 participants and testing it on the remaining partici-
pant, aiming to maintain comparable evaluation metrics. Since the
sensitivity (true positive (TP) rate) is not defined for placebo and
reference groups, we calculated the AUROC and AUPRC for the
treatment group only. We replaced balanced accuracy with stan-
dard accuracy, enabling calculation across all participants, with the
accuracy for control group participants reflecting specificity (true
negative (TN) rate). The weighted F1 score, defined even for the
control group participants, ensured the overall metric remained
computable as weights for the undefined F1 score of the true-labeled
class defaulted to zero.

5 Results

In the following, we present the results of our study organized
into general performance evaluations, the impact of sensor modal-
ities, and a sensitivity analysis to validate the robustness of our
ML models. The section concludes with an analysis of the feature
contributions and the results of incorporating the control groups.

5.1 Performance evaluation

The dataset consists of 148 596 samples for both classification tasks.
For EARLY WARNING, 66% of the samples belong to the positive
class (i.e., labeled as non-sober), while for ABovE LimrT, 33% of
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the samples are in the positive class (i.e., labeled as above the
WHO-recommended limit of 0.05 g/dL). Figure 4a displays the per-
formance of our drunk driving detection system, utilizing a com-
bined DMC- and CAN-based approach. The EARLY WARNING model,
which assesses whether participants are sober, achieves an AUROC
of 0.84 +0.11. Conversely, the ABovE LIMIT system, which deter-
mines if a driver’s BAC exceeds the WHO-recommended limit,
records a slightly lower AUROC of 0.80 + 0.10, with a comparably
low standard deviation across all test participants.

Additional performance metrics are detailed in Figure 5 (‘DMC +
CAN”). The AUPRC exhibits variability: EARLY WARNING achieves
0.91 +0.07, while ABOVE LiMIT scores 0.67 + 0.14, with the lower
performance possibly attributed to the fewer positive samples in
ABOVE LimiIT. Both tasks display relatively similar balanced ac-
curacy and F1 score, with EARLY WARNING recording a balanced
accuracy of 0.74 +£0.10 and an F1 score of 0.75 + 0.12, while ABOVE
LimrT achieves 0.69 + 0.10 for both metrics.

Figure 6 presents the confusion matrices for the two classification
tasks, illustrating the proportion of each predicted class matching
the true classes. EARLY WARNING achieved relatively low rates of
false positive (FP) and false negative (FN). Specifically, the FN rate
for moderately intoxicated individuals was higher at 30% compared
to 17% for severely intoxicated drivers. This difference likely arises
from the less pronounced symptoms in moderately intoxicated
drivers compared to those who are severely intoxicated. For both
moderate and severe intoxication levels, ABove LimiT exhibited
marginally higher FP and FN rates. The proportion of FP among
sober participants remained low at 16%.

Figure 7 illustrates the performance of the two models across
various driving scenarios, highlighting their consistent stability.
The EARLY WARNING model excels in rural environments but shows
decreased performance in urban settings. Conversely, ABOVE LimMIT
achieves its best performance in urban scenarios and its lowest on
highways. Overall, EARLY WARNING tends to outperform ABOVE
Limrt slightly.

5.2 Comparison of DMC and CAN approaches

Figures 4b and 4c display the performance outcomes when employ-
ing DMC- and CAN-based features individually. Utilizing a single
sensor modality generally results in lower performance. Combin-
ing the two modalities yields an AUROC of 0.84 +0.11 for EARLY
WARNING, whereas DMC achieves 0.79 +0.12 and CAN registers
0.75 £+ 0.13. Similarly, for ABovE LimiT, the combined modalities
achieve an AUROC of 0.80 + 0.10, with DMC at 0.75 + 0.10 and CAN
at 0.72 +0.10. This pattern persists across both classification tasks:
the combination of modalities performs best, followed by DMC,
with CAN exhibiting the lowest performance. For EARLY WARNING,
the standard deviation in performance across participants mirrors
this trend, whereas for ABOVE LIMIT, it remains consistent.

Figure 5 illustrates that the following two patterns are evident
across all metrics: (1) the combined modality approach outperforms
single modality methods, and (2) the performance metrics for EARLY
WARNING surpass those for ABove LimiT. Specifically, the AUPRC
for the combined approach registers 0.91 + 0.07 for EARLY WARNING
and 0.67 + 0.14 for ABovE LimrT. The DMC-only method achieves
an AUPRC of 0.88 +0.08 for EARLY WARNING and 0.59 + 0.13 for
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Figure 4: The figure displays subplots of receiver operating characteristic curves, averaged across all participants. The shaded
areas represent the standard deviation among participants. The performance is reported as the area under the receiver operating
characteristic curve (AUROC). A dashed gray line in each subplot represents the performance of a random classifier. Each
row corresponds to a distinct classification task: EARLY WARNING and ABOVE LimiT. Column (a) illustrates the combined
performance of driver monitoring camera (DMC) and controller area network (CAN) sensors. Columns (b) and (c) show the

individual performances of DMC and CAN sensors, respectively.

ABovE LimrT, while CAN scores 0.85 + 0.09 for EARLY WARNING
and 0.57 £ 0.13 for ABovE LimiT. Our proposed approach yields a
balanced accuracy of 0.74 + 0.10 for EARLY WARNING and 0.69 + 0.10
for ABovE LiMIT. In a DMC-only setting, we record 0.69 + 0.10 for
EARLY WARNING and 0.66 + 0.08 for ABOVE LimrT. Utilizing only
CAN, the performance measures at 0.66 + 0.10 for EARLY WARNING
and 0.63 £ 0.08 for ABOVE LimiT. When both modalities are em-
ployed, the weighted F1 score reaches 0.75 + 0.12 for EARLY WARN-
ING and 0.69 + 0.10 for ABovE LimrT. DMC attains 0.70 = 0.12 for
EARLY WARNING and 0.66 + 0.09 for ABovE LimiT. The CAN-only
strategy achieves 0.64 + 0.12 for EARLY WARNING and 0.62 + 0.09
for ABOVE LIMIT.

5.3 Robustness analysis

Figure 8 demonstrates the robustness of our detection system a-
gainst various design and parameter changes. First, we evaluated

different window sizes used in the sliding window approach (Fig-
ure 8a). As anticipated, the AUROC improved with increasing win-
dow sizes, as they captured more information; however, the rate
of improvement diminished beyond a certain point. We chose a
window size of 60 seconds beforehand based on prior research
([54, 61, 128]), balancing performance with the need to minimize
the delay in detection. Second, we trained classifiers using each fea-
ture group individually (Figure 8b). In general, the feature groups
provided complementary information, as their individual perfor-
mances were lower compared to when combined. Third, we com-
pared the results across different model choices (Figure 8c). Both
linear models (logistic regression with lasso, ridge, or elastic net
regularization) and non-linear models (support vector machine
with radial basis function (RBF) kernel, random forest, gradient
boosting, and multi-layer perceptron) exhibited relatively stable
performance, with the random forest classifier yielding the lowest
performance. The similarity in performance across models indicates
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that our design decisions were robust. In general, in nearly all cases,
EARLY WARNING performed better than ABOVE LiMmIT.

5.4 Interpretability

To analyze the impact of each feature, or feature group respectively,
we conducted several analyses. First, we calculated the sum of the
magnitude of coefficients normalized by the total sum, as shown
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gray line in each subplot represents the performance of a random classifier. Each subplot corresponds to a distinct classification

task: EARLY WARNING and ABOVE LimIT.
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to examine its impact on performance. Performance is quantified using area under the receiver operating characteristic
curve (AUROC). Error bars represent the standard deviations. The subplots detail different modifications: (a) varying window
sizes, (b) using only one feature group, and (c) employing different classifiers.

in Figure 9. Head movement (31% EARLY WARNING, 20% ABOVE

LimIT), eye movement (18% EARLY WARNING,

gaze events (18% EARLY WARNING, 18% ABOVE LimrT), and controls

interaction (21% EARLY WARNING, 16% ABOVE LI

feature groups with coefficient shares greater than 15%. Second, we
evaluated the performance of models trained exclusively on a single

17% ABOVE LimIT),

MIT) emerged as the

feature group (Figure 8b). Notably, while head movement features
had a high share of the absolute coefficient sum, the model relying
solely on this feature group performed poorly. This discrepancy
could potentially be linked to the large number of features within
this group. Third, we examined the top three features within the
groups of eye movement, gaze events, and controls interaction
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Figure 9: The figure illustrates the importance of each feature group. Each subplot corresponds to a classification task’s model.
The sum of the absolute values of the coefficients is calculated for each group and displayed as the percentage of the total sum.

(Figure 10), as these groups appeared most influential in the prior
analyses. For instance, in the EARLY WARNING model, the likelihood
of predicting drunk behavior increased as the mean amplitude of
saccades decreased, holding other factors constant (ceteris paribus).

5.5 Control group incorporation

In this section, we detail the outcomes achieved by incorporating
both the treatment and the two control groups in our model’s train-
ing and evaluation phases. We report the AUROC and AUPRC only
for participants in the treatment group, as these metrics were not
defined for control group participants. Figure 11 illustrates the per-
formance of the two classifiers trained across all participant groups
but assessed on those from the treatment group. For EARLY WARN-
ING, the AUROC recorded was 0.80 +0.11, being slightly lower
compared to using solely treatment group participants for training,
where it was 0.84 +0.11. For ABovE LimrT, the average AUROC
remained constant, though the standard deviation slightly reduced
(0.80 + 0.09, compared to 0.80 + 0.10 with only treatment partici-
pants). Figure 12a displays additional metrics. As previously noted,
the AUPRC shows great variation. The EARLY WARNING accuracy
and F1 score deteriorated marginally. Conversely, for ABOvE LimIT,
both accuracy and F1 score not only outperformed those of EARLY
WARNING, but also surpassed the metrics when training involved
only treatment group participants. Figure 12b depicts the AUROC
across different aggregation window sizes, noting that performance
improves with larger window sizes, though the diminishing re-
turns effect is less pronounced than in models trained solely on the
treatment group.

6 Discussion

In the following, we discuss the results of our study, exploring the
implications and comparing them to existing literature. We discuss
the interpretability of our model and assess the effectiveness of
our system in realistic scenarios. We conclude with a discussion on
the contributions of our study to public health and traffic safety,
the limitations we encountered, and potential avenues for future
research.

6.1 Post-hoc interpretation

Our method, which employs logistic regression, provides the advan-
tage of allowing straightforward interpretation through coefficient
analysis. In the following, we detail the most relevant coefficients
and their interpretations. In general, research has indicated that
drunk drivers exhibit diminished psychomotor skills, impaired per-
ception, and divided attention [69, 73]. Our model captured these
symptoms: For example, we observed altered saccadic eye move-
ments under the influence of alcohol, characterized by a reduction
in the number of saccades [32], slower movements [79, 86], and
decreased amplitudes [86], coupled with increased variability [92].
Additionally, fixation durations increased, corroborating prior stud-
ies [72, 96]. These patterns were consistent with those found in
the original study [54] and other previous test track studies [53].
Analyzing interactions with vehicle control elements revealed that
braking, accelerating, and steering were all impacted. Literature
characterizes the actions of drunk drivers as more aggressive [101]
and highlights their deficits in maintaining proper longitudinal and
lateral positions [84]. The features identified by our model, such as
the standard deviation of steering wheel acceleration, reflect these
well-known behaviors.
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Figure 10: The figure highlights the three features with the largest absolute coefficients within each of the three most relevant
feature groups. Error bars represent the minimum and maximum range of these coefficients obtained from cross-validation.

6.2 Comparison to previous work

The system we proposed achieved an AUROC of 0.84 +0.11 in
classifying sobriety (EARLY WARNING) and 0.80 + 0.10 for ABOVE
Limrr, utilizing both DMC and CAN data. With exclusive reliance
on DMC data, the AUROC values recorded were 0.79 = 0.12 for
EARLY WARNING and 0.75 + 0.10 for ABovE Limit. Utilizing only
CAN bus data, we noted an AUROC of 0.75 + 0.13 for EARLY WARN-
ING and 0.72 + 0.10 for ABOVE LimIT.

In a related study conducted by US NHTSA [59], researchers
developed a CAN data-based classifier to predict whether a dri-
ver’s BAC was above or below 0.08 g/dL, achieving an AUROC
of 0.77 £0.08. Our study, which classifies at a lower threshold
(0.05 g/dL) and incorporates out-of-sample validation, matched this
performance with an AUROC of 0.72 + 0.10 when using CAN bus
data alone, improving further upon integrating DMC data.

Our objective was to adapt and apply the state-of-the-art ap-
proach of the original study to real vehicles, reproducing similar
performance on the test track. Koch and Maritsch et al. achieved

an AUROC of 0.88 +0.09 for EARLY WARNING and 0.79 +0.10 for
ABoVE LimiIT using only DMC in a research-grade simulator with
n = 30 participants driving under three BAC levels. When they com-
bined DMC and CAN data, their system showed slightly enhanced
AUROC scores of 0.91 +0.07 for EARLY WARNING and 0.81 +0.11
for ABOVE LimIT.

The original study and our test track study showed high con-
sistency in their detection performance. In line with the results
of the original study, our confusion matrix revealed that the ML
system demonstrated better performance for intoxication levels
further away from the binary classification threshold. Specifically,
for EARLY WARNING, the FN rate for moderately intoxicated partici-
pants was 30%. This rate decreased to 17% for participants who were
severely intoxicated. A corresponding pattern emerged for ABOVE
Limrt predictions, with a FP rate of 36% for moderately intoxicated
participants and a FP rate of 16% for sober participants. This finding
is well-explainable, as greater differences in intoxication lead to
more pronounced differences in symptoms [23], which makes the
classification task easier.
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In literature, the generalizability of methodologies and results
from simulator to the real vehicle remains a debated issue. Three
primary factors potentially limit generalizability: the fidelity of
the simulation environment [11, 19, 37], exclusion of real-world
driving variables [61], and altered driver behavior due to no real
risk [27]. Our use of industry-standard sensors, as opposed to high
precision lab eye-tracking devices, enhanced the real-world appli-
cability of our findings. We incorporated additional features such
as region-specific gaze events to accommodate the wider field of
view in actual vehicles, although some features like lateral lane po-
sitioning were inapplicable. By retaining the DMC-based features
and incorporating CAN-based ones, we maintained performance
parity with the original simulator study.

Moreover, we went beyond the original study by avoiding an
exclusive within-subject design, instead employing a mixed design
with both control and reference groups to bolster our study’s robust-
ness. Considering mixed evidence on placebo effects [34, 76] and the
potential for model learning from driver training and drowsiness,
our design aimed to mitigate these influences. Koch and Maritsch et
al. addressed potential biases by implementing extensive simulator
training and scheduling prolonged breaks to mitigate training and
fatigue effects. We countered these potential biases by employing
a reference control group that was fully informed (no placebo ef-
fect). Our study design emphasized the mitigation of learning biases
from environmental changes, such as varying lighting conditions
throughout the day. When incorporating the control groups, we
successfully maintained consistent results, achieving an AUROC
0f 0.80 +0.11 for EARLY WARNING and 0.80 + 0.09 for ABOVE LimIT.
This performance aligns with the mean AUROC scores observed in
results without control groups.

In summary, we developed and evaluated a ML system aimed
at detecting drunk driving using DMCs and real-time vehicle data.
Given the real-world vehicle setting, which precluded the use of
high-precision laboratory hardware, we adapted existing and intro-
duced new features, incorporating real-time CAN vehicle data into
our ML models.

6.3 Risk mitigation interventions

Upon predicting the driver’s intoxication status, a personalized
digital intervention (e.g., in-vehicle drunk driver warning) can be
initiated to mitigate harmful drinking behaviors [48]. Furthermore,
drivers who underestimate their BAC have been identified as par-
ticularly risky in previous studies [56]. For these individuals, an
appropriate warning (such as auditory, visual, or tactile alerts) may
effectively heighten awareness of their impairment.

In scenarios where a driver knowingly operates a vehicle with
an excessive BAC, the efficacy of warnings may be inherently lim-
ited. By incorporating BAC levels into the driver behavior model,
ADAS in the vehicle can adjust for the impaired motor functions
and delayed reaction times of the driver. For instance, a collision
prevention system might trigger a brake maneuver earlier knowing
that the driver is highly likely to be intoxicated. As a last resort, the
vehicle could be brought to a stop, although this measure requires
further refinement given the current FP rates in detection.
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6.4 Privacy and ethical considerations

Privacy discussions within the realm of information technology and
surveillance (e.g., [67, 87]) concentrate on issues related to accessing
private and personally identifiable data [75]. The concept of privacy
is linked to various rights, including the right to be let alone, the
right to control one’s personal data, and the right to confidential-
ity [6]. More specifically, regulators worldwide have put forward
a set of core privacy principles (e.g., Brazil [77], Singapore [80],
and the EU [28]). Personal data must be processed lawfully, fairly,
and transparently, ensuring individuals are informed about how
their data is used. It should be collected for specific, legitimate
purposes and not used in ways incompatible with those purposes.
Data should be adequate, relevant, and limited to what is necessary,
while being kept accurate and up-to-date. Personal data must not
be stored longer than necessary. Finally, appropriate technical and
organizational measures must protect data against unauthorized ac-
cess, loss, or damage, ensuring its security and confidentiality [28].

Continuous driver monitoring involves processing highly sensi-
tive data, thereby introducing substantial privacy risks. Notably, our
detection approach does not rely on identifying a specific person.
We have deliberately avoided personalizing the system, for example,
by not deriving and applying individualized decision thresholds.
In addition, we have minimized the need to store data. Specifi-
cally, we only need access to DMC and CAN data of the last 60
seconds. Furthermore, all calculations can be conducted onboard
in a closed-loop system on the edge (in-vehicle). Committed to the
principles of open science, we have published the source code of
our system and made every effort to ensure that its functionality is
easily understandable and transparent. Ultimately, however, vehicle
manufactures have to assure that our approach is implemented in
line with the outlined privacy principles. In regions like the EU
where DMCs are mandated, data protection regulations in context
of DMCs [29] require that systems for drowsiness and distraction
detection retain data only as needed for their intended functions
within a closed-loop system. This data must never be shared with
or accessible to external parties and must be promptly erased post-
processing [29]. These existing regulations are currently specific to
drowsiness and distraction detection and hence need to be extended
to cover impairment detection systems.

Beyond privacy concerns, the deployment of artificial intelli-
gence and ML systems introduces several ethical challenges with
significant societal implications [95]. For instance, biases in training
data can result in unfair or discriminatory outcomes. Additionally,
a lack of transparency in these systems might complicate efforts to
understand or challenge their decisions, undermining accountabil-
ity. To mitigate these issues, we have implemented interpretable ML
techniques and ensured our system was trained on a high-quality
data set. The diversity of our study participants was a key prior-
ity, as detailed in Table 2. Nonetheless, we recognize the need to
enhance diversity further, such as by including a broader range of
ethnicities, as discussed in Section 6.6.

6.5 Contributions

Harmful alcohol consumption and drunk driving pose significant
public health challenges, contributing to disease, injuries, and fatal-
ities. The advent of new vehicle generations equipped with DMCs
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presents opportunities to enhance road safety. To further mitigate
accidents, active safety systems that comprehend and interact with
the driver are essential. Given the advantages of integrating a driver
behavior model into ADAS, we explored the efficacy of transferring
drunk driving detection to the real vehicle, assessed the attainable
performance levels, and identified the modifications needed for
such implementation. Additionally, we examined the impact of in-
cluding sober reference and placebo subjects on the performance
metrics.

By adapting existing features (e.g., transitioning from gaze po-
sitions on a simulator display to three-dimensional gaze vectors),
introducing new features (e.g., rotational head velocities), and in-
corporating new feature types, specifically region-specific gaze
event features and eye state features, along with the inclusion of
CAN-based real-time vehicle data, we conceptually replicated the
simulator-based approach, with necessary modifications for the
real-world setting. To the best of our knowledge, this work is the
first to conduct a test track study as a clinical trial with intoxicated
participants, utilizing DMC and CAN bus data to detect drunk driv-
ing. Our choice of model not only facilitated generalizability but
also demonstrated robust performance on previously unseen dri-
vers.

6.6 Limitations and future work

Given our data set size of n = 54, the variety of the collected data
with respect to participants and driving behavior is naturally con-
strained. Despite this limitation, we endeavored to attract a diverse
range of participants in terms of age and gender through targeted
recruitment strategies. Table 2 illustrates that these efforts were
successful with respect to the reported variables. Thus, we consider
our participant set to be representative of the demographic compo-
sition of Switzerland. However, certain participant characteristics,
such as ethnicity, were not recorded. Previous research indicates
that eye-tracking performance can vary across different ethnic
groups [7], suggesting potential areas for further improvement in
future replications of the study with a broader variety and inclusion
of special cases. Other factors may also influence driving and visual
scanning behaviors. For instance, we hypothesize that our system
might underperform with participants who have eye-related health
issues. Moreover, studies have shown that the glance behaviors of
older [24] and novice drivers [109] differ significantly from typical
patterns, warranting additional investigation.

In line with the objectives of the original study, our replication
study concentrates on exploring the general potential of DMC- and
CAN-based drunk driving detection systems. We employ basic ML
models and our goal was not to conduct rigorous comparisons
between individual models. Consequently, future research should
investigate more advanced methodologies and perform detailed
analyses to discern significant performance differences across mod-
els.

The utilization of both, DMC data and CAN bus data enhances
detection performance, but also increases hardware requirements
and costs, which may limit applicability. However, the CAN bus
is a standard feature in modern vehicles, while DMCs are manda-
tory in certain regions [29] and necessary for achieving high safety
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ratings [2, 33, 74]. Consequently, leveraging these standard vehi-
cle systems assures cost-effectiveness. Although combining these
modalities increases computational demand, our system does not
require computationally intensive deep learning models frequently
used in other studies for driver behavior analysis [94, 123]. In fact,
the most resource-intensive component is extracting head and gaze
features from the raw DMC images. The DMC operates at a frame
rate of 50 Hz, while our drunk driving detection system assesses
the driver’s state at 1 Hz. Thus, eye, head, and gaze features are
extracted more frequently than the frequency at which our ML
system predicts the driver’s state. However, in the automotive in-
dustry, real-time head and gaze detection systems that surpass our
system’s 50 Hz frequency are commercially available [21] and have
become standard in new vehicles. Therefore, utilizing a combina-
tion of CAN bus and DMC data for drunk driving detection not
only improves performance but is also practically viable.

The widespread adoption of fully autonomous vehicles in the
coming decades is rather unlikely [20, 38, 71]. However, the inte-
gration of autonomous functionalities into the automotive market
is progressing. Currently, Level 3 [89] autonomous cars (i.e., vehi-
cles that can handle driving tasks within specific conditions, but
require the driver to supervise) are commercially available, and
forecasts indicate a growing prevalence of vehicles featuring au-
tonomy. Consequently, the nature of driver-vehicle interactions
is evolving. Drivers are increasingly disengaging from the driv-
ing process, which can diminish their situational awareness. The
impact of these changes on the two sensor modalities we utilize,
DMC and CAN, varies, especially in vehicles with autonomous fea-
tures. Recent test track studies have analyzed the gaze behavior of
drivers under the influence of alcohol (i.e., no drunk driving detec-
tion) in both, manual and autonomous modes. Zemblys et al. [129]
showed that while high-level glance features (e.g., areas of interest)
vary depending on the driving mode, basic gaze metrics such as
fixations and saccades remain consistent across modes. Notably,
fixation durations increased with intoxication irrespective of the
mode. Tivesten et al. [106] concentrated on non-driving-related
tasks across different driving modes, focusing on high-level glance
features. Their findings also confirmed that intoxication affects
gaze behavior regardless of the driving mode. However, with the
ongoing advent of automation, the relevance of CAN features may
diminish, potentially reducing the efficacy of CAN-based detection
systems. In summary, our detection system, which utilizes both
driver-environment interactions (DMC) and driver-vehicle interac-
tions (CAN), is designed to function effectively even without direct
driver-vehicle interactions, relying solely on DMC data. However,
more work is necessary to rigorously validate our results in the
context of autonomous vehicles.

While the validity of test track studies is generally high, it does
not match the fidelity of real-world data [9]. During the test track
study, we encountered environmental influences (e.g., severe rain-
fall, significant temperature fluctuations) typical of summer weather
in Switzerland. However, our test track study, for example, did not
involve other road users, non-driving related tasks, distractions,
or nighttime driving conditions. In discussing the transferability
from the simulator to test track studies, we identified three key
simulator limitations: (1) varying degrees of realism [11, 19, 37],
(2) the absence of external influences [61], and (3) modified driver
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behavior due to the minimized risk situation [27]. These limita-
tions are also partially applicable to test track studies. Although our
model demonstrated consistent performance across all test track
driving scenarios, exploring these factors in real-world driving con-
texts, where driver’s glance behavior is influenced more directly by
the driving environment [107], would be valuable. Hence, while it
entails higher risks and reduced experimental control, conducting
studies in real-world contexts would provide higher validity [8].
Such data could be crucial for further validating our results and
developing additional models. Consequently, we advocate for real-
world studies to first validate our methods against FP in actual
traffic conditions, and second, to generate a dataset featuring in-
toxicated drivers under real traffic conditions, naturally with legal
exemptions, in alignment with local ethical standards, and with
appropriate safety measures in place, such as a safety driver.

7 Conclusion

Society and policymakers are intensively exploring new strate-
gies to curtail harmful alcohol consumption and eliminate drunk
driving, both recognized for their fatal outcomes. For effective digi-
tal interventions, precise BAC estimation is imperative. Utilizing
existing and emerging sensors offers a scalable and economical
solution. Our test track study successfully replicated results from
the state-of-the-art simulator study, affirming the generalizability
of this approach. By employing human-interpretable features and a
parsimonious model, we substantiated that the model is anchored
in well-established physiological effects. Retaining DMC-based fea-
tures and incorporating CAN-based ones, our system demonstrated
a robust method for detecting drunk driving. Moreover, we intro-
duced a novel study design with two control groups, effectively
underlining the robustness of our system. Thus, our system sets the
stage for pioneering digital interventions that aim to significantly
reduce societal harm.
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A Participant details

Figure 13 illustrates the study flow diagram that outlines the recruitment process of our study, screening procedures, and subsequent
group assignment.

Assessed for eligibility in telephone interview (n = 61)

Excluded before screening visit (n = 1)
= Withdrawal due to personal
reasons (n = 1)

Completed screening visit (n = 60)

Excluded after screening visit (n = 5)
= Withdrawal due to personal
reasons (n = 1)
= Due to subsequent failure to meet
inclusion criteria (n = 4)

A

Completed study day
assigned to treatment
group (n =31)

Completed study day
assigned to placebo
group (n =12)

Completed study day
assigned to reference
group (n =12)

Excluded in analysis (n = 1)
= Errors in the recorded CAN
bus data (n = 1)

Y A Y

Included in this study
(n=31)

Included in this study
(n=12)

Figure 13: The figure displays our study flow diagram.

Included in this study
(n=11)
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B Feature Generation
Figure 14 and 15 present comprehensive overviews of all features generated from DMC and CAN bus data, respectively.
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Figure 14: The figure displays an overview of all features generated from driver monitoring camera (DMC) data. We have five
distinct feature groups, each based on unique base signals to which aggregation functions were subsequently applied.
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Figure 15: The figure displays an overview of all features generated from controller area network (CAN) sensor data. We have
two distinct feature groups, each based on unique base signals to which aggregation functions were subsequently applied.
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