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ARTICLE INFO ABSTRACT

JEL classification: We introduce a taxonomy of artificial intelligence (AI) experiments. Our taxonomy produces four types of Al
C9 experiments: conceptual Al experiments, stylized Al experiments, quasi-natural Al experiments, and natural Al
D9 experiments. At the core of our taxonomy is the sophistication of AI used, which we evaluate using a simple
033 and robust proxy test of whether Al is developed exclusively for a research study. We discuss the advantages,
Keywords: disadvantages, and best use cases for each type and illustrate the use of each type in various examples. We
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provide a guide on how to choose the type of Al experiment that best fits a given research question.

1. Introduction

The number of experimental papers studying interactions between
humans and artificial intelligence (AI) has been steadily rising in recent
years (see Fig. 1). In fact, almost half of all experimental Al papers
reviewed by Chugunova and Sele (2022) and March (2021) were pub-
lished since 2013.! A number of special issues dedicated to Al research
have appeared in various journals such as The Journal of Behavioral and
Experimental Economics, Experimental Economics, Management Science,
Science, Decision Sciences, and Research Policy. With the increasing
supply of AI experiments comes a greater demand to organize the
literature and make sense of the glut of findings. Recent review articles
by Bao et al. (2022), Chugunova and Sele (2022), Langer and Landers
(2021), March (2021), Jussupow et al. (2020), and Burton et al. (2020),
among others, are valuable contributions aimed at meeting this de-
mand. However, recent literature has also identified an unsatisfied need
for greater methodological discipline in Al experiments (Langer et al.,
2020; March, 2021). We take a first step by proposing a taxonomy of Al
experiments and offering a guide for using Al as a tool in experimental
economists’ methodological arsenal.’

With the growing academic interest in Al experiments, it seems
natural to try to define just what is an AI experiment. In search of
this definition, however, we do not converge on a single ideal type
that might be called the AI experiment. Rather, we advocate for an
inclusive approach and suggest that Al experiments exist on a spectrum
that spans quite diverse designs. What defines an Al experiment, in our
view, is not so much the design or implementation of AI but rather
an underlying research agenda. Therefore, in this paper, we adopt the
following broad definition of AI experiments. These are experiments
that study interactions between human subjects and computers, al-
gorithms, artificial agents, machines, robots, automated agents, and
artificial intelligence agents with the goal of better understanding how
the (actual or hypothetical) interaction with, or the presence of, these
agents affects human behavior and outcomes in organizations and
markets.?

Having adopted this broad definition of Al experiments that allows
for a variety of designs, we attempt to put some structure on this
variety. We identify and label four types of Al experiments: conceptual
Al experiments, stylized Al experiments, quasi-natural Al experiments,
and natural AI experiments. We discuss the advantages, disadvantages,
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https://doi.org/10.1016/j.socec.2026.102525

Received 27 December 2024; Received in revised form 13 January 2026; Accepted 21 January 2026

Available online 22 January 2026

2214-8043/© 2026 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/jbee
https://www.elsevier.com/locate/jbee
https://orcid.org/0000-0001-6542-1920
mailto:aleksandr.alekseev@ur.de
mailto:christina.strobel@tuhh.de
https://doi.org/10.1016/j.socec.2026.102525
https://doi.org/10.1016/j.socec.2026.102525
http://creativecommons.org/licenses/by/4.0/

A. Alekseev and C. Strobel

Journal of Behavioral and Experimental Economics 121 (2026) 102525

Number of experimental Al papers

25
20
15

10

[ @

T T T T T T T T
1950 1960 1970 1980 1990 2000 2010 2020

Fig. 1. The growth of experimental Al literature.
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Note: The figure shows the total number of experimental Al papers published in a given year. The line shows a loess fit. The shaded region shows the time
period during which approximately half of all experimental papers were published. We compiled our list based on the papers reviewed in Chugunova and Sele

(2022) and March (2021).

and best use cases for each type and illustrate their usage in various
examples.

At the core of our taxonomy is the sophistication of AI used. The
sophistication of Al varies from real-world, commercial-grade systems,
such as ChatGPT, to Al-as-label used in vignette studies, and everything
in between. Our taxonomy, however, does not rely on Al sophistication
directly, because that judgment is subjective and requires technical
detail impractical for classification purposes. Instead, we propose a
simple and robust proxy test: whether Al is developed exclusively for
the purpose of conducting a research study. The logic behind this proxy
test is that real-world, commercial-grade Al systems are unlikely to be
developed for the purpose of simply conducting a study. On the other
hand, AI developed specifically for an experiment is unlikely to match
the sophistication of real-world systems.*

We gauge the levels of Al in an iterative manner. At a first step, we
ask whether Al is just a label, which isolates conceptual experiments.
If the AI is not simply a label, we then ask whether it is implemented
exclusively for a study, which isolates stylized Al experiments. If Al is
not implemented exclusively for a study, we ask if the experiment is
conducted in a controlled environment, which isolates quasi-natural Al
experiments. Finally, if AI is not implemented exclusively for a study
and is used in its natural setting, then we identify it as a natural Al
experiment.

Our taxonomy serves the dual purpose of organizing the existing
literature and offering a tool to help researchers design new Al exper-
iments. The organizing role of our taxonomy is particularly valuable
for such a fragmented topic as human-AlI interaction, which is spread
across different fields. Grouping Al experiments into a few well-defined
categories helps unify the literature (e.g., by clarifying how different
lines of research are related to each other) and reveal underexplored

4 Tt is possible that our proxy test can misclassify some cases. For example,
a research team conducting an experiment might develop an algorithm that
later becomes a commercial-grade system in practice. We believe, however,
that the ease of use and robustness of our proxy test outweigh the dangers of
potential misclassification that could be caught with a more elaborate test.

questions (e.g., a certain phenomenon might have been established only
for one type of Al experiments while its robustness to other types is
unknown). Ultimately, this will help researchers better place their work
in relation to existing studies across multiple fields, as well as identify
potential directions for future research.

Our taxonomy also offers a practical guide for designing new Al
experiments. By highlighting the main advantages, disadvantages, and
best use cases of each type of Al experiment, our taxonomy provides
researchers with a well-structured menu of alternative designs. This
can help researchers be deliberate about which type (types) to use,
rather than defaulting to conventional practices. Making the menu of
available designs explicit can also inspire new combinations of designs
or help identify underutilized designs (e.g., an existing convention
might dictate the use of quasi-natural Al experiments, while a stylized
design would suffice). Each study should ultimately settle for a type
(or combination of types) that best fits the research question at hand.®
It is possible that no single type best fits a given research question,
in which case we recommend a complementary approach. Just like
many experimental studies combine different samples (e.g., lab and
online) (Hergueux & Jacquemet, 2015/06/01; Palan & Schitter, 2018)
or types of experiments (e.g., lab and field) (Harrison & List, 2004) that
complement each other, studies of human-Al interaction can exploit
complementarities offered by different types of Al experiments. For
example, a study can first establish a result in a specific setting using a
quasi-natural AI experiment that offers greater external validity at the
cost of a narrower scope. Then it can explore the mechanisms behind
this result in a stylized Al experiment that offers a wider scope at the
cost of lower external validity. In any case, we argue that researchers
should justify their design choices, and we provide guidance for such
justification.

5 It should be noted, however, that while our focus is on experimental stud-
ies, some research questions are naturally more amenable to non-experimental
methods. We also acknowledge the value of survey-based approaches for
studying the use of Al, such as Carvajal et al. (2024) and Chugunova et al.
(2025).



A. Alekseev and C. Strobel

Our research builds upon and contributes to the recent reviews and
methodological discussions of experimental AI papers. The paper that
is closest in spirit to the present one is March (2021) that focuses on
the use of computer players in experimental games spanning a range
of topics including auctions, bargaining, and social dilemmas. It not
only reviews the results from this vast literature but also provides
a useful classification of the reasons for using a computer player
in a game (e.g., reducing decision-making noise or inducing certain
behavioral types) and the types of algorithms used in those games
(e.g., equilibrium or adaptive algorithms). Our paper echoes the im-
plicit message in March (2021) that the type of Al used should be based
on the research question and addresses the concern about the lack of
methodological standardization and guidance in Al experiments.

Bao et al. (2022) offer a more targeted discussion of Al in strate-
gic interactions that occur in experimental financial markets. Their
review provides researchers with a detailed classification of the algo-
rithms used in finance experiments and how those algorithms affect
participants’ behavior and market outcomes. Consistent with our argu-
ment that the type of Al experiments should be based on a research
question, Bao et al. (2022) highlight the importance of both finance
experiments in which the algorithm is actually implemented (our taxon-
omy would classify the majority of them as stylized Al experiments) and
experiments in which the presence of an algorithm is merely announced
(these would fall into our conceptual Al experiments category).

Likewise, a review by Chugunova and Sele (2022) embraces method-
ological diversity. The study stands out due to its breadth and organizes
findings from experiments where human subjects interact with auto-
mated agents across a wide range of disciplines spanning economics,
psychology, sociology, marketing, medicine, and others. While the
authors do not make methodological points explicitly, they do note
that in many instances the details of Al implementation matter less for
subjects’ behavior than the mere notion of interacting with Al instead
of humans.

Burton et al. (2020) and Jussupow et al. (2020) summarize the
findings of the literature on algorithm aversion. Although both papers
offer illuminating insights into the reasons behind algorithm aversion
and potential ways to overcome it, they remain largely silent about the
methodological issues in the reviewed studies. Jussupow et al. (2020)
does comment, however, on the predominance of vignette studies,
which fall under conceptual Al experiments according to our taxonomy.
Perhaps this predominance is what makes the authors refer to Al in a
study like Yeomans et al. (2019) as a “real working algorithm,” even
though our classification puts it into a stylized, rather than a natural or
quasi-natural, category.

The methodological concern about the predominance of vignette
studies in Al experiments finds a stronger voice in Langer and Landers
(2021). This review is unique because it focuses on people affected by
AI who do not interact with it (second parties) and on outside observers
(third parties), rather than on people who directly interact with it
(first parties). Langer and Landers (2021) lament the over-reliance on
vignette studies, which have the downside of lower external validity.
Our paper acknowledges this important shortcoming of conceptual Al
experiments, while also highlighting their benefits. Importantly, we do
not take a stance on what type of Al experiments is “best” but instead
argue that the type of Al experiment should fit the research question.

Our study is also related to the literature that explores the broader
methodological role of Al in scientific research and experimentation.
Charness et al. (2025/03/31) offers a related yet distinct perspective
by focusing on the application of generative Al, in particular large
language models (LLMs), as a research tool. The authors argue that
LLMs can enhance experimental research by improving comprehension,
immersion, data collection, and analysis. The review also addresses
broader risks and benefits, providing guidance on how generative Al
might support open science and enable scalable experimentation in
policy and business contexts. In a similar vein, Korinek (2023) inves-
tigates the potential of generative Al, such as ChatGPT, to support
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economists. The study identifies six key areas where generative Al
can be beneficial: ideation, writing, background research, data anal-
ysis, coding, and mathematical derivations. While these reviews offer
practical guidance and examples showcasing the potential of LLMs
throughout the research process, our study focuses on how Al is im-
plemented within experiments and explores the diverse approaches for
designing Al experiments.

Our paper offers three main contributions to the literature. First,
we propose a taxonomy of Al experiments and a simple and robust
test to classify studies according to this taxonomy. Second, we discuss
the advantages and disadvantages of each type of Al experiments that
we identify and compare the types based on these features. Third, we
discuss the best use cases for each type along with relevant examples
from the literature. Our paper, however, is not a substitute for existing
taxonomies, e.g., March (2021) or Bao et al. (2022). Rather, we com-
plement these by providing researchers with a high-level classification
of Al experiments and guidance on how to choose the right type to
fit their research questions, after which researchers should tailor their
designs using narrower taxonomies developed for their topics. We also
note that our paper is not a literature review. Our examples of studies
using Al experiments are not meant to be exhaustive. Instead, they are
meant to illustrate why choosing a particular type of Al experiment
makes sense in the context of these studies.

2. A taxonomy of Al experiments
2.1. Classification procedure

We identify and label four types of Al experiments: conceptual Al
experiments, stylized Al experiments, quasi-natural AI experiments, and
natural Al experiments. Fig. 2 shows the decision tree that we use for
classification. Conceptual Al experiments, unlike the three other types,
are characterized by Al that exists merely as a label or a framing device.
In stylized Al experiments, the Al is implemented but is designed specif-
ically for a study. In both quasi-natural and natural Al experiments, the
Al used in a study is designed for purposes other than conducting a
study. What distinguishes these two types is the environment in which
the use of AI occurs. In quasi-natural Al experiments, the use of Al
occurs in a controlled environment. Natural Al experiments, on the
other hand, take place in an environment in which the use of that Al
naturally occurs.®

Although we present these types in a certain order, we stress that
the order does not reflect their quality. While it might be tempting to
claim that one type of Al experiments is superior to another, we argue
that this is not the case. Each type of Al experiments has its advantages
and disadvantages, and there is no single type that is suitable for all
studies. We now proceed to define each type, discussing its advantages,
disadvantages, and best use cases. Table 1 offers an overview of each

type.

6 We use the following rationale for our terminology. Natural Al experi-
ments, by analogy with the natural field experiments, occur in an environment
that is “natural” for the Al used in them, hence the term. Quasi-natural Al
experiments are “almost like” the natural Al experiments since both use the
same type of Al, hence the term “quasi.” The only difference between the
two is the environment in which experiments occur, which we view as minor
albeit important. We use the term “stylized” in its dictionary definition sense
(“depicted or treated in a mannered and nonrealistic style”), and similarly
to “stylized facts.” “Stylized” here refers to Al that is deliberately nonrealistic
and removed from many real-world implementation details in favor of focusing
only on the essential elements. Finally, “conceptual” refers to Al as a concept
or an idea rather than an actually implemented device. We do not call
conceptual Al experiments “quasi-stylized” because in our view the difference
between the conceptual and stylized Al experiments is more substantial than
the difference between natural and quasi-natural Al experiments. Conceptual
Al experiments have no implementation of AI whatsoever, while stylized Al
experiments do.
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Implemented specifically for a study? Al experiment
Is AT used in a con-
— trolled or natu-
No . ?
ral environment?
Natural AT
Natural experiment
Fig. 2. Decision tree for classification.
Table 1
Overview of the four types of Al experiments.

Type Naturalness Control Feasibility Scope Use if

Conceptual * NA * %k k £ 8. 8.2 1 An algorithm cannot be implemented - ease of
implementation/scalability and generality of
research questions matter much more than
naturalness of Al and/or setting

Stylized * * * Kk k >k k *kk Implementation of Al is required - tight control
over the algorithm, high feasibility and generality
of research questions matter more than naturalness

Quasi-natural * Kk Kk ** * * * ok Implementation of Al is required - naturalistic
implementation of Al and ability to relate to
applied questions matter more than tight control
or ease of implementation

Natural 0 2.2.24 * * * Implementation of Al is required - naturalistic

implementation of Al/setting in which it is
deployed and ability to relate to applied questions
matter much more than control over the algorithm
and ease of implementation

The table compares the following features of Al experiments. Naturalness (List, 2020) refers to the degree to which an algorithm and/or the setting in which it is deployed are
similar to those found outside the context of a study, with lower values meaning “dissimilar” and higher values meaning “similar.” Control refers to the degree to which researchers
have control over the features of an algorithm, with lower values meaning “little control” and higher values meaning “a lot of control.” Feasibility refers to the ease of conducting,
scaling, or replicating a typical study, with low values meaning “easy” and low values meaning “hard.” Scope refers to the breadth of research questions a typical study is suited
for, with low values meaning “narrow or applied” and high values meaning “wide or general.” The rankings represent our a priori expectations about a typical study, however,

individual studies might deviate from these patterns.
2.2. Conceptual Al experiments

In conceptual Al experiments, Al exists merely as a label or framing
device that models the operational principles or consequences of Al,
but no Al is actually implemented. These experiments typically take
place in a controlled, rather than natural, environment. Not being
constrained by implementation allows researchers to study scenarios
that are impractical or impossible to test with actual Al such as ethical
dilemmas or changes in a labor market.

A primary advantage of conceptual Al experiments is their high
feasibility. They are relatively inexpensive, and researchers can conduct
them at scale and replicate them easily. The low cost of these exper-
iments allows researchers to quickly explore mechanisms underlying
subjects’ behavior or test the generalizability of their findings across
different subject pools. The downside of conceptual Al experiments is
that the AI and/or choice setting presented to subjects are dissimilar
to the ones the subjects typically experience outside a study. Even
when choice contexts are similar (e.g., consumer choice), subjects
do not interact with actual Al and their choices are inconsequential.
Conceptual Al experiments are best suited to studies that do not require

Al implementation (e.g., due to ethical concerns) and prioritize ease of
implementation, scalability, and generality over the naturalness of Al
and/or its setting.

2.3. Stylized Al experiments

Stylized Al experiments actually implement Al, but it is designed
specifically for a study. They are conducted in a controlled environment
because the Al used in them typically does not occur outside the study.
Al used in these experiments is based on a research question. It can thus
take a variety of forms: from rule-based algorithms to algorithms that
replicate decisions based on historical data to artificial agents trained
using reinforcement learning.

The major strength of stylized Al experiments is a tight control over
the features of an algorithm. This allows researchers to study a broad
range of questions about human-Al interaction in settings with real
stakes and to isolate specific behavioral mechanisms. Another benefit of
these experiments is that they are feasible (i.e., they can be conducted
with standard lab or online samples) and replicable. The downside of
stylized Al experiments is lower naturalness: the Al and/or its setting
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often differ from what subjects encounter outside a study. Stylized
Al experiments are best suited to studies that require an actual Al
implementation and prioritize control, feasibility, and generality over
the naturalness of Al and/or its setting.

2.4. Quasi-natural Al experiments

Quasi-natural Al experiments feature naturalistic Al that is designed
for purposes other than a research study, unlike in stylized AI experi-
ments. They occur in a controlled environment—a feature they share
with conceptual and stylized Al experiments. For example, researchers
can study how subjects interact with state-of-the-art chatbots, such as
ChatGPT, or commercial-grade robots in a controlled setting.” Quasi-
natural Al experiments can also occur when an organization runs pilot
experiments before launching a product, e.g., to test which features of
Al lead to better customer satisfaction.

Quasi-natural Al experiments retain the naturalness of natural Al
experiments while being more feasible, affordable, and replicable. They
can be used to study a broad set of research questions because these
experiments are not tied to the natural environments in which the use
of Al occurs. A controlled setting enables collecting data on variables
that might be impractical or impossible to elicit in natural settings,
e.g., emotions or physiological responses. It also enables presenting
scenarios that do not occur in natural environments. Their affordability
also makes quasi-natural Al experiments a convenient test bed before
scaling up a study. The reliance on actual Al, however, can be a
limitation, since researchers give up a certain degree of control (al-
though not all) over how the algorithm is constructed. Quasi-natural
Al experiments are best suited to studies that require an actual Al im-
plementation and prioritize naturalness and ability to relate to applied
questions over control and ease of implementation.

2.5. Natural Al experiments

Natural Al experiments feature sophisticated Al (e.g., computer
vision, natural-language processing, decision support, recommender
systems, and robots) in the environments where it is actually used.
The Al is usually trained on large datasets using machine-learning
methods. The defining characteristic of natural Al experiments is that
the Al involved is developed for purposes beyond the scope of the
research study itself. Natural AI experiments are also natural field
experiments (Harrison & List, 2004).

Many natural Al experiments are A/B tests (Azevedo et al., 2020)
run by tech companies (e.g., Microsoft, Google, Amazon, Spotify, and
Netflix) to increase engagement or develop product innovations. In
these experiments, Al is not designed for the purpose of conducting
a research study but, for example, for the purpose of giving better
recommendations to the users of a service or improving the search
results on a search engine. These experiments occur on a platform itself
during the actual use of the services by its users.

The biggest strength of natural Al experiments is that they possess
the highest possible degree of naturalness of Al and the setting in which
it is deployed. These experiments produce findings that can be directly
applied to an organization. The flip side of that naturalness and the
applied nature of research questions is that natural Al experiments can
often be too narrow and hard to generalize outside the context of a
study. Tech companies run thousands of (often automated) A/B tests,
but only a fraction of them produces generalizable knowledge about
human-AI interaction. Another downside of natural Al experiments
is low feasibility and replicability. Natural AI experiments are rarely
public. Even when they are, replication is challenging because it would

7 To provide a counter-example, if the developer of ChatGPT, OpenAl,
conducts an experiment on the website that people use to access ChatGPT,
that would count as a natural Al experiment.
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require access to proprietary platforms. Natural Al experiments are best
suited to studies that require an actual Al implementation and prioritize
the naturalness of Al and its setting together with the ability to relate
to applied questions over control and ease of implementation.

3. The taxonomy in action

In this section, we put our taxonomy into action and illustrate the
use cases of each type through various examples. Table 2 provides a
summary of the reviewed papers.

3.1. Conceptual Al experiments

The most common application for conceptual Al experiments is
vignette studies. A typical vignette study presents subjects with a series
of hypothetical situations and asks them to state their preferences about
what they would do in those situations. The primary advantage of
vignette studies is that they can model any situation of interest to
researchers without being constrained by the actual implementation of
Al

For example, Awad et al. (2018/11/01) conduct an online experi-
ment that elicits subjects’ preferences for what a self-driving car should
do in moral dilemmas (trolley problems). A typical dilemma involves
a hypothetical situation with a malfunctioning self-driving car that
can either stay on course and kill pedestrians or swerve and kill the
passengers. The dilemmas present subjects with various trade-offs such
as between humans vs. animals, more lives vs. fewer lives, and young
vs. old, and each subject makes choices in 13 different situations. Using
vignettes allows the authors to collect an enormous dataset of choices
spanning a wide variety of situations and cultures.® Moreover, a con-
ceptual Al experiment is the most appropriate choice for this research
question. Running a natural AI experiment would have been infeasible:
One could never run an experiment where actual self-driving cars
implemented subjects’ choices and killed people. One could attempt to
make subjects’ choices consequential by promising to use these choices
to inform the programming of actual self-driving cars in the future. The
legal or ethical status of such a promise, however, would be unclear. A
more feasible alternative would be a stylized Al experiment in the spirit
of the “mouse-model” design of Falk et al. (2020). Researchers could
program simple devices that would implement subjects’ choices that
would be consequential for mice. Aside from the ethical issues it might
raise, the downside of this implementation is that mice do not possess
many of the characteristics of interest of potential victims in Awad et al.
(2018/11/01).

Al vignettes often present subjects with the option to choose be-
tween an Al and a human. For example, Lee (2018) presents sub-
jects with different managerial decisions and asks them about their
perceptions of those decisions when implemented by either Al or a
human. Castelo et al. (2019) offer subjects a variety of tasks and ask
them whether they prefer an Al or a human to complete those tasks.
Similarly, Granulo et al. (2021) ask subjects whether they prefer an Al
or another human to replace a human worker. In addition to exploring
a variety of choice situations, these studies highlight two other key ad-
vantages of conceptual Al experiments. First, these experiments allow
researchers to quickly explore the mechanisms underlying subjects’ be-
havior, for example, whether a decision requires mechanical or human
skills (Lee, 2018), whether a task is objective or subjective (Castelo
et al., 2019), and whether the replaced worker is the subject herself
or a third party (Granulo et al., 2021). Second, researchers can quickly

8 It might appear that this example illustrates the low feasibility of con-
ceptual experiments. However, high feasibility is precisely what enabled
researchers to conduct such a large-scale study. Conducting a natural Al
experiment of such scale, apart from ethical issues, would have been much
less feasible.
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Table 2
Summary of reviewed papers.
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Classification Experiment Subfield Al implementation

Conceptual Al experiments Awad et al. (2018/11/01) Social Preferences Vignettes
Lee (2018) Technology Acceptance Vignettes
Castelo et al. (2019) Technology Acceptance Vignettes
Granulo et al. (2021) Technology Acceptance Vignettes
Wu (2022) Behavioral Public Policy Vignettes
Zhang (2022) Behavioral Public Policy Vignettes
Gallego et al. (2022) Behavioral Public Policy Vignettes
Jeffrey (2021) Behavioral Public Policy Vignettes
Farjam and Kirchkamp (2018) Financial Markets Rule-based
Jacob Leal and Hanaki (2023) Financial Markets Rule-based

Stylized Al experiments Strobel (2025) Worker Performance Timing
Alekseev (2025) Worker Performance Rule-based
Angerer et al. (2023) Financial Markets Rule-based

Kirchkamp and Strobel (2019)
Corgnet et al. (2023)

Gogoll and Uhl (2018)
Dietvorst et al. (2015)
Dargnies et al. (2024)
Klockmann et al. (2022)
Werner (2021)

Schauer and Schnurr (2023)

Social Preferences
Worker Performance
Social Preferences
Technology Acceptance
Social Preferences

Social Preferences
Markets and Competition
Markets and Competition

Historical averages
Historical averages
Rule-based

Regression

Regression

Supervised learning
Reinforcement-learning
Reinforcement-learning

Quasi-Natural Al experiments

Cominelli et al. (2021)
Gorny et al. (2023)

Social Preferences
Social Preferences

Image recognition
Robot

Leib et al. (2023) Social Preferences GPT-J

Dell’Acqua et al. (2023) Worker Performance GPT-4
Natural Al experiments Luo et al. (2019) Worker Performance Chatbot

Brynjolfsson et al. (2025) Worker Performance GPT-3

Paravisini and Schoar (2013)
Bundorf et al. (2019)

Financial Decision-Making
Financial Decision-Making

Scoring model
Scoring model

Edge cases Dell’Acqua (2022)
Cox et al. (2016)
Bai et al. (2022)

Worker Performance Regression
Worker Performance Probit model
Worker Performance Rule-based

test the replicability and generalizability of their results across different
subject pools. Unlike the (Awad et al., 2018/11/01) study, the studies
cited above could be feasibly run as natural, quasi-natural, or stylized
Al experiments. Some scenarios, such as the work assignment scenario
in Lee (2018), have even been implemented as natural AI experi-
ments (Bai et al., 2022). However, even the studies that use natural
Al implementations, such as that by Bai et al. (2022), acknowledge the
complementary value of conceptual Al experiments.

Another useful application for conceptual AI experiments is the
manipulation of subjects’ beliefs through priming. For example, the
political science experiments by Wu (2022), Zhang (2022), Gallego
et al. (2022), and Jeffrey (2021) use priming to evaluate the effects
of subjects’ beliefs about their automation exposure on their tendency
to support various public policies. In a typical priming experiment,
subjects first read a passage containing some information about new
technologies, which is supposed to affect their beliefs, or some neutral
information, which serves as a control condition, and then have to state
their support for given policies. The conceptual Al experiments are
ideal for these studies because researchers are typically interested in the
general effects of automation. Running a natural Al experiment in this
context would be challenging because it is difficult to experimentally
manipulate the automation exposure for actual workers.” Running a
stylized or quasi-natural AI experiment would be an option, and in
fact, experiments that elicit distributional preferences in controlled
environments are not uncommon in economics (Cappelen et al., 2023).

Conceptual Al experiments are not limited to vignette studies. For
example, finance experiments by Farjam and Kirchkamp (2018) and Ja-
cob Leal and Hanaki (2023) leverage the possibility of interacting with

9 Although experimental methods allow for a more precise way of manip-
ulating and measuring beliefs, in this case a more feasible alternative to a
natural Al experiment could be an observational study that uses an exogenous
shock as an instrument for automation exposure (Anelli et al., 2019; Webb,
2019).

Al to study actual changes in subjects’ behavior. In these experiments,
subjects participate in stylized financial markets in which they can buy
and sell assets for several rounds. The treatment condition informs
subjects that the markets in which they participate may include al-
gorithmic traders. The control condition does not give subjects this
information. Importantly, no algorithmic traders exist in either con-
dition.!® These studies employ conceptual Al experiments mainly to
disentangle the mechanisms underlying subjects’ behavior. The pres-
ence of algorithmic traders in a market can affect the behavior of
human traders and the resulting market outcomes through two distinct
channels. The first channel is mechanical: The algorithms implement
certain strategies and trade faster, which directly influences market out-
comes. The second channel is behavioral: The beliefs about the presence
of algorithms and what strategies they employ may alter the behavior
of human traders independently of what the algorithms actually do.
By focusing on the possibility of interacting with algorithmic traders,
the studies cited above are able to isolate the behavioral channel.
None of the other types of Al experiments would have been suitable
for achieving this research goal because the actual implementation of
algorithmic traders would have confounded the two channels.

3.2. Stylized Al experiments

Unlike conceptual Al experiments, stylized Al experiments actually
implement Al in some form. The ability to design their own algorithms
presents researchers with a variety of implementation options. One of
the simplest options is a rule-based algorithm. Such algorithms are

10 Unlike some Al experiments in computer science and psychology, eco-
nomic and finance experiments do not use deception. Even though the studies
cited here do not focus on the treatments that feature interactions with algo-
rithmic traders, there was an actual possibility of interacting with algorithms
in each study.
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easy to explain to subjects and offer a high degree of control over the
performance of the algorithm.

For example, Strobel (2025) studies whether automated bonus eval-
uation affects worker performance using a modified one-shot principal-
agent game. In the game, subjects in the role of workers choose their
performance levels. Subjects in the role of principals set performance
thresholds for assigning bonuses. The performance threshold can either
be set before the performance is known, which models the mechanism
of an automated bonus evaluation process, or after the performance
is known, which models the mechanism of a non-automated process.
The automated process is implemented by simply comparing the pre-
determined performance threshold with the actual performance and
assigning a bonus if the threshold is exceeded, and subjects are aware
of each process. The experiment varies whether the bonus evaluation
process is determined by a principal or randomly. The results show that
performance is significantly lower under the automated process. How-
ever, whether automation is determined by a principal or randomly
has no significant effect on performance. The study argues that lower
performance under the automated process is not driven by fairness
or trust concerns, but rather by misaligned expectations about how
generous the threshold should be.

Alekseev (2025) is another example of a rule-based algorithm in
a labor setting. It studies preferences for working with an algorithm
that induces a task-switching environment. In the experiment, subjects
perform real-effort tasks and make a choice of whether to work man-
ually and complete the tasks themselves or work with an algorithm
and delegate some of the tasks to it. Delegating to the algorithm
enables subjects to work on new tasks, which is always better than
completing all the tasks themselves in terms of monetary payoffs. The
algorithm, however, is programmed to periodically interrupt subjects’
work and ask for help. Subjects are aware of the interruption rule
— the algorithm interrupts only when it encounters certain tasks, the
frequency of which is identical whether subjects work by themselves
or with an algorithm — but not of the actual interruption frequency,
which varies between subjects. The study finds that as the frequency
of interruptions increases, subjects are less likely to delegate to the
algorithm, which suggests that task switching has tangible utility costs
to the subjects.

Rule-based algorithms can be fairly sophisticated, especially when
implemented in dynamic environments. For example, Angerer et al.
(2023) study the effect of different arbitrage-seeking algorithms on the
outcomes in experimental financial markets. In the experiment, human
subjects buy and sell assets, across several periods, whose dividends are
correlated between the two markets. The algorithms are programmed
to seek arbitrage opportunities across the two markets and make buy
or sell orders when such opportunities arise. The subjects know they
may interact with a “computerized participant,” however, they have
no information about whether they actually interact with one, what
its strategy is, or to whom its earnings accrue. The study finds that the
presence of such algorithms moves the markets closer to the law of one
price.

An alternative to rule-based algorithms are algorithms that are
trained on past data. A common way to train such algorithms is to
simply replicate the distribution of decisions from past human-only
sessions. Automating the decisions of other players with such Al al-
lows researchers to isolate the behavioral effects of mechanisms such
as social preferences, intentionality, or peer pressure (March, 2021).
By replacing a human player with an AI that plays like an average
human while not possessing the relevant characteristics of a human,
researchers can shut down the mechanisms of interest and see how it
affects the behavior of human subjects.

An example of a stylized Al experiment that uses historical averages
to automate decisions is Kirchkamp and Strobel (2019). The study in-
vestigates the role of the perceived responsibility and guilt of others on
one’s own responsibility, guilt, and selfish choices. In the experiment,
human subjects play a one-shot dictator game in which the dictator’s
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decision to split money equally or unequally is implemented by a pair
of players. The pairs of players consist of either two human players
or a human player and a passive human player whose decisions are
automated by an algorithm. Human subjects in the latter case know that
a computer automates the decisions of a passive player by replicating
past choice frequencies but not the actual frequencies. The researchers
expect human dictators to feel more responsible for an outcome, feel
more guilt for an unequal split, and make fewer selfish choices when
they are paired with an algorithm than with another human because
an algorithm cannot be responsible and feel guilt in the same way a
human does. The researchers, however, find no such effects.

Corgnet et al. (2023) is another example of using historical av-
erages, this time in a labor setting, that examines the effects of so-
cial pressure on workers’ performance. In the experiment, a team of
three workers repeatedly performs, over five rounds, a sequential task
mimicking an assembly line. The team consists of either only human
workers or two human workers and one algorithm. The researchers
calibrate the productivity of the algorithm to be the same as that of an
average human worker. Subjects working with an algorithm are aware
of neither the algorithm’s actual productivity nor the calibration rule.
They know that an algorithm exists and can observe its performance.
The researchers isolate the social-pressure effect because the algorithm
cannot impose social pressure on other workers in the same way a
human can. The study finds that subjects who work with the algorithm
underperform relative to those who work in human-only teams, which
highlights the importance of social pressure for team performance.

Gogoll and Uhl (2018) is an example of using historical averages
to train Al in an experiment at the intersection of labor and moral
domains. It studies preferences for delegating to an algorithm tasks
that affect third parties. In the experiment, subjects make a choice of
whether to delegate a numerical task to another human subject or to
an algorithm. The performance on the task, however, affects not the
payoff of the subject who solves the task but that of another subject,
adding a moral component to the delegation choice. The algorithm
is programmed to reproduce the performance distribution of human
subjects in previous sessions. As in Corgnet et al. (2023), subjects are
aware neither of the actual performance of the algorithm nor of the
calibration rule, however, they observe a snapshot of the algorithm’s
performance (along with that of human subjects) before they make
their delegation decisions. The study finds that subjects are three times
more likely to delegate the task to another human than to an algorithm,
despite identical ex-ante performance. The researchers find that neither
the perceived differences in performance between an algorithm and hu-
mans nor trust in the algorithm can explain the reluctance to delegate
to an algorithm.

A more sophisticated approach for training Al on past data is to
estimate a prediction model, such as an ordinary least squares (OLS)
regression. This approach provides less experimental control over the
performance of the algorithm, which is typically better than that of
human subjects, and is more difficult to explain to subjects. However,
the superior performance of such algorithms is often a desirable fea-
ture that they share with commercial-grade Al tools, which ultimately
increases the external validity of a study.

For example, Dietvorst et al. (2015) study subjects’ preferences
for performing a forecasting task themselves or delegating the task
to an algorithm. In the experiment, subjects have to predict over ten
rounds how successful an MBA student would be using such variables
as a student’s undergraduate degree, GMAT scores, years of work
experience, and education. The subjects can either make all predictions
themselves or delegate all predictions to an algorithm. To build an
algorithm, the researchers estimate an OLS regression on the data
from 115 students using the same explanatory variables as the subjects
themselves can use. The instructions give subjects general information
about the algorithm (“The model is based on hundreds of past students,
using the same categories of demographic data you are receiving”) but
not the actual implementation. Even though the algorithm is better than



A. Alekseev and C. Strobel

humans at prediction, a significant fraction of subjects does not choose
the algorithm. The study additionally proposes and explores a potential
mechanism behind such algorithm aversion: Observing an algorithm
perform may increase aversion to it. Consistent with this hypothesis,
the fraction of subjects who choose an algorithm drops if the subjects
observe the algorithm’s performance.

Dargnies et al. (2024) use a similar approach to study the pref-
erences of workers and managers for using an algorithm to evaluate
workers and make hiring decisions. In the experiment, subjects in the
role of workers perform real-effort tasks. They then make a choice
of whether they prefer the hiring decision between themselves and
another worker be made by another human subject in the role of a
manager or by an algorithm. Subjects in the role of managers first
make 20 hiring decisions from among pairs of workers and then make
a choice for whether they want to delegate their hiring decisions
to the algorithm. The managers can use workers’ task performance
and gender to make their hiring decisions. To build an algorithm,
the researchers estimate an OLS regression on the data from 200
workers using the same explanatory variables that are available to
managers (i.e., task performance and gender). The subjects know that
the algorithm is designed to predict performance based on the data
from previous workers, and that it hires the worker with the highest
predicted performance, while the information about implementation
details varies by treatment. The study finds that both the workers and
the managers prefer human evaluation over algorithmic evaluation,
despite the algorithm being better at picking the better-performing
worker. However, when the algorithm does not use a worker’s gender
for prediction and workers know this, they choose the algorithm more
often. The study additionally finds that explaining how the algorithm
works does not increase either workers’ or managers’ preference for it.

Researchers are not limited to using simple prediction models, such
as OLS. However, more sophisticated models, while offering better
predictions, also require better explanations. For example, Klockmann
et al. (2022) study how subjects’ behavior is affected if they know that
their choices train an algorithm that later makes a decision that has
consequences either for them or for other subjects. In the experiment,
subjects in the role of dictators first make repeated choices in a dictator
game for 30 periods. The researchers then create an algorithm for
each dictator to predict and make the choice in the final 31st period.
To create the algorithm, the researchers train a random forest model
using such features as the payoffs and the sum and difference of points
allocated to a receiver in the dictator game. The instructions inform
subjects that the dictators’ choices are used to “train an artificially
intelligent Random Forest algorithm,” and give a summary of how
the algorithm works. The prediction of the algorithm is implemented
for either a receiver with whom a dictator was paired, a receiver in
a different pair, or, with some probability, the dictators themselves.
The study finds that the behavior of dictators does not differ between
the cases when the algorithm makes a decision for a receiver in the
dictator’s own pair or for a receiver in a different pair. However, if there
is a chance that the algorithm determines the payoff of the dictators, the
dictators behave more prosocially: The share of egalitarian decisions
increases.

Yet another step in the complexity of algorithms used in styl-
ized Al experiments is artificial agents trained using reinforcement-
learning. Such agents can be used to study complex decisions in dy-
namic strategic environments. A popular reinforcement-learning algo-
rithm in experimental research is Q-learning. For example, Werner
(2021) and Schauer and Schnurr (2023) study market outcomes and
strategies in experimental oligopoly markets populated by either hu-
man participants, Q-learning agents, or both. In both studies, subjects
are aware of whether they are playing against other humans or al-
gorithms while the strategy of algorithms is not disclosed.!! Werner

11 Schauer and Schnurr (2023) study has one treatment where subjects do
not know the identity of their Al competitor, while the other four treatments
reveal this information.
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(2021) additionally informs subjects that an algorithm “acts in the
interest of another participant” who does not make any decisions but
receives profits earned by the algorithm. The results show that both
humans and algorithms learn to collude with each other, even without
communication. However, collusion is highest when only human or
only Q-learning agents are present in a market, while in hybrid markets
humans and algorithms fail to coordinate.

In all the above examples, stylized AI experiments are the most
fitting design choice for answering the posed research questions. This
design allows researchers to create custom Als that are tailored to
their research questions and to easily evaluate different potential mech-
anisms behind subjects’ choices. Conceptual Al experiments cannot
capture the consequential nature of decisions often desired, e.g., for
moral choices, or the dynamic choice environment of market experi-
ments. Quasi-natural Al experiments would not have provided adequate
control over the features of algorithms. Natural AI experiments, on the
other hand, would be challenging to implement because these studies
are typically interested in general patterns of human behavior. For
some research questions, e.g., the ones that are motivated by labor
settings that are of interest to organizations, stylized AI experiments
provide a convenient first step for testing ideas before scaling them up
to a level of natural Al experiments.

3.3. Quasi-natural Al experiments

Quasi-natural Al experiments, similar to stylized ones, actually im-
plement Al in a controlled environment. The Al in them, however, is
designed for purposes other than a research study. An example of a
quasi-natural Al experiment is Cominelli et al. (2021) who employ a
robot to study the effects of promises made by a robot or a human
on trust in human counterparts in one-shot games. The researchers use
the Facial Automaton for Conveying Emotions (FACE) robot designed
for social robotics and, in particular, therapy for autism (Pioggia et al.,
2004). The FACE robot has a human-like appearance and is capable
of showing emotional states, empathy, and nonverbal communication.
In the experiment, a human subject enters a room containing either
a robot, a professional actress, or a computer, each of which makes
a verbal promise to take a cooperative action. After that, the subject
decides whether to trust them. The study finds that receiving a promise
from the robot increases trust in participants who perceive the robot as
human-like, but not in those who do not perceive the robot as such.
A similar pattern occurs when either an actress or a non-human-like
computer makes a promise.

Gorny et al. (2023) conduct a lab experiment at a learning factory
to study how the presence of robots in a team of human workers
affects their prosociality towards each other and the valuation of their
products. A learning factory is a real, albeit simplified, production sys-
tem featuring state-of-the-art robotics where university employees and
students receive hands-on training on production technologies. In the
experiment, two human workers produce electronic motor components
by operating two different production stations at the beginning and end
of a three-station production line. The middle station is operated by
either two robots or a station that performs the same steps but with
the robots switched off and hidden. The study finds that the presence
of robots increases sharing behavior among human workers, however,
it does not change workers’ valuation of the rewards they earn from
production.

Leib et al. (2023) use a large language model to study how AI- ver-
sus human-generated advice affects dishonest behavior among human
participants in a one-shot die-rolling game. The experiment employs
the GPT-J model developed by EleutherAl in 2021 (Wang & Komat-
suzaki, 2021). The researchers fine-tune the model using text advice
generated by human participants. In the experiment, subjects observe
either Al-generated advice, human-generated advice, or no advice and
then decide whether to take a dishonest but self-serving action. The
instructions explained to subjects the basics of what the language
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model is and how it was trained. The results show that advice that
promotes dishonesty increases dishonest behavior, while advice that
promotes honesty does not increase honest behavior. This pattern holds
regardless of whether an Al or a human gave that advice and regardless
of whether a subject knows the exact source of the advice.

Dell’Acqua et al. (2023) study the effect of access to a generative
Al tool among highly skilled knowledge workers on their productivity
and quality of work. The researchers conduct an experiment with the
consultants at Boston Consulting Group, a leading consulting firm, who
are randomly assigned to either use the AI tool with no guidance, the
Al tool with prompt-engineering training, or no Al at all. The Al tool
in the experiment is the GPT-4 model by OpenAl. In the experiment,
subjects complete a series of stylized tasks, representative of typical
consulting activities at the company, and are then scored on the quality
of their responses. The tasks differ by whether they are within the “Al
capability frontier” (tasks that AI can reliably perform) or not (tasks
that Al cannot reliably perform). The study finds that for tasks inside
the frontier, access to the Al tool increases the number of completed
tasks by 12.2% and quality by over 40%. These effects are most
pronounced among lower-performing subjects, suggesting that Al acts
as a performance equalizer. On the other hand, for tasks outside the
frontier, access to Al reduced accuracy by 19 percentage points.

In all these examples, a quasi-natural design allows researchers to
achieve the right balance between naturalness, on the one hand, and
generality of research questions and feasibility, on the other. It enables
studying scenarios (e.g., trusting, lying, or sharing behavior) and elicit
variables that would be difficult to study in a natural environment.
Additionally, it may act as a convenient test bed before potentially
scaling up to the natural level. A conceptual or a stylized design would
have been too simplistic for that purpose, since researchers in these
studies are interested in subjects’ behavior in naturalistic environments
featuring actual Al or robotic systems.

3.4. Natural Al experiments

Natural AI experiments are often conducted in collaboration with
an organization that is interested in deploying a new technology on its
platform. For example, Luo et al. (2019) conduct a field experiment
with a large Chinese internet-based financial-services company. The
researchers study the effects of using a chatbot on the outcomes of sales
calls to the company’s customers who are eligible for loan extensions.
The company uses a sophisticated voice AI chatbot trained on the voice
data of the best-performing human workers that can conduct natural-
sounding conversations indistinguishable from human conversations.
The study finds that the chatbot is as effective in making sales as the
best human workers and four times more effective than inexperienced
workers. However, revealing that the caller is a chatbot reduces sales
by about 80%, a drop mostly driven by customers’ biases against
machines.

Brynjolfsson et al. (2025) presents another example of using Al in a
customer-support setting. The authors collaborate with a Fortune 500
company that sells business-process software to study the effects of
the deployment of an Al assistant among over 5000 customer support
workers on their productivity and service quality. The Al assistant is
based on the GPT-3 model by OpenAl and is designed to monitor
conversations in real-time and provide suggested responses and links
to technical documentation. The design of the Al assistant allows for
worker discretion over whether to follow its recommendations. The
study finds that access to the Al assistant leads to 15% more issues
resolved per hour, the study’s main measure of productivity. The
authors also report treatment effect heterogeneity: less experienced
and lower-skilled workers benefit the most, while skilled workers see
marginal speed gains. The results suggest that generative Al functions
by transferring tacit knowledge from high-performing agents to less
experienced ones, effectively leveling up the baseline capability of the
workforce.
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Paravisini and Schoar (2013) is a further example of a natural Al
experiment but in the banking sector. The researchers conduct a field
experiment with a for-profit bank in Colombia to examine the impact
of a credit-scoring model used to evaluate prospective borrowers on
the behavior of loan officers. The study finds that the committees that
observe credit scores spend more time per loan application and reach
decisions more often than the committees that do not observe the
scores. The percentage of non-decisions also drops by more than 40%,
with the effect being concentrated in difficult-to-evaluate applications.
Interestingly, the committees who observe the scores only after making
interim decisions also increase their output, by 75%, even though
observing the scores never changes their interim decisions, and the
quality of decisions is similar to that of committees who observe the
scores before making their decisions, which suggests an incentive effect
of scores availability. These findings suggest a coordinating role of an
algorithmic score: human workers who have access to the score work
harder and reach decisions more often.

Although natural AI experiments can benefit an organization’s bot-
tom line, as the previous examples illustrate, sometimes they are used
for helping customers or improving the overall efficiency of a system.
A case in point is Bundorf et al. (2019) who conduct a field experiment
in collaboration with the Palo Alto Medical Foundation, a large multi-
specialty physician group in California. The researchers develop and
evaluate an online decision-support tool designed to help older adults
choose a drug insurance plan. The tool uses a proprietary scoring
technology from a third-party provider and assigns an expert score to
each plan, which is a combination of an estimated total cost of the plan
and the plan’s “star rating.” The study finds that the subjects who had
access to the tool were more likely to select the plans suggested by it,
with a more pronounced result for the group that had access to the
expert scores in addition to the list of plans ordered by those scores.
These findings echo the ones in Paravisini and Schoar (2013) on the
coordinating role of algorithmic scores.

In these examples, natural Al experiments are the most fitting design
choice. While other types of Al experiments could have reached similar
conclusions, only natural Al experiments achieve that in contexts that
are directly applicable to organizations. The use of Al technologies is
complex and deeply embedded in organizational structures — culture,
employee dynamics, specific business goals — something that con-
trolled settings might struggle to replicate. Al usage in organizational
settings can also reveal unanticipated behavioral responses and hetero-
geneity that are unlikely to emerge in simulated environments. Finally,
the ethical and compliance considerations that affect AI deployment
in organizations are context-dependent and are difficult to replicate in
controlled settings.

3.5. Edge cases

We chose the examples in the previous sections to highlight the
clear-cut cases in each category. In this section, by contrast, we turn
to the cases that may present a challenge for classification to stress-
test the logic behind our taxonomy. We start with Dell’Acqua (2022)
who studies how the quality of an algorithm affects workers’ reliance
on it and the resulting quality of decisions. The subjects in the study
are freelance recruiters hired on an online platform to screen stylized
job applications. The subjects’ task is to choose whether to invite an
applicant for an interview by trying to guess the applicant’s math ability
based on other characteristics, such as education and employment.
The subjects are split into four treatment groups, depending on an
algorithm they have access to. In the control group, subjects do not
have access to an algorithm, while in the remaining three groups,
subjects can either have an almost perfect algorithm, a “good” algo-
rithm with 85% accuracy, or a “bad” algorithm with 75% accuracy.
The algorithms are based on a related study (Cowgill et al., 2020)
in which software engineers predict a person’s math ability based on
their education and employment characteristics. The study finds that
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subjects who have access to higher-quality Al are less accurate and
spend less effort than subjects who have access to lower-quality Al,
which suggests that a higher-quality Al may not always be beneficial
for human decision-making.

This study is a field experiment, involving subjects in their natural
roles, i.e., recruiters. It might appear, therefore, that this experiment
belongs to a natural Al category. Our taxonomy, however, places it in
the stylized AI category. The key consideration here is the implementa-
tion of AL The algorithms used in the study are developed specifically
for the purpose of a (related) study and are not intended to be used in
actual hiring decisions. Hence, the study does not fall into quasi-natural
or natural Al categories, according to our definition. The study does
implement an algorithm, hence, it is not a conceptual Al experiment
either.

For another example, we consider Cox et al. (2016) who collaborate
with a large U.S. hospital to study the uptake of a clinical decision-
support system among resident physicians and fourth-year medical
students. The decision-support system makes hospital discharge rec-
ommendations based on a probit model estimated on the data from
the hospital’s electronic medical records. In the experiment, subjects
view patient charts from the database used to develop the decision-
support system. They make discharge decisions based on either typical
information or that information supplemented by a recommendation
from the decision-support system. In the group that has access to the
system, the default decision is either generated by the system or based
on the current practices. The results show that the decision-support
system is more effective if the default is generated by the system
and subjects who override it have to explain their choice than if the
information provided by the system is simply available.

It might appear that this study belongs to a conceptual Al category
because subjects’ choices are not consequential for actual patients.
Subjects’ choices only affect their own payoffs: they receive a monetary
bonus for correct discharge decisions. Our taxonomy, however, places
it in the quasi-natural Al category. The key consideration here, again, is
the implementation of the algorithm. The study actually implements an
algorithm — a decision-support system — hence, it is not a conceptual
Al experiment according to our definition. The algorithm is developed
to be ultimately used in an actual hospital and not for the purpose of
conducting a study, hence, it is not a stylized AI experiment. Since
researchers conduct a controlled experiment in artificial conditions,
albeit with actual doctors, this is not a natural Al experiment. The
researchers, in fact, justify their choice of a quasi-natural AI design
over a natural one: “it is a practical and ethical requirement before
application of the system on patient wards in hospitals” (Cox et al.,
2016)[P. 2].

Finally, we consider the case of Bai et al. (2022) who collaborate
with a large Chinese warehouse operator owned by Alibaba, the largest
retailer in China, to study the effects of human versus computer task
assignment on workers’ fairness perceptions and productivity. In the
experiment, warehouse workers receive lists of items they need to pick
from the warehouse (pick lists) either from a human supervisor or
from a computer terminal. A list of items for each worker to pick is
simply selected at random from a pool of available pick lists, previously
generated by a logistical algorithm, regardless of whether a human
supervisor or a computer distributes the list. Although the underlying
rule for generating a pick list is the same, the workers who receive
pick lists from a computer perceive their assigned tasks as fairer than
do workers who receive pick lists from a human supervisor. This effect
results from a concern that a human supervisor might have been biased
towards or against some workers. Greater fairness perception of the
computer assignment translates into productivity gains of about 18%.

This study presents a challenge for classification because, while it
is a field experiment, the algorithm for generating pick lists is a simple
random assignment, there is no sophistication one would expect to
see in a natural Al experiment. We think, however, that this study
does belong to a natural Al category. The key consideration here is
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the purpose of designing an algorithm, even a simple one like random
assignment: whether it is designed merely for the study or whether
it will actually be implemented in a warehouse. The study is silent
about that, however, given the high-stakes environment of a natural
field experiment, it seems plausible that the algorithm is tested for the
purpose of being deployed, perhaps with some modifications, in an
actual work setting.

We conclude by noticing that our classification relies on how Al is
implemented in a study, rather than on how a study is implemented,
e.g., whether it is a field experiment or not. It follows that the same
type of study, in principle, can be implemented using different Al
experiments. Take, for example, correspondence/audit studies (Ver-
haeghe, 2022) in which researchers typically send fictional CVs of
potential job applicants to recruiters. Researchers can implement a
correspondence study as a conceptual Al experiment, e.g., if they vary
whether an applicant has experience with generating prompts for LLMs.
Alternatively, they can implement it as a natural Al experiment, if they
vary whether they send job applications to recruiters who are known
to use algorithms for screening candidates or not.

4. Discussion

We have presented the four types of Al experiments in a neutral
manner, balancing their strengths with their weaknesses. In practice,
however, these types of AI experiments vary in prevalence, as il-
lustrated in Fig. 3. All four types experienced increased usage since
the 1990s, however, after the early 2010s, their trajectories began to
diverge. The popularity of conceptual Al experiments peaked around
mid-2010 and has subsequently declined. Stylized and quasi-natural AL
experiments initially decreased in popularity during the mid-2010s but
have shown a resurgence in recent years. Natural Al experiments have
enjoyed a steady growth throughout the observation period.

The strengths and weaknesses of the four types of Al experiments
that we identify offer insights into possible reasons behind these trends.
Conceptual Al experiments, while valuable for rapid generation of
new insights, likely saw a decline as researchers sought to validate
initial findings with experiments where Al is actually implemented. The
relative ease of implementation, combined with their ability to model
dynamic interactions beyond what simple vignettes allow, has likely
contributed to the renewed interest in stylized and quasi-natural Al
experiments. The increasing accessibility and capabilities of LLMs have
likely further fueled interest in quasi-natural Al experiments (Charness
et al., 2025/03/31). A consistent growth in natural Al experiments
likely reflects the recent wave of Al adoption and automation within
organizations (Agrawal et al., 2022).

Based on these trends, we anticipate continued growth in Al ex-
periments that implement Al in some form. The proliferation of LLMs
and the ability to fine-tune them will likely drive further adoption of
quasi-natural Al experiments, enabling researchers to investigate in-
teractions with sophisticated conversational agents (Leib et al., 2023).
Ongoing adoption of Al tools and automation into workplaces will
likely stimulate the use of natural Al experiments, e.g., to study the
productivity effects of new technologies (Brynjolfsson et al., 2025;
Dell’Acqua et al., 2023). Stylized AI experiments will likely still find
place in future research agendas. These experiments enable researchers
to explore underlying behavioral mechanisms by controlling how an
algorithm is constructed and presented, which distinguishes them from
the largely “black box” nature of LLMs. Moreover, while LLMs, at least
currently, are best suited for research questions involving textual data
and conversational interactions, stylized Al experiments can address a
broader range of questions. It is conceivable, however, that the height-
ened interest in LLMs will inspire new research questions that can be
answered with this tool (Charness et al., 2025/03/31; Korinek, 2023).
Finally, conceptual Al experiments may assume a complementary role,
supplementing the findings from the other types of Al experiments.
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Fig. 3. Popularity of Al experiments by type.
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Note: The figure shows the total number of experimental Al papers published in a given year since 1990, clustered by type. The line shows a loess fit. The list

of papers is based on Chugunova and Sele (2022) and March (2021).

5. Conclusion

In this paper, we propose a taxonomy of Al experiments. Our taxon-
omy features four types of Al experiments: conceptual Al experiments,
stylized AI experiments, quasi-natural Al experiments, and natural Al
experiments. At the core of our taxonomy is the sophistication of Al
used. To evaluate the sophistication, we propose a simple and robust
proxy test of whether Al is developed exclusively for a research study.
We provide a guide on the advantages, disadvantages, and best use
cases for each type, illustrated via various examples.

Our taxonomy is designed to be easy-to-use and robust to the
emergence of new technologies. However, there will be experiments
that are difficult to classify using our procedure. We illustrate a few
of such edge cases to stress-test our classification. We hope that our
taxonomy will prove to be a useful tool for organizing the existing
literature and will help researchers design new experiments.
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