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Abstract

The low temperature magnetoresistance of a high mobility two-dimensional
electron gas — realized in GaAs-AlGaAs heterojunctions — is dominated
by Shubnikov-de Haas oscillations, reflecting the discrete nature of the
electron energy spectrum, When a weak one- or two-dimensional periodic
potential with period a smaller than the electron mean free path is super-
imposed on the two-dimensional electron gas a novel type of oscillation
occurs which reflects the commensurability of the relevant lengths in these
systems — the cyclotron orbit diameter at the Fermi energy and the period
a of the periodic potential. Theoretically, this lateral superlattice effect is
shown to result from an oscillatory dependence of the bandwidth of the
modulation-broadened Landau levels on the band index.

1. Introduction

Modern lithographic techniques allow the investigation of
electron transport in systems where the relevant lengths (elas-
tic mean free path, phase coherence length, magnetic length,
Fermi-wavelength) are comparable with the sample size. A
variety of novel effects have been observed in such mesoscopic
systems [1]. Such techniques can also be used to superimpose
an artificial periodic potential on a two-dimensional electron
gas (2-DEG). The motion of conduction electrons under the
combined influence of a magnetic field and a periodic poten-
tial has been extensively studied both theoretically and exper-
imentally (see e.g., [2-5] and references therein). Such systems
have quite recently attracted some interest, since the super-
imposed periodic potential leads to a novel type of magneto-
resistance oscillation periodic in 1/B, as long as the period of
the modulation is small compared to the mean free path of
the electrons [6]. The periodicity of these oscillations is
governed by an interesting commensurability problem owing
to the presence of two length scales, the period a of the
potential and the cyclotron radius R¢ at the Fermi energy
[6, 7). We have used the persistent photoconductivity effect —
a characteristic feature of GaAs-AlGaAs heterostructures [8]
— to create one-and two-dimensional periodic potentials in
the submicrometer range. A spatially modulated photon flux
results in a spatially modulated positive background charge
in the Si-doped AlGaAs layer which in turn leads to a periodic
potential in which the electrons have to move. In our measure-
ments a holographic illumination of the heterostructure at
liquid helium temperatures is used to produce a periodic
potential, a method first used by Tsubaki et al. [9]. We
produce only a weak periodic potential: the modulation
obtained by this technique is on the order of 1 meV where the
Fermi energy Er in our samples is typically 10 meV. Without
periodic modulation one obtains the well known parabolic
energy dispersion characteristic for a 2-DEG and the contour
of constant energy at Eg is a circle with radius kg. Switching
on a weak magnetic field would force the electrons to move
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around this Fermi circle, corresponding also to a circular
motion in real space. The effect of a superimposed one-
dimensional (1D) periodic potential in x-direction, e.g., with
period a is that it opens up gaps at the new Brillouin zone
boundaries at multiples of + n/a. The existence of gaps at the
Bragg planes leads to open orbits in k,-direction which
implies an electron motion in y-direction in real space. This
additional conductivity in y-direction is known to give a
positive magnetoresistance p,. [10] in the x-direction. Increas-
ing the magnetic field increases the probability for an electron
to tunnel through the classically forbidden region and per-
forming now a circular motion. This effect is known as
magnetic breakdown [11]. Under this condition the positive
magnetoresistance saturates since the electrons now behave
as in a homogeneous 2-DEG. At higher magnetic fields the
Landau level (LL) quantization must be taken into account.
Since we have a weak periodic potential only the gaps
between the lowest bands will be significant [12]. For a typical
period of 300 nm and a carrier density Ny = 2 x 10" cm™2
we note that we have about 10 bands occupied corresponding
to 20 Bragg planes intersecting the original Fermi circle.
Therefore we do not expect a significant influence of the
periodic potential on the transport properties at zero mag-
netic field since the Fermi energy is located high in the band-
structure where the dispersion is almost that of a free 2-DEG.
The situation changes, however, when a magnetic field is
switched on. This will be shown in the next section, where the
experiments displaying the novel magnetoresistance oscil-
lations are briefly reviewed.

2. Magnetoresistance oscillations

The experiments were carried out using conventional
AlGaAs-GaAs heterostructures grown by molecular beam
epitaxy with carrier densities between 1.5 x 10" cm~? and
43 x 10"cm™? and low temperature mobilities ranging
from 0.23 x 10°cm?/Vs to 1 x 10°cm?/Vs. Illumination of
the samples increases both the carrier density and the mobility
at low temperatures. The electron mean free path /, (=vg7)
in our samples can therefore be as high as 15 um. We use an
L-shaped geometry to investigate the magnetotransport
properties parallel and perpendicular to the 1D-periodic
potential. Some of the samples investigated have an evapor-
ated semi-transparent NiCr front gate. A sketch of the exper-
iment using the persistent photoconductivity to periodically
modulate the positive background charge in the AlGaAs-
layer is shown in Fig. 1(a) and 1(b). We use either a HeNe
laser (A = 633 nm) or an Argon-Ion laser (A = 488 nm). The
expanded laser beam enters the sampleholder through a
quartz window and a shutter. Two mirrors mounted close to
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Fig. 1. (a) Schematic experimental set up (left hand side) and top view of the L shaped sample geometry where the interference pattern is sketched. (b) Sketch
of the spatial modulation of the concentration of ionized donors in the AlGaAs layer and of electrons in the 2-DEG produced by holographic illumination
using two interfering laser beams with wavelength A. The interference pattern created is shown schematically.

the sample are used to create two interfering plane light
waves. The advantage of this kind of ‘“microstructure
engineering” is its simplicity and the achieved high mobility
of the microstructured sample due to the absence of defects
introduced by the usual pattern transfer techniques [1].

The result of standard magnetoresistance measurements
carried out perpendicular (p, = p,,) and parallel (p, = p,,)
to the periodic modulation is shown in Fig. 2. In addition to
the usual Shubnikov-de Haas (SdH) oscillations appearing at
about 0.5T additional oscillations become visible at even
lower magnetic fields. While pronounced oscillations of this
new type dominate p, at low magnetic fields, weaker oscil-
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Fig. 2. Magnetoresistivity p and Hall resistance R,; parallel and perpen-
dicular to the interference fringes. The positions of the minima of p, are
plotted in the inset demonstrating the 1/B periodicity of the novel oscil-
lations.

lations with a phase shift of 180° relative to the p, data are
visible in the p, measurements. No additional structure
appears in the Hall resistance. The novel oscillations are,
analogous to SdH oscillations, periodic in 1/B as is displayed
in the inset of Fig. 2. The periodicity is given by the commen-
surability condition

2R, = (A —Pa, 1= (M

between the cyclotron diameter at the Fermi level,
2R, = 2vp/w, = 2%ke, and the period a of the modulation.
Here ke = /21N, is the Fermi number, / = /h/eB the mag-
netic length, and w, = h/m*I? the cyclotron frequency with
the effective mass m* = 0.067m, of GaAs. For magnetic
field values satisfying eq. (1) minima are observed in p, . The
validity of eq. (1) has been confirmed by performing these
experiments on different samples, by changing the carrier
density with an applied gate voltage, and by using two laser
wavelengths in order to vary the period a [6]. To resolve an
oscillation an elastic mean free path /, at least as long as the
perimeter of the cyclotron orbit is required. This agrees with
our finding that the number of oscillation periods resolved
depends on the mobility of the sample: the higher the mobil-
ity the more oscillations are observable since the electrons can
traverse more periods of the potential ballistically. Consistent
experimental results have been obtained by Winkler ef al. [13]
and Alves et al. [14] using conventionally microstructured
samples.

1,2,3,...,

3. Origin of the oscillations

The common origin of both types of oscillations is a modifi-
cation of the Landau level energy spectrum. This has been
pointed out by Gerhardts et al. [7] and Winkler et al. [13] who
attributed the p, oscillations to an additional band conduc-
tivity discussed in Section 3.2. However, there are other
models explaining the p, oscillations. Beenakker [15] noticed
that these oscillations can be attributed to a “guiding center
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drift resonance”. He showed for high temperatures that it is
not necessary to start from the LL energy spectrum and to
treat the problem quantum-mechanically. In this limit the
oscillations in p, can be explained semiclassically. Quite
recently Streda and MacDonald [16] explained the oscil-
lations by an oscillating probability for magnetic breakdown.
However, all the theories above cannot explain the oscil-
lations in p;. One has to go beyond the constant scattering
time approximation as first pointed out by Gerhardts [12).

3.1. Landau levels in a 1D-periodic potential

The energy spectrum of electrons subjected to both a magnetic
field and a periodic one-dimensional potential has been cal-
culated by several authors [17-19] using first order pertur-
bation theory. Starting point is a Hamiltonian of the form

1 , & ho e
H‘ZF[""WJ’(Ta zB"ﬂ

+ ¥, cos (Kx) 2)

containing a periodic potential in x-direction V(x) =
V; cos (Kx) with period a = 2n/K. The energy spectrum can
be taken in first order perturbation theory in ¥ and is given
by:

E(x) = (n + Dho, + {nxol V(x)[nxo). ©)

The right hand side matrix element (containing the harmonic
oscillator wavefunctions |nx, ) of the homogeneous 2-DEG)
can be regarded as effective potential acting on an electron
averaged over the spatial extent of the wavefunction |nx,)
given by 2/,/2n + 1 which is equal to the classical cyclotron
diameter 2R, for high quantum numbers n. Two special
situations can be considered as is sketched in the upper half
of Fig. 3. Assuming, for the sake of simplicity, a stepfunction

v

DOS

12
0 X, a

Fig. 3. Simplified picture explaining the oscillating Landau level width
(upper part) and calculated energy spectrum (in meV, first order pertur-
bation theory) for for B = 0.8T, ¥, = 1.5meV and @ = 100 nm. The cor-
responding DOS is sketched. The dashed lines correspond to the flat band
situation determined by eq. (1).
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like wavefunction, the matrix element (nx,| V{(x)|nx,) at the
Fermi energy vanishes if the cyclotron diameter equals an
integer of the period a leading to a flat Landau band, inde-
pendent of the center coordinate x,. On the other hand, a
maximum of the matrix element is expected for a cyclotron
diameter equal to an odd integer of half the period a leading
to Landau bands with strong curvature with respect to x;.
More precisely, the matrix element {nx,|V(x)|nx,> can be
calculated analytically giving

E(x) = (n+ DHhow, + U, cos Kx, 4

with U, = ¥, exp (—1X)L,(X) where X = 1K*/* and L,(X)
stands for the n-th Laguerre polynomial. L,(X) is an oscillat-
ing function of both its index » and its argument X where the
flat band situation is given by L,(X) = 0. This flat band
condition can be expressed in terms of the cyclotron radius R,
and is given by eq. (1) [7]. A typical energy spectrum —
calculated in first order perturbation theory — is plotted in
Fig. 3. The corresponding density of states (DOS) is sketched
on the right hand side in Fig. 3. The existence of the shape of
the DOS sketched in Fig. 3 can be directly proven by
magnetocapacitance experiments as has been shown recently
[20, 21]. The modified energy spectrum sketched in Fig. 3 is
the key for the explanation of the periodic potential induced
oscillations given in the next section.

3.2. Oscillations in p: Additional bandconductivity

The theory presented here follows closely the calculations of
Gerhardts et al. [7] for a cosine modulation in x-direction.
The oscillations in p, (=p,,) can be understood within a
simple damping theory which means that electron scattering
is described by a constant relaxation time . The &, dispersion
of the Landau energy spectrum leads to an additional contri-
bution to the conductivity ¢,, which is within the framework
of Kubo’s formula (see e.g., Ref. [22]) given by

2¢*h ra d 1d
Agyy = 2;2 J.o %; (_ ;d_)E: (En(xo))|<nxo|7)y|"xo>|2)
(5)

where y = #/t, fis the Fermi function, |nx,) are the eigen-
states of eq. (2) and v, is the velocity operator in the y
direction. These eigenstates carry current in the y direction

1 dE, 1dE,
{nxolv,lnxg) = o, dx,  hdk, (6)
but not in the x-direction,
{nxylvg|nxgy = 0, (7

which is the reason for the anisotropic behaviour of o,, and
o,,. Note that conductivity and resistivity in a magnetic field
are connected by p,, = 0,,/D and p,, = 0,,/D and D =
o, + 0,0, (see eg, [23]). For high magnetic fields
(o, > 1o, > 0,.0, holds. In eq. (6) the modified energy
spectrum comes into play. The matrix element {x,n{v,|x,n)
vanishes always when flat Landau bands (sce e.g., Fig. 3) are
located at the Fermi energy and Ac,, = 0. Consequently Ap,,
(the extra contribution to the resistivity p,, ) also vanishes. On
the other hand dE,/dx, displays a maximum value when the
Fermi energy is located within the Landau band with the
strongest dispersion and therefore Ag,, (Ap,,) is at maxi-
mum. A calculation based on the evaluation of eq. (5) which
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Fig. 4. Magnetoresistivities for current perpendicular and parallel to the
interference fringes for a sample with Ny = 3.16 x 10''cm™?% and
4 = 13 x 10°cm*Vs (a) measured at temperature 7 = 2.2K; (b) cal-
culated for T = 2.2K (solid line) and for 4.2K (dashed line) [7}.
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is compared to experimental magnetoresistivity data is shown
in Fig. 4. The experiment is nicely reproduced assuming a
modulation potential of 0.3meV in the calculations (solid
lines in Fig. 4). In the high temperature limit (hw, < kT) and
for high quantum numbers 7 the expression for the additional
conductivity becomes much simpler [13] and can be expressed
making use of the fact that Ap,, ~ Ag,, /ol

1 ¥ 4 B

R T
Bpuc = 2nh yho, akg N? cos (27r a 4>' ®

Equation (8) may be used to estimate from the amplitudes
ApT¥ of the commensurability oscillations the amplitude ¥
of the superimposed periodic potential. From the maximum
of p.. at 0.41T (Fig. 4(a)) one estimates ¥, = 0.28 meV in
good agreement with the calculation in Fig. 4b.

While the low field oscillations of p,, are nicely reproduced
by the calculation, the calculated p,, -data (dashed-dotted
line in Fig. 4(b)) display simply the magnetic field indepen-
dent Drude result in contrast to the experiment which shows
maxima when the Landau bands are flat (corresponding
to a high DOS at Ep). This is not too surprising since one
cannot describe the usual SdH oscillations of a homogeneous
2-DEG within the constant relaxation time approximation;
one ends up with the simple Drude result. The same result has

been obtained by Beenakker using his semiclassical model
[15].
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3.3. Oscillations in p: Oscillating scattering rate

The results in the previous section have been obtained using
the constant scattering time approximation which, however,
has no justification. For a homogeneous electron gas in a
quantizing magnetic field it is well known that the scattering
time itself depends on the DOS [24]. In order to understand
the experimentally observed p,, (= p,) oscillations one has to
go beyond this approximation — in analogy to the descrip-
tion of the SdH oscillations — and consider a density-of-
states-dependent scattering rate. In the calculations one has
to go through the formalism of the selfconsistent Born
approximation [24] using the solutions of eq. (2). A detailed
description of this theory has been given by Zhang and
Gerhardts [25]. In analogy to the theory of SdH oscillations
they find that

oo D) = [aELEZH pgy ©

du

where D2(u) is the thermal average of the square of the DOS.
It should be emphasized that even for k7 ~ hw, where the
individual LL’s are no longer resolved in p,,, D7(u) oscillates,
reflecting the oscillating DOS sketched in Fig. 3. Consequently
one can observe low field oscillations in p,, even when in this
magnetic field range no SAH oscillations are resolvable [26].
From eq (9) it follows that the weak antiphase oscillations in
p,, are in phase with the density of states oscillations and
maxima in p,, are always observed when the DOS at the
Fermi-energy is at maximum, in contrast to p,, which dis-
plays minima when the Landau bands are flat since dE,/
dx, = 0. This behaviour is in agreement with the experiment
displayed in Fig. 2. Recent calculations by Vasilopoulos and
Peeters [27] show similar results but with much smaller ampli-
tude of the p,, oscillations.

4. Positive low field magnetoresistance
and magnetic breakdown

The low field oscillations in p, are accompanied by a positive
low field magnetoresistance which saturates below 0.2 T. This
positive magnetoresistance is absent in p; as is displayed in
Fig. 2. Applying a negative gate voltage on the semi-
transparent top gate one can increase the built in periodic
modulation amplitude ¥, [28] which results in turn in an
increased positive magnetoresistance step shown in Fig. 5.
Such a behaviour would be expected for magnetic break-
down, mentioned in the introduction. Open orbits in &k direc-
tion (see inset of Fig. 6) give an additional contribution to g,
and lead to a positive magnetoresistance in p,, [10] as long as
the electrons can move in open orbits. The probability p for
an electron to tunnel from an open orbit (a) to a circular orbit
(b) in Fig. 6 is given in the literature by p = exp(— B,/B)
with the magnetic breakdown field B,:

nm*E;

B, = 4ehE; sin 20

(10)
where E, is the energy gap at the Brillouin zone boundary and
© the angle defined by cos ® = n/akg [29]. For sufficiently
weak periodic potentials we may assume — following Streda
and MacDonald [16] — that gaps E, ~ V, exist only at the
boundary of the first Brillouin zone. Using eq. (8) we can
extract ¥, from the low field p,, oscillations in Fig. 5 and
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Fig. 5. Normalized magnetoresistance for different gate voltages. With
increasing negative bias, both, the amplitude of the low field oscillations and
the magnetic field value where the positive magnetoresistance disappears
(taken as By) increases.

(R, (B)-R,)/R,

compare the calculated B, values with those taken from the
experiment (the magnetic field where the positive magneto-
resistance saturates). The comparison is plotted in Fig. 6. The
calculated B, values are not in perfect agreement with the
experimental ones. For higher modulation amplitudes V, eq.
(10) overestimates the breakdown field B,. One should bear
in mind, however, that we do not take into account finite
temperature effects and the existence of higher gaps.

5. Magnetoresistance in a two-dimensional periodic potential

In this last section results of low field magnetotransport
experiments in a two-dimensional periodic potential are
presented. In such a potential grid the commensurability
problem becomes more severe as compared to the 1D case
and results in a complicated energy spectrum [2-5]. In a weak
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Fig. 6. Comparison of calculated (eq. (10)) and measured (Fig. 5) break-
down fields B,. The inset shows the contours of constant energy at E. for a
weakly modulated 2-DEG in the extended zone scheme.
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Fig. 7. Magnetoresistance in a grating (current 1 grating) and grid. The
creation of the holographically defined pattern is shown schematically. The
arrows correspond to eq. (1).

2D-periodic potential the LL spectrum depends on the flux
® = Bd’ penetrating one unit cell. If ®/®, = g/p where @,
is the flux quantum and p/g is a rational number, the
2D-periodic potential splits one LL into ¢ subbands separated
by gaps (see e.g., [5]). The LL width, on the other hand, is
modulated by Laguerre polynominals very similar to the 1D
case (eq. (4)), so that the flat band condition for 1D- and
2D-periodic potentials is the same [30]. This has also been
demonstrated experimentally [14, 21, 28]. In our experiments
the two-dimensional periodic potential (V, < Eg) with
a = 365nm s created by successive holographic illumination
of a high mobility GaAs-AlGaAs heterostructure (y =
1.2 x 10°cm?/Vs corresponding to /, = 10 um). Holographic
illumination of type (a) in Fig. 7 produces additional oscil-
lations in the magnetoresistance due to an additional band-
conductivity (dashed-dotted line in Fig. 7). An additional
holographic illumination where the sample has been rotated
by 90° results then in a grid potential sketched in Fig. 7(c).
The magnetoresistance obtained under such conditions (solid
line in Fig. 7) displays a weak oscillating behaviour also
corresponding to the commensurability condition eq. (1),
with maxima where p, -measured for situations (a)-shows
minima. If one starts with an illumination of type (b) fol-
lowed by (a) one ends up with the same result. Therefore one
can conclude that the 2D-periodic potential destroys the
bandconductivity oscillations triggered by {nx,|v,|nx,) oc
dE,/dk, for the 1D case. If the collision broadening for the
2D case is small compared to the gaps between the LL
subbands the corresponding matrix elements are significantly
reduced so suppressing the bandconductivity contributions
[30]. Since this seems to be the case in our experiments we can
only observe the scattering rate oscillations displaying
maxima when the flat band condition eq. (1) is fulfilled. This
experiment provides indirect evidence for the existence of
gaps inside an LL due to the 2D-periodic potential.
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