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 A B S T R A C T

We introduce a taxonomy of artificial intelligence (AI) experiments. Our taxonomy produces four types of AI 
experiments: conceptual AI experiments, stylized AI experiments, quasi-natural AI experiments, and natural AI 
experiments. At the core of our taxonomy is the sophistication of AI used, which we evaluate using a simple 
and robust proxy test of whether AI is developed exclusively for a research study. We discuss the advantages, 
disadvantages, and best use cases for each type and illustrate the use of each type in various examples. We 
provide a guide on how to choose the type of AI experiment that best fits a given research question.
1. Introduction

The number of experimental papers studying interactions between 
humans and artificial intelligence (AI) has been steadily rising in recent 
years (see Fig.  1). In fact, almost half of all experimental AI papers 
reviewed by Chugunova and Sele (2022) and March (2021) were pub-
lished since 2013.1 A number of special issues dedicated to AI research 
have appeared in various journals such as The Journal of Behavioral and 
Experimental Economics, Experimental Economics, Management Science,
Science, Decision Sciences, and Research Policy. With the increasing 
supply of AI experiments comes a greater demand to organize the 
literature and make sense of the glut of findings. Recent review articles 
by Bao et al. (2022), Chugunova and Sele (2022), Langer and Landers 
(2021), March (2021), Jussupow et al. (2020), and Burton et al. (2020), 
among others, are valuable contributions aimed at meeting this de-
mand. However, recent literature has also identified an unsatisfied need 
for greater methodological discipline in AI experiments (Langer et al., 
2020; March, 2021). We take a first step by proposing a taxonomy of AI 
experiments and offering a guide for using AI as a tool in experimental 
economists’ methodological arsenal.2

I This article is part of a Special issue entitled: ‘AI/ML in Behavioural Experiments’ published in Journal of Behavioral and Experimental Economics.
I We thank the Editor (Oliver Kirchkamp) and anonymous reviewers whose detailed suggestions helped significantly improve the quality of the paper. All 
remaining errors are our own.
∗ Corresponding author.
E-mail addresses: aleksandr.alekseev@ur.de (A. Alekseev), christina.strobel@tuhh.de (C. Strobel).

1 Despite the recent surge in popularity, some of the ideas in current experimental AI research can be traced back as far as the 1950s (Meehl, 1954).
2 Although the focus of the present paper is on economics experiments, the majority of our discussion applies to other disciplines that conduct AI experiments, 

including psychology, management, and computer science.
3 Since the focus of our paper is social sciences, our definition excludes experiments that study exclusively the interactions between AIs. Including them would 

have strayed us too far into the realm of computer science and AI research. We include robots in this definition and show examples of their use in experiments 
because robots can be viewed as a physical manifestation of AI (Russell & Norvig, 2021), with the caveat that not all robots are powered by AI.

With the growing academic interest in AI experiments, it seems 
natural to try to define just what is an AI experiment. In search of 
this definition, however, we do not converge on a single ideal type 
that might be called the AI experiment. Rather, we advocate for an 
inclusive approach and suggest that AI experiments exist on a spectrum 
that spans quite diverse designs. What defines an AI experiment, in our 
view, is not so much the design or implementation of AI but rather 
an underlying research agenda. Therefore, in this paper, we adopt the 
following broad definition of AI experiments. These are experiments 
that study interactions between human subjects and computers, al-
gorithms, artificial agents, machines, robots, automated agents, and 
artificial intelligence agents with the goal of better understanding how 
the (actual or hypothetical) interaction with, or the presence of, these 
agents affects human behavior and outcomes in organizations and 
markets.3

Having adopted this broad definition of AI experiments that allows 
for a variety of designs, we attempt to put some structure on this 
variety. We identify and label four types of AI experiments: conceptual 
AI experiments, stylized AI experiments, quasi-natural AI experiments, 
and natural AI experiments. We discuss the advantages, disadvantages, 
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Fig. 1. The growth of experimental AI literature.
Note:  The figure shows the total number of experimental AI papers published in a given year. The line shows a loess fit. The shaded region shows the time 
period during which approximately half of all experimental papers were published. We compiled our list based on the papers reviewed in Chugunova and Sele 
(2022) and March (2021).
and best use cases for each type and illustrate their usage in various 
examples.

At the core of our taxonomy is the sophistication of AI used. The 
sophistication of AI varies from real-world, commercial-grade systems, 
such as ChatGPT, to AI-as-label used in vignette studies, and everything 
in between. Our taxonomy, however, does not rely on AI sophistication 
directly, because that judgment is subjective and requires technical 
detail impractical for classification purposes. Instead, we propose a 
simple and robust proxy test: whether AI is developed exclusively for 
the purpose of conducting a research study. The logic behind this proxy 
test is that real-world, commercial-grade AI systems are unlikely to be 
developed for the purpose of simply conducting a study. On the other 
hand, AI developed specifically for an experiment is unlikely to match 
the sophistication of real-world systems.4

We gauge the levels of AI in an iterative manner. At a first step, we 
ask whether AI is just a label, which isolates conceptual experiments. 
If the AI is not simply a label, we then ask whether it is implemented 
exclusively for a study, which isolates stylized AI experiments. If AI is 
not implemented exclusively for a study, we ask if the experiment is 
conducted in a controlled environment, which isolates quasi-natural AI 
experiments. Finally, if AI is not implemented exclusively for a study 
and is used in its natural setting, then we identify it as a natural AI 
experiment.

Our taxonomy serves the dual purpose of organizing the existing 
literature and offering a tool to help researchers design new AI exper-
iments. The organizing role of our taxonomy is particularly valuable 
for such a fragmented topic as human–AI interaction, which is spread 
across different fields. Grouping AI experiments into a few well-defined 
categories helps unify the literature (e.g., by clarifying how different 
lines of research are related to each other) and reveal underexplored 

4 It is possible that our proxy test can misclassify some cases. For example, 
a research team conducting an experiment might develop an algorithm that 
later becomes a commercial-grade system in practice. We believe, however, 
that the ease of use and robustness of our proxy test outweigh the dangers of 
potential misclassification that could be caught with a more elaborate test.
2 
questions (e.g., a certain phenomenon might have been established only 
for one type of AI experiments while its robustness to other types is 
unknown). Ultimately, this will help researchers better place their work 
in relation to existing studies across multiple fields, as well as identify 
potential directions for future research.

Our taxonomy also offers a practical guide for designing new AI 
experiments. By highlighting the main advantages, disadvantages, and 
best use cases of each type of AI experiment, our taxonomy provides 
researchers with a well-structured menu of alternative designs. This 
can help researchers be deliberate about which type (types) to use, 
rather than defaulting to conventional practices. Making the menu of 
available designs explicit can also inspire new combinations of designs 
or help identify underutilized designs (e.g., an existing convention 
might dictate the use of quasi-natural AI experiments, while a stylized 
design would suffice). Each study should ultimately settle for a type 
(or combination of types) that best fits the research question at hand.5 
It is possible that no single type best fits a given research question, 
in which case we recommend a complementary approach. Just like 
many experimental studies combine different samples (e.g., lab and 
online) (Hergueux & Jacquemet, 2015/06/01; Palan & Schitter, 2018) 
or types of experiments (e.g., lab and field) (Harrison & List, 2004) that 
complement each other, studies of human–AI interaction can exploit 
complementarities offered by different types of AI experiments. For 
example, a study can first establish a result in a specific setting using a 
quasi-natural AI experiment that offers greater external validity at the 
cost of a narrower scope. Then it can explore the mechanisms behind 
this result in a stylized AI experiment that offers a wider scope at the 
cost of lower external validity. In any case, we argue that researchers 
should justify their design choices, and we provide guidance for such 
justification.

5 It should be noted, however, that while our focus is on experimental stud-
ies, some research questions are naturally more amenable to non-experimental 
methods. We also acknowledge the value of survey-based approaches for 
studying the use of AI, such as Carvajal et al. (2024) and Chugunova et al. 
(2025).
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Our research builds upon and contributes to the recent reviews and 
methodological discussions of experimental AI papers. The paper that 
is closest in spirit to the present one is March (2021) that focuses on 
the use of computer players in experimental games spanning a range 
of topics including auctions, bargaining, and social dilemmas. It not 
only reviews the results from this vast literature but also provides 
a useful classification of the reasons for using a computer player 
in a game (e.g., reducing decision-making noise or inducing certain 
behavioral types) and the types of algorithms used in those games 
(e.g., equilibrium or adaptive algorithms). Our paper echoes the im-
plicit message in March (2021) that the type of AI used should be based 
on the research question and addresses the concern about the lack of 
methodological standardization and guidance in AI experiments.

Bao et al. (2022) offer a more targeted discussion of AI in strate-
gic interactions that occur in experimental financial markets. Their 
review provides researchers with a detailed classification of the algo-
rithms used in finance experiments and how those algorithms affect 
participants’ behavior and market outcomes. Consistent with our argu-
ment that the type of AI experiments should be based on a research 
question, Bao et al. (2022) highlight the importance of both finance 
experiments in which the algorithm is actually implemented (our taxon-
omy would classify the majority of them as stylized AI experiments) and 
experiments in which the presence of an algorithm is merely announced 
(these would fall into our conceptual AI experiments category).

Likewise, a review by Chugunova and Sele (2022) embraces method-
ological diversity. The study stands out due to its breadth and organizes 
findings from experiments where human subjects interact with auto-
mated agents across a wide range of disciplines spanning economics, 
psychology, sociology, marketing, medicine, and others. While the 
authors do not make methodological points explicitly, they do note 
that in many instances the details of AI implementation matter less for 
subjects’ behavior than the mere notion of interacting with AI instead 
of humans.

Burton et al. (2020) and Jussupow et al. (2020) summarize the 
findings of the literature on algorithm aversion. Although both papers 
offer illuminating insights into the reasons behind algorithm aversion 
and potential ways to overcome it, they remain largely silent about the 
methodological issues in the reviewed studies. Jussupow et al. (2020) 
does comment, however, on the predominance of vignette studies, 
which fall under conceptual AI experiments according to our taxonomy. 
Perhaps this predominance is what makes the authors refer to AI in a 
study like Yeomans et al. (2019) as a ‘‘real working algorithm,’’ even 
though our classification puts it into a stylized, rather than a natural or 
quasi-natural, category.

The methodological concern about the predominance of vignette 
studies in AI experiments finds a stronger voice in Langer and Landers 
(2021). This review is unique because it focuses on people affected by 
AI who do not interact with it (second parties) and on outside observers 
(third parties), rather than on people who directly interact with it 
(first parties). Langer and Landers (2021) lament the over-reliance on 
vignette studies, which have the downside of lower external validity. 
Our paper acknowledges this important shortcoming of conceptual AI 
experiments, while also highlighting their benefits. Importantly, we do 
not take a stance on what type of AI experiments is ‘‘best’’ but instead 
argue that the type of AI experiment should fit the research question.

Our study is also related to the literature that explores the broader 
methodological role of AI in scientific research and experimentation. 
Charness et al. (2025/03/31) offers a related yet distinct perspective 
by focusing on the application of generative AI, in particular large 
language models (LLMs), as a research tool. The authors argue that 
LLMs can enhance experimental research by improving comprehension, 
immersion, data collection, and analysis. The review also addresses 
broader risks and benefits, providing guidance on how generative AI 
might support open science and enable scalable experimentation in 
policy and business contexts. In a similar vein, Korinek (2023) inves-
tigates the potential of generative AI, such as ChatGPT, to support 
3 
economists. The study identifies six key areas where generative AI 
can be beneficial: ideation, writing, background research, data anal-
ysis, coding, and mathematical derivations. While these reviews offer 
practical guidance and examples showcasing the potential of LLMs 
throughout the research process, our study focuses on how AI is im-
plemented within experiments and explores the diverse approaches for 
designing AI experiments.

Our paper offers three main contributions to the literature. First, 
we propose a taxonomy of AI experiments and a simple and robust 
test to classify studies according to this taxonomy. Second, we discuss 
the advantages and disadvantages of each type of AI experiments that 
we identify and compare the types based on these features. Third, we 
discuss the best use cases for each type along with relevant examples 
from the literature. Our paper, however, is not a substitute for existing 
taxonomies, e.g., March (2021) or Bao et al. (2022). Rather, we com-
plement these by providing researchers with a high-level classification 
of AI experiments and guidance on how to choose the right type to 
fit their research questions, after which researchers should tailor their 
designs using narrower taxonomies developed for their topics. We also 
note that our paper is not a literature review. Our examples of studies 
using AI experiments are not meant to be exhaustive. Instead, they are 
meant to illustrate why choosing a particular type of AI experiment 
makes sense in the context of these studies.

2. A taxonomy of AI experiments

2.1. Classification procedure

We identify and label four types of AI experiments: conceptual AI 
experiments, stylized AI experiments, quasi-natural AI experiments, and
natural AI experiments. Fig.  2 shows the decision tree that we use for 
classification. Conceptual AI experiments, unlike the three other types, 
are characterized by AI that exists merely as a label or a framing device. 
In stylized AI experiments, the AI is implemented but is designed specif-
ically for a study. In both quasi-natural and natural AI experiments, the 
AI used in a study is designed for purposes other than conducting a 
study. What distinguishes these two types is the environment in which 
the use of AI occurs. In quasi-natural AI experiments, the use of AI 
occurs in a controlled environment. Natural AI experiments, on the 
other hand, take place in an environment in which the use of that AI 
naturally occurs.6

Although we present these types in a certain order, we stress that 
the order does not reflect their quality. While it might be tempting to 
claim that one type of AI experiments is superior to another, we argue 
that this is not the case. Each type of AI experiments has its advantages 
and disadvantages, and there is no single type that is suitable for all 
studies. We now proceed to define each type, discussing its advantages, 
disadvantages, and best use cases. Table  1 offers an overview of each 
type.

6 We use the following rationale for our terminology. Natural AI experi-
ments, by analogy with the natural field experiments, occur in an environment 
that is ‘‘natural’’ for the AI used in them, hence the term. Quasi-natural AI 
experiments are ‘‘almost like’’ the natural AI experiments since both use the 
same type of AI, hence the term ‘‘quasi.’’ The only difference between the 
two is the environment in which experiments occur, which we view as minor 
albeit important. We use the term ‘‘stylized’’ in its dictionary definition sense 
(‘‘depicted or treated in a mannered and nonrealistic style’’), and similarly 
to ‘‘stylized facts.’’ ‘‘Stylized’’ here refers to AI that is deliberately nonrealistic 
and removed from many real-world implementation details in favor of focusing 
only on the essential elements. Finally, ‘‘conceptual’’ refers to AI as a concept 
or an idea rather than an actually implemented device. We do not call 
conceptual AI experiments ‘‘quasi-stylized’’ because in our view the difference 
between the conceptual and stylized AI experiments is more substantial than 
the difference between natural and quasi-natural AI experiments. Conceptual 
AI experiments have no implementation of AI whatsoever, while stylized AI 
experiments do.
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Fig. 2. Decision tree for classification.
Table 1
Overview of the four types of AI experiments.
 Type Naturalness Control Feasibility Scope Use if  
 Conceptual ★ NA ★★★★ ★★★★ An algorithm cannot be implemented ⋅ ease of 

implementation/scalability and generality of 
research questions matter much more than 
naturalness of AI and/or setting

 

 Stylized ★★ ★★★ ★★★ ★★★ Implementation of AI is required ⋅ tight control 
over the algorithm, high feasibility and generality 
of research questions matter more than naturalness

 

 Quasi-natural ★★★ ★★ ★★ ★★ Implementation of AI is required ⋅ naturalistic 
implementation of AI and ability to relate to 
applied questions matter more than tight control 
or ease of implementation

 

 Natural ★★★★ ★ ★ ★ Implementation of AI is required ⋅ naturalistic 
implementation of AI/setting in which it is 
deployed and ability to relate to applied questions 
matter much more than control over the algorithm 
and ease of implementation

 

The table compares the following features of AI experiments. Naturalness (List, 2020) refers to the degree to which an algorithm and/or the setting in which it is deployed are 
similar to those found outside the context of a study, with lower values meaning ‘‘dissimilar’’ and higher values meaning ‘‘similar.’’ Control refers to the degree to which researchers 
have control over the features of an algorithm, with lower values meaning ‘‘little control’’ and higher values meaning ‘‘a lot of control.’’ Feasibility refers to the ease of conducting, 
scaling, or replicating a typical study, with low values meaning ‘‘easy’’ and low values meaning ‘‘hard.’’ Scope refers to the breadth of research questions a typical study is suited 
for, with low values meaning ‘‘narrow or applied’’ and high values meaning ‘‘wide or general.’’ The rankings represent our a priori expectations about a typical study, however, 
individual studies might deviate from these patterns.
2.2. Conceptual AI experiments

In conceptual AI experiments, AI exists merely as a label or framing 
device that models the operational principles or consequences of AI, 
but no AI is actually implemented. These experiments typically take 
place in a controlled, rather than natural, environment. Not being 
constrained by implementation allows researchers to study scenarios 
that are impractical or impossible to test with actual AI, such as ethical 
dilemmas or changes in a labor market.

A primary advantage of conceptual AI experiments is their high 
feasibility. They are relatively inexpensive, and researchers can conduct 
them at scale and replicate them easily. The low cost of these exper-
iments allows researchers to quickly explore mechanisms underlying 
subjects’ behavior or test the generalizability of their findings across 
different subject pools. The downside of conceptual AI experiments is 
that the AI and/or choice setting presented to subjects are dissimilar 
to the ones the subjects typically experience outside a study. Even 
when choice contexts are similar (e.g., consumer choice), subjects 
do not interact with actual AI and their choices are inconsequential. 
Conceptual AI experiments are best suited to studies that do not require 
4 
AI implementation (e.g., due to ethical concerns) and prioritize ease of 
implementation, scalability, and generality over the naturalness of AI 
and/or its setting.

2.3. Stylized AI experiments

Stylized AI experiments actually implement AI, but it is designed 
specifically for a study. They are conducted in a controlled environment 
because the AI used in them typically does not occur outside the study. 
AI used in these experiments is based on a research question. It can thus 
take a variety of forms: from rule-based algorithms to algorithms that 
replicate decisions based on historical data to artificial agents trained 
using reinforcement learning.

The major strength of stylized AI experiments is a tight control over 
the features of an algorithm. This allows researchers to study a broad 
range of questions about human–AI interaction in settings with real 
stakes and to isolate specific behavioral mechanisms. Another benefit of 
these experiments is that they are feasible (i.e., they can be conducted 
with standard lab or online samples) and replicable. The downside of 
stylized AI experiments is lower naturalness: the AI and/or its setting 
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often differ from what subjects encounter outside a study. Stylized 
AI experiments are best suited to studies that require an actual AI 
implementation and prioritize control, feasibility, and generality over 
the naturalness of AI and/or its setting.

2.4. Quasi-natural AI experiments

Quasi-natural AI experiments feature naturalistic AI that is designed 
for purposes other than a research study, unlike in stylized AI experi-
ments. They occur in a controlled environment—a feature they share 
with conceptual and stylized AI experiments. For example, researchers 
can study how subjects interact with state-of-the-art chatbots, such as 
ChatGPT, or commercial-grade robots in a controlled setting.7 Quasi-
natural AI experiments can also occur when an organization runs pilot 
experiments before launching a product, e.g., to test which features of 
AI lead to better customer satisfaction.

Quasi-natural AI experiments retain the naturalness of natural AI 
experiments while being more feasible, affordable, and replicable. They 
can be used to study a broad set of research questions because these 
experiments are not tied to the natural environments in which the use 
of AI occurs. A controlled setting enables collecting data on variables 
that might be impractical or impossible to elicit in natural settings, 
e.g., emotions or physiological responses. It also enables presenting 
scenarios that do not occur in natural environments. Their affordability 
also makes quasi-natural AI experiments a convenient test bed before 
scaling up a study. The reliance on actual AI, however, can be a 
limitation, since researchers give up a certain degree of control (al-
though not all) over how the algorithm is constructed. Quasi-natural 
AI experiments are best suited to studies that require an actual AI im-
plementation and prioritize naturalness and ability to relate to applied 
questions over control and ease of implementation.

2.5. Natural AI experiments

Natural AI experiments feature sophisticated AI (e.g., computer 
vision, natural-language processing, decision support, recommender 
systems, and robots) in the environments where it is actually used. 
The AI is usually trained on large datasets using machine-learning 
methods. The defining characteristic of natural AI experiments is that 
the AI involved is developed for purposes beyond the scope of the 
research study itself. Natural AI experiments are also natural field 
experiments (Harrison & List, 2004).

Many natural AI experiments are A/B tests (Azevedo et al., 2020) 
run by tech companies (e.g., Microsoft, Google, Amazon, Spotify, and 
Netflix) to increase engagement or develop product innovations. In 
these experiments, AI is not designed for the purpose of conducting 
a research study but, for example, for the purpose of giving better 
recommendations to the users of a service or improving the search 
results on a search engine. These experiments occur on a platform itself 
during the actual use of the services by its users.

The biggest strength of natural AI experiments is that they possess 
the highest possible degree of naturalness of AI and the setting in which 
it is deployed. These experiments produce findings that can be directly 
applied to an organization. The flip side of that naturalness and the 
applied nature of research questions is that natural AI experiments can 
often be too narrow and hard to generalize outside the context of a 
study. Tech companies run thousands of (often automated) A/B tests, 
but only a fraction of them produces generalizable knowledge about 
human–AI interaction. Another downside of natural AI experiments 
is low feasibility and replicability. Natural AI experiments are rarely 
public. Even when they are, replication is challenging because it would 

7 To provide a counter-example, if the developer of ChatGPT, OpenAI, 
conducts an experiment on the website that people use to access ChatGPT, 
that would count as a natural AI experiment.
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require access to proprietary platforms. Natural AI experiments are best 
suited to studies that require an actual AI implementation and prioritize 
the naturalness of AI and its setting together with the ability to relate 
to applied questions over control and ease of implementation.

3. The taxonomy in action

In this section, we put our taxonomy into action and illustrate the 
use cases of each type through various examples. Table  2 provides a 
summary of the reviewed papers.

3.1. Conceptual AI experiments

The most common application for conceptual AI experiments is 
vignette studies. A typical vignette study presents subjects with a series 
of hypothetical situations and asks them to state their preferences about 
what they would do in those situations. The primary advantage of 
vignette studies is that they can model any situation of interest to 
researchers without being constrained by the actual implementation of 
AI.

For example, Awad et al. (2018/11/01) conduct an online experi-
ment that elicits subjects’ preferences for what a self-driving car should 
do in moral dilemmas (trolley problems). A typical dilemma involves 
a hypothetical situation with a malfunctioning self-driving car that 
can either stay on course and kill pedestrians or swerve and kill the 
passengers. The dilemmas present subjects with various trade-offs such 
as between humans vs. animals, more lives vs. fewer lives, and young 
vs. old, and each subject makes choices in 13 different situations. Using 
vignettes allows the authors to collect an enormous dataset of choices 
spanning a wide variety of situations and cultures.8 Moreover, a con-
ceptual AI experiment is the most appropriate choice for this research 
question. Running a natural AI experiment would have been infeasible: 
One could never run an experiment where actual self-driving cars 
implemented subjects’ choices and killed people. One could attempt to 
make subjects’ choices consequential by promising to use these choices 
to inform the programming of actual self-driving cars in the future. The 
legal or ethical status of such a promise, however, would be unclear. A 
more feasible alternative would be a stylized AI experiment in the spirit 
of the ‘‘mouse-model’’ design of Falk et al. (2020). Researchers could 
program simple devices that would implement subjects’ choices that 
would be consequential for mice. Aside from the ethical issues it might 
raise, the downside of this implementation is that mice do not possess 
many of the characteristics of interest of potential victims in Awad et al. 
(2018/11/01).

AI vignettes often present subjects with the option to choose be-
tween an AI and a human. For example, Lee (2018) presents sub-
jects with different managerial decisions and asks them about their 
perceptions of those decisions when implemented by either AI or a 
human. Castelo et al. (2019) offer subjects a variety of tasks and ask 
them whether they prefer an AI or a human to complete those tasks. 
Similarly, Granulo et al. (2021) ask subjects whether they prefer an AI 
or another human to replace a human worker. In addition to exploring 
a variety of choice situations, these studies highlight two other key ad-
vantages of conceptual AI experiments. First, these experiments allow 
researchers to quickly explore the mechanisms underlying subjects’ be-
havior, for example, whether a decision requires mechanical or human 
skills (Lee, 2018), whether a task is objective or subjective (Castelo 
et al., 2019), and whether the replaced worker is the subject herself 
or a third party (Granulo et al., 2021). Second, researchers can quickly 

8 It might appear that this example illustrates the low feasibility of con-
ceptual experiments. However, high feasibility is precisely what enabled 
researchers to conduct such a large-scale study. Conducting a natural AI 
experiment of such scale, apart from ethical issues, would have been much 
less feasible.
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Table 2
Summary of reviewed papers.
 Classification Experiment Subfield AI implementation  
 Conceptual AI experiments Awad et al. (2018/11/01) Social Preferences Vignettes  
 Lee (2018) Technology Acceptance Vignettes  
 Castelo et al. (2019) Technology Acceptance Vignettes  
 Granulo et al. (2021) Technology Acceptance Vignettes  
 Wu (2022) Behavioral Public Policy Vignettes  
 Zhang (2022) Behavioral Public Policy Vignettes  
 Gallego et al. (2022) Behavioral Public Policy Vignettes  
 Jeffrey (2021) Behavioral Public Policy Vignettes  
 Farjam and Kirchkamp (2018) Financial Markets Rule-based  
 Jacob Leal and Hanaki (2023) Financial Markets Rule-based  
 Stylized AI experiments Strobel (2025) Worker Performance Timing  
 Alekseev (2025) Worker Performance Rule-based  
 Angerer et al. (2023) Financial Markets Rule-based  
 Kirchkamp and Strobel (2019) Social Preferences Historical averages  
 Corgnet et al. (2023) Worker Performance Historical averages  
 Gogoll and Uhl (2018) Social Preferences Rule-based  
 Dietvorst et al. (2015) Technology Acceptance Regression  
 Dargnies et al. (2024) Social Preferences Regression  
 Klockmann et al. (2022) Social Preferences Supervised learning  
 Werner (2021) Markets and Competition Reinforcement-learning 
 Schauer and Schnurr (2023) Markets and Competition Reinforcement-learning 
 Quasi-Natural AI experiments Cominelli et al. (2021) Social Preferences Image recognition  
 Gorny et al. (2023) Social Preferences Robot  
 Leib et al. (2023) Social Preferences GPT-J  
 Dell’Acqua et al. (2023) Worker Performance GPT-4  
 Natural AI experiments Luo et al. (2019) Worker Performance Chatbot  
 Brynjolfsson et al. (2025) Worker Performance GPT-3  
 Paravisini and Schoar (2013) Financial Decision-Making Scoring model  
 Bundorf et al. (2019) Financial Decision-Making Scoring model  
 Edge cases Dell’Acqua (2022) Worker Performance Regression  
 Cox et al. (2016) Worker Performance Probit model  
 Bai et al. (2022) Worker Performance Rule-based  
test the replicability and generalizability of their results across different 
subject pools. Unlike the (Awad et al., 2018/11/01) study, the studies 
cited above could be feasibly run as natural, quasi-natural, or stylized 
AI experiments. Some scenarios, such as the work assignment scenario 
in Lee (2018), have even been implemented as natural AI experi-
ments (Bai et al., 2022). However, even the studies that use natural 
AI implementations, such as that by Bai et al. (2022), acknowledge the 
complementary value of conceptual AI experiments.

Another useful application for conceptual AI experiments is the 
manipulation of subjects’ beliefs through priming. For example, the 
political science experiments by Wu (2022), Zhang (2022), Gallego 
et al. (2022), and Jeffrey (2021) use priming to evaluate the effects 
of subjects’ beliefs about their automation exposure on their tendency 
to support various public policies. In a typical priming experiment, 
subjects first read a passage containing some information about new 
technologies, which is supposed to affect their beliefs, or some neutral 
information, which serves as a control condition, and then have to state 
their support for given policies. The conceptual AI experiments are 
ideal for these studies because researchers are typically interested in the 
general effects of automation. Running a natural AI experiment in this 
context would be challenging because it is difficult to experimentally 
manipulate the automation exposure for actual workers.9 Running a 
stylized or quasi-natural AI experiment would be an option, and in 
fact, experiments that elicit distributional preferences in controlled 
environments are not uncommon in economics (Cappelen et al., 2023).

Conceptual AI experiments are not limited to vignette studies. For 
example, finance experiments by Farjam and Kirchkamp (2018) and Ja-
cob Leal and Hanaki (2023) leverage the possibility of interacting with 

9 Although experimental methods allow for a more precise way of manip-
ulating and measuring beliefs, in this case a more feasible alternative to a 
natural AI experiment could be an observational study that uses an exogenous 
shock as an instrument for automation exposure (Anelli et al., 2019; Webb, 
2019).
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AI to study actual changes in subjects’ behavior. In these experiments, 
subjects participate in stylized financial markets in which they can buy 
and sell assets for several rounds. The treatment condition informs 
subjects that the markets in which they participate may include al-
gorithmic traders. The control condition does not give subjects this 
information. Importantly, no algorithmic traders exist in either con-
dition.10 These studies employ conceptual AI experiments mainly to 
disentangle the mechanisms underlying subjects’ behavior. The pres-
ence of algorithmic traders in a market can affect the behavior of 
human traders and the resulting market outcomes through two distinct 
channels. The first channel is mechanical: The algorithms implement 
certain strategies and trade faster, which directly influences market out-
comes. The second channel is behavioral: The beliefs about the presence 
of algorithms and what strategies they employ may alter the behavior 
of human traders independently of what the algorithms actually do. 
By focusing on the possibility of interacting with algorithmic traders, 
the studies cited above are able to isolate the behavioral channel. 
None of the other types of AI experiments would have been suitable 
for achieving this research goal because the actual implementation of 
algorithmic traders would have confounded the two channels.

3.2. Stylized AI experiments

Unlike conceptual AI experiments, stylized AI experiments actually 
implement AI in some form. The ability to design their own algorithms 
presents researchers with a variety of implementation options. One of 
the simplest options is a rule-based algorithm. Such algorithms are 

10 Unlike some AI experiments in computer science and psychology, eco-
nomic and finance experiments do not use deception. Even though the studies 
cited here do not focus on the treatments that feature interactions with algo-
rithmic traders, there was an actual possibility of interacting with algorithms 
in each study.



A. Alekseev and C. Strobel Journal of Behavioral and Experimental Economics 121 (2026) 102525 
easy to explain to subjects and offer a high degree of control over the 
performance of the algorithm.

For example, Strobel (2025) studies whether automated bonus eval-
uation affects worker performance using a modified one-shot principal–
agent game. In the game, subjects in the role of workers choose their 
performance levels. Subjects in the role of principals set performance 
thresholds for assigning bonuses. The performance threshold can either 
be set before the performance is known, which models the mechanism 
of an automated bonus evaluation process, or after the performance 
is known, which models the mechanism of a non-automated process. 
The automated process is implemented by simply comparing the pre-
determined performance threshold with the actual performance and 
assigning a bonus if the threshold is exceeded, and subjects are aware 
of each process. The experiment varies whether the bonus evaluation 
process is determined by a principal or randomly. The results show that 
performance is significantly lower under the automated process. How-
ever, whether automation is determined by a principal or randomly 
has no significant effect on performance. The study argues that lower 
performance under the automated process is not driven by fairness 
or trust concerns, but rather by misaligned expectations about how 
generous the threshold should be.

Alekseev (2025) is another example of a rule-based algorithm in 
a labor setting. It studies preferences for working with an algorithm 
that induces a task-switching environment. In the experiment, subjects 
perform real-effort tasks and make a choice of whether to work man-
ually and complete the tasks themselves or work with an algorithm 
and delegate some of the tasks to it. Delegating to the algorithm 
enables subjects to work on new tasks, which is always better than 
completing all the tasks themselves in terms of monetary payoffs. The 
algorithm, however, is programmed to periodically interrupt subjects’ 
work and ask for help. Subjects are aware of the interruption rule 
— the algorithm interrupts only when it encounters certain tasks, the 
frequency of which is identical whether subjects work by themselves 
or with an algorithm — but not of the actual interruption frequency, 
which varies between subjects. The study finds that as the frequency 
of interruptions increases, subjects are less likely to delegate to the 
algorithm, which suggests that task switching has tangible utility costs 
to the subjects.

Rule-based algorithms can be fairly sophisticated, especially when 
implemented in dynamic environments. For example, Angerer et al. 
(2023) study the effect of different arbitrage-seeking algorithms on the 
outcomes in experimental financial markets. In the experiment, human 
subjects buy and sell assets, across several periods, whose dividends are 
correlated between the two markets. The algorithms are programmed 
to seek arbitrage opportunities across the two markets and make buy 
or sell orders when such opportunities arise. The subjects know they 
may interact with a ‘‘computerized participant,’’ however, they have 
no information about whether they actually interact with one, what 
its strategy is, or to whom its earnings accrue. The study finds that the 
presence of such algorithms moves the markets closer to the law of one 
price.

An alternative to rule-based algorithms are algorithms that are 
trained on past data. A common way to train such algorithms is to 
simply replicate the distribution of decisions from past human-only 
sessions. Automating the decisions of other players with such AI al-
lows researchers to isolate the behavioral effects of mechanisms such 
as social preferences, intentionality, or peer pressure (March, 2021). 
By replacing a human player with an AI that plays like an average 
human while not possessing the relevant characteristics of a human, 
researchers can shut down the mechanisms of interest and see how it 
affects the behavior of human subjects.

An example of a stylized AI experiment that uses historical averages 
to automate decisions is Kirchkamp and Strobel (2019). The study in-
vestigates the role of the perceived responsibility and guilt of others on 
one’s own responsibility, guilt, and selfish choices. In the experiment, 
human subjects play a one-shot dictator game in which the dictator’s 
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decision to split money equally or unequally is implemented by a pair 
of players. The pairs of players consist of either two human players 
or a human player and a passive human player whose decisions are 
automated by an algorithm. Human subjects in the latter case know that 
a computer automates the decisions of a passive player by replicating 
past choice frequencies but not the actual frequencies. The researchers 
expect human dictators to feel more responsible for an outcome, feel 
more guilt for an unequal split, and make fewer selfish choices when 
they are paired with an algorithm than with another human because 
an algorithm cannot be responsible and feel guilt in the same way a 
human does. The researchers, however, find no such effects.

Corgnet et al. (2023) is another example of using historical av-
erages, this time in a labor setting, that examines the effects of so-
cial pressure on workers’ performance. In the experiment, a team of 
three workers repeatedly performs, over five rounds, a sequential task 
mimicking an assembly line. The team consists of either only human 
workers or two human workers and one algorithm. The researchers 
calibrate the productivity of the algorithm to be the same as that of an 
average human worker. Subjects working with an algorithm are aware 
of neither the algorithm’s actual productivity nor the calibration rule. 
They know that an algorithm exists and can observe its performance. 
The researchers isolate the social-pressure effect because the algorithm 
cannot impose social pressure on other workers in the same way a 
human can. The study finds that subjects who work with the algorithm 
underperform relative to those who work in human-only teams, which 
highlights the importance of social pressure for team performance.

Gogoll and Uhl (2018) is an example of using historical averages 
to train AI in an experiment at the intersection of labor and moral 
domains. It studies preferences for delegating to an algorithm tasks 
that affect third parties. In the experiment, subjects make a choice of 
whether to delegate a numerical task to another human subject or to 
an algorithm. The performance on the task, however, affects not the 
payoff of the subject who solves the task but that of another subject, 
adding a moral component to the delegation choice. The algorithm 
is programmed to reproduce the performance distribution of human 
subjects in previous sessions. As in Corgnet et al. (2023), subjects are 
aware neither of the actual performance of the algorithm nor of the 
calibration rule, however, they observe a snapshot of the algorithm’s 
performance (along with that of human subjects) before they make 
their delegation decisions. The study finds that subjects are three times 
more likely to delegate the task to another human than to an algorithm, 
despite identical ex-ante performance. The researchers find that neither 
the perceived differences in performance between an algorithm and hu-
mans nor trust in the algorithm can explain the reluctance to delegate 
to an algorithm.

A more sophisticated approach for training AI on past data is to 
estimate a prediction model, such as an ordinary least squares (OLS) 
regression. This approach provides less experimental control over the 
performance of the algorithm, which is typically better than that of 
human subjects, and is more difficult to explain to subjects. However, 
the superior performance of such algorithms is often a desirable fea-
ture that they share with commercial-grade AI tools, which ultimately 
increases the external validity of a study.

For example, Dietvorst et al. (2015) study subjects’ preferences 
for performing a forecasting task themselves or delegating the task 
to an algorithm. In the experiment, subjects have to predict over ten 
rounds how successful an MBA student would be using such variables 
as a student’s undergraduate degree, GMAT scores, years of work 
experience, and education. The subjects can either make all predictions 
themselves or delegate all predictions to an algorithm. To build an 
algorithm, the researchers estimate an OLS regression on the data 
from 115 students using the same explanatory variables as the subjects 
themselves can use. The instructions give subjects general information 
about the algorithm (‘‘The model is based on hundreds of past students, 
using the same categories of demographic data you are receiving’’) but 
not the actual implementation. Even though the algorithm is better than 
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humans at prediction, a significant fraction of subjects does not choose 
the algorithm. The study additionally proposes and explores a potential 
mechanism behind such algorithm aversion: Observing an algorithm 
perform may increase aversion to it. Consistent with this hypothesis, 
the fraction of subjects who choose an algorithm drops if the subjects 
observe the algorithm’s performance.

Dargnies et al. (2024) use a similar approach to study the pref-
erences of workers and managers for using an algorithm to evaluate 
workers and make hiring decisions. In the experiment, subjects in the 
role of workers perform real-effort tasks. They then make a choice 
of whether they prefer the hiring decision between themselves and 
another worker be made by another human subject in the role of a 
manager or by an algorithm. Subjects in the role of managers first 
make 20 hiring decisions from among pairs of workers and then make 
a choice for whether they want to delegate their hiring decisions 
to the algorithm. The managers can use workers’ task performance 
and gender to make their hiring decisions. To build an algorithm, 
the researchers estimate an OLS regression on the data from 200 
workers using the same explanatory variables that are available to 
managers (i.e., task performance and gender). The subjects know that 
the algorithm is designed to predict performance based on the data 
from previous workers, and that it hires the worker with the highest 
predicted performance, while the information about implementation 
details varies by treatment. The study finds that both the workers and 
the managers prefer human evaluation over algorithmic evaluation, 
despite the algorithm being better at picking the better-performing 
worker. However, when the algorithm does not use a worker’s gender 
for prediction and workers know this, they choose the algorithm more 
often. The study additionally finds that explaining how the algorithm 
works does not increase either workers’ or managers’ preference for it.

Researchers are not limited to using simple prediction models, such 
as OLS. However, more sophisticated models, while offering better 
predictions, also require better explanations. For example, Klockmann 
et al. (2022) study how subjects’ behavior is affected if they know that 
their choices train an algorithm that later makes a decision that has 
consequences either for them or for other subjects. In the experiment, 
subjects in the role of dictators first make repeated choices in a dictator 
game for 30 periods. The researchers then create an algorithm for 
each dictator to predict and make the choice in the final 31st period. 
To create the algorithm, the researchers train a random forest model 
using such features as the payoffs and the sum and difference of points 
allocated to a receiver in the dictator game. The instructions inform 
subjects that the dictators’ choices are used to ‘‘train an artificially 
intelligent Random Forest algorithm,’’ and give a summary of how 
the algorithm works. The prediction of the algorithm is implemented 
for either a receiver with whom a dictator was paired, a receiver in 
a different pair, or, with some probability, the dictators themselves. 
The study finds that the behavior of dictators does not differ between 
the cases when the algorithm makes a decision for a receiver in the 
dictator’s own pair or for a receiver in a different pair. However, if there 
is a chance that the algorithm determines the payoff of the dictators, the 
dictators behave more prosocially: The share of egalitarian decisions 
increases.

Yet another step in the complexity of algorithms used in styl-
ized AI experiments is artificial agents trained using reinforcement-
learning. Such agents can be used to study complex decisions in dy-
namic strategic environments. A popular reinforcement-learning algo-
rithm in experimental research is Q-learning. For example, Werner 
(2021) and Schauer and Schnurr (2023) study market outcomes and 
strategies in experimental oligopoly markets populated by either hu-
man participants, Q-learning agents, or both. In both studies, subjects 
are aware of whether they are playing against other humans or al-
gorithms while the strategy of algorithms is not disclosed.11 Werner 

11 Schauer and Schnurr (2023) study has one treatment where subjects do 
not know the identity of their AI competitor, while the other four treatments 
reveal this information.
8 
(2021) additionally informs subjects that an algorithm ‘‘acts in the 
interest of another participant’’ who does not make any decisions but 
receives profits earned by the algorithm. The results show that both 
humans and algorithms learn to collude with each other, even without 
communication. However, collusion is highest when only human or 
only Q-learning agents are present in a market, while in hybrid markets 
humans and algorithms fail to coordinate.

In all the above examples, stylized AI experiments are the most 
fitting design choice for answering the posed research questions. This 
design allows researchers to create custom AIs that are tailored to 
their research questions and to easily evaluate different potential mech-
anisms behind subjects’ choices. Conceptual AI experiments cannot 
capture the consequential nature of decisions often desired, e.g., for 
moral choices, or the dynamic choice environment of market experi-
ments. Quasi-natural AI experiments would not have provided adequate 
control over the features of algorithms. Natural AI experiments, on the 
other hand, would be challenging to implement because these studies 
are typically interested in general patterns of human behavior. For 
some research questions, e.g., the ones that are motivated by labor 
settings that are of interest to organizations, stylized AI experiments 
provide a convenient first step for testing ideas before scaling them up 
to a level of natural AI experiments.

3.3. Quasi-natural AI experiments

Quasi-natural AI experiments, similar to stylized ones, actually im-
plement AI in a controlled environment. The AI in them, however, is 
designed for purposes other than a research study. An example of a 
quasi-natural AI experiment is Cominelli et al. (2021) who employ a 
robot to study the effects of promises made by a robot or a human 
on trust in human counterparts in one-shot games. The researchers use 
the Facial Automaton for Conveying Emotions (FACE) robot designed 
for social robotics and, in particular, therapy for autism (Pioggia et al., 
2004). The FACE robot has a human-like appearance and is capable 
of showing emotional states, empathy, and nonverbal communication. 
In the experiment, a human subject enters a room containing either 
a robot, a professional actress, or a computer, each of which makes 
a verbal promise to take a cooperative action. After that, the subject 
decides whether to trust them. The study finds that receiving a promise 
from the robot increases trust in participants who perceive the robot as 
human-like, but not in those who do not perceive the robot as such. 
A similar pattern occurs when either an actress or a non-human-like 
computer makes a promise.

Gorny et al. (2023) conduct a lab experiment at a learning factory 
to study how the presence of robots in a team of human workers 
affects their prosociality towards each other and the valuation of their 
products. A learning factory is a real, albeit simplified, production sys-
tem featuring state-of-the-art robotics where university employees and 
students receive hands-on training on production technologies. In the 
experiment, two human workers produce electronic motor components 
by operating two different production stations at the beginning and end 
of a three-station production line. The middle station is operated by 
either two robots or a station that performs the same steps but with 
the robots switched off and hidden. The study finds that the presence 
of robots increases sharing behavior among human workers, however, 
it does not change workers’ valuation of the rewards they earn from 
production.

Leib et al. (2023) use a large language model to study how AI- ver-
sus human-generated advice affects dishonest behavior among human 
participants in a one-shot die-rolling game. The experiment employs 
the GPT-J model developed by EleutherAI in 2021 (Wang & Komat-
suzaki, 2021). The researchers fine-tune the model using text advice 
generated by human participants. In the experiment, subjects observe 
either AI-generated advice, human-generated advice, or no advice and 
then decide whether to take a dishonest but self-serving action. The 
instructions explained to subjects the basics of what the language 
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model is and how it was trained. The results show that advice that 
promotes dishonesty increases dishonest behavior, while advice that 
promotes honesty does not increase honest behavior. This pattern holds 
regardless of whether an AI or a human gave that advice and regardless 
of whether a subject knows the exact source of the advice.

Dell’Acqua et al. (2023) study the effect of access to a generative 
AI tool among highly skilled knowledge workers on their productivity 
and quality of work. The researchers conduct an experiment with the 
consultants at Boston Consulting Group, a leading consulting firm, who 
are randomly assigned to either use the AI tool with no guidance, the 
AI tool with prompt-engineering training, or no AI at all. The AI tool 
in the experiment is the GPT-4 model by OpenAI. In the experiment, 
subjects complete a series of stylized tasks, representative of typical 
consulting activities at the company, and are then scored on the quality 
of their responses. The tasks differ by whether they are within the ‘‘AI 
capability frontier’’ (tasks that AI can reliably perform) or not (tasks 
that AI cannot reliably perform). The study finds that for tasks inside 
the frontier, access to the AI tool increases the number of completed 
tasks by 12.2% and quality by over 40%. These effects are most 
pronounced among lower-performing subjects, suggesting that AI acts 
as a performance equalizer. On the other hand, for tasks outside the 
frontier, access to AI reduced accuracy by 19 percentage points.

In all these examples, a quasi-natural design allows researchers to 
achieve the right balance between naturalness, on the one hand, and 
generality of research questions and feasibility, on the other. It enables 
studying scenarios (e.g., trusting, lying, or sharing behavior) and elicit 
variables that would be difficult to study in a natural environment. 
Additionally, it may act as a convenient test bed before potentially 
scaling up to the natural level. A conceptual or a stylized design would 
have been too simplistic for that purpose, since researchers in these 
studies are interested in subjects’ behavior in naturalistic environments 
featuring actual AI or robotic systems.

3.4. Natural AI experiments

Natural AI experiments are often conducted in collaboration with 
an organization that is interested in deploying a new technology on its 
platform. For example, Luo et al. (2019) conduct a field experiment 
with a large Chinese internet-based financial-services company. The 
researchers study the effects of using a chatbot on the outcomes of sales 
calls to the company’s customers who are eligible for loan extensions. 
The company uses a sophisticated voice AI chatbot trained on the voice 
data of the best-performing human workers that can conduct natural-
sounding conversations indistinguishable from human conversations. 
The study finds that the chatbot is as effective in making sales as the 
best human workers and four times more effective than inexperienced 
workers. However, revealing that the caller is a chatbot reduces sales 
by about 80%, a drop mostly driven by customers’ biases against 
machines.

Brynjolfsson et al. (2025) presents another example of using AI in a 
customer-support setting. The authors collaborate with a Fortune 500 
company that sells business-process software to study the effects of 
the deployment of an AI assistant among over 5000 customer support 
workers on their productivity and service quality. The AI assistant is 
based on the GPT-3 model by OpenAI and is designed to monitor 
conversations in real-time and provide suggested responses and links 
to technical documentation. The design of the AI assistant allows for 
worker discretion over whether to follow its recommendations. The 
study finds that access to the AI assistant leads to 15% more issues 
resolved per hour, the study’s main measure of productivity. The 
authors also report treatment effect heterogeneity: less experienced 
and lower-skilled workers benefit the most, while skilled workers see 
marginal speed gains. The results suggest that generative AI functions 
by transferring tacit knowledge from high-performing agents to less 
experienced ones, effectively leveling up the baseline capability of the 
workforce.
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Paravisini and Schoar (2013) is a further example of a natural AI 
experiment but in the banking sector. The researchers conduct a field 
experiment with a for-profit bank in Colombia to examine the impact 
of a credit-scoring model used to evaluate prospective borrowers on 
the behavior of loan officers. The study finds that the committees that 
observe credit scores spend more time per loan application and reach 
decisions more often than the committees that do not observe the 
scores. The percentage of non-decisions also drops by more than 40%, 
with the effect being concentrated in difficult-to-evaluate applications. 
Interestingly, the committees who observe the scores only after making 
interim decisions also increase their output, by 75%, even though 
observing the scores never changes their interim decisions, and the 
quality of decisions is similar to that of committees who observe the 
scores before making their decisions, which suggests an incentive effect 
of scores availability. These findings suggest a coordinating role of an 
algorithmic score: human workers who have access to the score work 
harder and reach decisions more often.

Although natural AI experiments can benefit an organization’s bot-
tom line, as the previous examples illustrate, sometimes they are used 
for helping customers or improving the overall efficiency of a system. 
A case in point is Bundorf et al. (2019) who conduct a field experiment 
in collaboration with the Palo Alto Medical Foundation, a large multi-
specialty physician group in California. The researchers develop and 
evaluate an online decision-support tool designed to help older adults 
choose a drug insurance plan. The tool uses a proprietary scoring 
technology from a third-party provider and assigns an expert score to 
each plan, which is a combination of an estimated total cost of the plan 
and the plan’s ‘‘star rating.’’ The study finds that the subjects who had 
access to the tool were more likely to select the plans suggested by it, 
with a more pronounced result for the group that had access to the 
expert scores in addition to the list of plans ordered by those scores. 
These findings echo the ones in Paravisini and Schoar (2013) on the 
coordinating role of algorithmic scores.

In these examples, natural AI experiments are the most fitting design 
choice. While other types of AI experiments could have reached similar 
conclusions, only natural AI experiments achieve that in contexts that 
are directly applicable to organizations. The use of AI technologies is 
complex and deeply embedded in organizational structures — culture, 
employee dynamics, specific business goals — something that con-
trolled settings might struggle to replicate. AI usage in organizational 
settings can also reveal unanticipated behavioral responses and hetero-
geneity that are unlikely to emerge in simulated environments. Finally, 
the ethical and compliance considerations that affect AI deployment 
in organizations are context-dependent and are difficult to replicate in 
controlled settings.

3.5. Edge cases

We chose the examples in the previous sections to highlight the 
clear-cut cases in each category. In this section, by contrast, we turn 
to the cases that may present a challenge for classification to stress-
test the logic behind our taxonomy. We start with Dell’Acqua (2022) 
who studies how the quality of an algorithm affects workers’ reliance 
on it and the resulting quality of decisions. The subjects in the study 
are freelance recruiters hired on an online platform to screen stylized 
job applications. The subjects’ task is to choose whether to invite an 
applicant for an interview by trying to guess the applicant’s math ability 
based on other characteristics, such as education and employment. 
The subjects are split into four treatment groups, depending on an 
algorithm they have access to. In the control group, subjects do not 
have access to an algorithm, while in the remaining three groups, 
subjects can either have an almost perfect algorithm, a ‘‘good’’ algo-
rithm with 85% accuracy, or a ‘‘bad’’ algorithm with 75% accuracy. 
The algorithms are based on a related study (Cowgill et al., 2020) 
in which software engineers predict a person’s math ability based on 
their education and employment characteristics. The study finds that 
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subjects who have access to higher-quality AI are less accurate and 
spend less effort than subjects who have access to lower-quality AI, 
which suggests that a higher-quality AI may not always be beneficial 
for human decision-making.

This study is a field experiment, involving subjects in their natural 
roles, i.e., recruiters. It might appear, therefore, that this experiment 
belongs to a natural AI category. Our taxonomy, however, places it in 
the stylized AI category. The key consideration here is the implementa-
tion of AI. The algorithms used in the study are developed specifically 
for the purpose of a (related) study and are not intended to be used in 
actual hiring decisions. Hence, the study does not fall into quasi-natural 
or natural AI categories, according to our definition. The study does 
implement an algorithm, hence, it is not a conceptual AI experiment 
either.

For another example, we consider Cox et al. (2016) who collaborate 
with a large U.S. hospital to study the uptake of a clinical decision-
support system among resident physicians and fourth-year medical 
students. The decision-support system makes hospital discharge rec-
ommendations based on a probit model estimated on the data from 
the hospital’s electronic medical records. In the experiment, subjects 
view patient charts from the database used to develop the decision-
support system. They make discharge decisions based on either typical 
information or that information supplemented by a recommendation 
from the decision-support system. In the group that has access to the 
system, the default decision is either generated by the system or based 
on the current practices. The results show that the decision-support 
system is more effective if the default is generated by the system 
and subjects who override it have to explain their choice than if the 
information provided by the system is simply available.

It might appear that this study belongs to a conceptual AI category 
because subjects’ choices are not consequential for actual patients. 
Subjects’ choices only affect their own payoffs: they receive a monetary 
bonus for correct discharge decisions. Our taxonomy, however, places 
it in the quasi-natural AI category. The key consideration here, again, is 
the implementation of the algorithm. The study actually implements an 
algorithm — a decision-support system — hence, it is not a conceptual 
AI experiment according to our definition. The algorithm is developed 
to be ultimately used in an actual hospital and not for the purpose of 
conducting a study, hence, it is not a stylized AI experiment. Since 
researchers conduct a controlled experiment in artificial conditions, 
albeit with actual doctors, this is not a natural AI experiment. The 
researchers, in fact, justify their choice of a quasi-natural AI design 
over a natural one: ‘‘it is a practical and ethical requirement before 
application of the system on patient wards in hospitals’’ (Cox et al., 
2016)[P. 2].

Finally, we consider the case of Bai et al. (2022) who collaborate 
with a large Chinese warehouse operator owned by Alibaba, the largest 
retailer in China, to study the effects of human versus computer task 
assignment on workers’ fairness perceptions and productivity. In the 
experiment, warehouse workers receive lists of items they need to pick 
from the warehouse (pick lists) either from a human supervisor or 
from a computer terminal. A list of items for each worker to pick is 
simply selected at random from a pool of available pick lists, previously 
generated by a logistical algorithm, regardless of whether a human 
supervisor or a computer distributes the list. Although the underlying 
rule for generating a pick list is the same, the workers who receive 
pick lists from a computer perceive their assigned tasks as fairer than 
do workers who receive pick lists from a human supervisor. This effect 
results from a concern that a human supervisor might have been biased 
towards or against some workers. Greater fairness perception of the 
computer assignment translates into productivity gains of about 18%.

This study presents a challenge for classification because, while it 
is a field experiment, the algorithm for generating pick lists is a simple 
random assignment, there is no sophistication one would expect to 
see in a natural AI experiment. We think, however, that this study 
does belong to a natural AI category. The key consideration here is 
10 
the purpose of designing an algorithm, even a simple one like random 
assignment: whether it is designed merely for the study or whether 
it will actually be implemented in a warehouse. The study is silent 
about that, however, given the high-stakes environment of a natural 
field experiment, it seems plausible that the algorithm is tested for the 
purpose of being deployed, perhaps with some modifications, in an 
actual work setting.

We conclude by noticing that our classification relies on how AI is 
implemented in a study, rather than on how a study is implemented, 
e.g., whether it is a field experiment or not. It follows that the same 
type of study, in principle, can be implemented using different AI 
experiments. Take, for example, correspondence/audit studies (Ver-
haeghe, 2022) in which researchers typically send fictional CVs of 
potential job applicants to recruiters. Researchers can implement a 
correspondence study as a conceptual AI experiment, e.g., if they vary 
whether an applicant has experience with generating prompts for LLMs. 
Alternatively, they can implement it as a natural AI experiment, if they 
vary whether they send job applications to recruiters who are known 
to use algorithms for screening candidates or not.

4. Discussion

We have presented the four types of AI experiments in a neutral 
manner, balancing their strengths with their weaknesses. In practice, 
however, these types of AI experiments vary in prevalence, as il-
lustrated in Fig.  3. All four types experienced increased usage since 
the 1990s, however, after the early 2010s, their trajectories began to 
diverge. The popularity of conceptual AI experiments peaked around 
mid-2010 and has subsequently declined. Stylized and quasi-natural AI 
experiments initially decreased in popularity during the mid-2010s but 
have shown a resurgence in recent years. Natural AI experiments have 
enjoyed a steady growth throughout the observation period.

The strengths and weaknesses of the four types of AI experiments 
that we identify offer insights into possible reasons behind these trends. 
Conceptual AI experiments, while valuable for rapid generation of 
new insights, likely saw a decline as researchers sought to validate 
initial findings with experiments where AI is actually implemented. The 
relative ease of implementation, combined with their ability to model 
dynamic interactions beyond what simple vignettes allow, has likely 
contributed to the renewed interest in stylized and quasi-natural AI 
experiments. The increasing accessibility and capabilities of LLMs have 
likely further fueled interest in quasi-natural AI experiments (Charness 
et al., 2025/03/31). A consistent growth in natural AI experiments 
likely reflects the recent wave of AI adoption and automation within 
organizations (Agrawal et al., 2022).

Based on these trends, we anticipate continued growth in AI ex-
periments that implement AI in some form. The proliferation of LLMs 
and the ability to fine-tune them will likely drive further adoption of 
quasi-natural AI experiments, enabling researchers to investigate in-
teractions with sophisticated conversational agents (Leib et al., 2023). 
Ongoing adoption of AI tools and automation into workplaces will 
likely stimulate the use of natural AI experiments, e.g., to study the 
productivity effects of new technologies (Brynjolfsson et al., 2025; 
Dell’Acqua et al., 2023). Stylized AI experiments will likely still find 
place in future research agendas. These experiments enable researchers 
to explore underlying behavioral mechanisms by controlling how an 
algorithm is constructed and presented, which distinguishes them from 
the largely ‘‘black box’’ nature of LLMs. Moreover, while LLMs, at least 
currently, are best suited for research questions involving textual data 
and conversational interactions, stylized AI experiments can address a 
broader range of questions. It is conceivable, however, that the height-
ened interest in LLMs will inspire new research questions that can be 
answered with this tool (Charness et al., 2025/03/31; Korinek, 2023). 
Finally, conceptual AI experiments may assume a complementary role, 
supplementing the findings from the other types of AI experiments.
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Fig. 3. Popularity of AI experiments by type.
Note:  The figure shows the total number of experimental AI papers published in a given year since 1990, clustered by type. The line shows a loess fit. The list 
of papers is based on Chugunova and Sele (2022) and March (2021).
5. Conclusion

In this paper, we propose a taxonomy of AI experiments. Our taxon-
omy features four types of AI experiments: conceptual AI experiments, 
stylized AI experiments, quasi-natural AI experiments, and natural AI 
experiments. At the core of our taxonomy is the sophistication of AI 
used. To evaluate the sophistication, we propose a simple and robust 
proxy test of whether AI is developed exclusively for a research study. 
We provide a guide on the advantages, disadvantages, and best use 
cases for each type, illustrated via various examples.

Our taxonomy is designed to be easy-to-use and robust to the 
emergence of new technologies. However, there will be experiments 
that are difficult to classify using our procedure. We illustrate a few 
of such edge cases to stress-test our classification. We hope that our 
taxonomy will prove to be a useful tool for organizing the existing 
literature and will help researchers design new experiments.
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