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Editor: Dr. Enrico Valdinoci We study a bulk-surface Cahn-Hilliard model with non-degenerate mobility and singular poten-
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1. Introduction

In this paper, we investigate the following bulk-surface Cahn-Hilliard model

0,p = div(mg($)V 1) in Q% (0, ), (1.1a)

H=-Ad+ F'(¢) in Q% (0, c0), (1.1b)

o,y = divp(mp(w)Vi0) — fmg(h)o, on I X (0, ), (1.1¢)

0 = —Ary + G () + adyd on T x (0, o), 1.1d)

{Ka“qs:m,/—qs if K € [0, c0), on ' (0. o). 10
Opp =0 if K = o0

{ng(qs)anu =0y HLEOL L a1n
mg(p)opu =0 if L =00

®li=o = do in Q, (1.1g)
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Vl—o =¥ onT. (1.1h)

System (1.1) is a special case of the model proposed in [22]. There, the authors considered an extended version of (1.1) with
convection.

In (1.1), Q c R? is a bounded domain with boundary I' = dQ. We use the abbreviation Q = Q X (0,c0) and X =T x (0, ). The
outward pointing unit normal vector on I is denoted by n, while 9, denotes the outward normal derivative on the boundary. Moreover,
the symbols V- and Ay stand for the surface gradient and the Laplace-Beltrami operator on I', respectively.

The functions ¢ : O - R and x : O — R denote the phase-field and the chemical potential in the bulk, whereas v : £ - R and
0 : £ - R represent the phase-field and the chemical potential on the boundary, respectively. The functions mg, mp- : [-1,1] - R are
the so-called Onsager mobilities, and typically depend on the phase-field variables ¢ and y, respectively. They model the spatial
locations and intensity at which the diffusion processes take place.

In (1.1), the time evolution of the bulk-variables ¢ and u is governed by the bulk Cahn-Hilliard subsystem (1.1a)-(1.1b), while the
evolution of the surface quantities y and 6 is given by the surface Cahn—Hilliard subsystem (1.1c)-(1.1d), which is coupled to the bulk by
expressions involving the normal derivatives d,¢ and d, . Moreover, the phase-field ¢ and y are coupled by the boundary condition
(1.1e), while the chemical potentials ;4 and 6 are coupled by the boundary condition (1.1f). Here, the parameters K, L € [0, ] are
used to distinguish different types of these coupling conditions and «, # € R describe different physical phenomena, see, for instance,
[14,22] for a more extensive description. These types of boundary conditions fall into the class of dynamical boundary conditions,
which generalize the classical homogeneous Neumann boundary conditions

Op =0,u=0 on ' x (0, ),

typically imposed in standard Cahn-Hilliard models. Although Neumann boundary conditions are widely used, they can be overly
restrictive when a precise description of boundary dynamics is required, see, e.g., [14,22]. This has led to the development and analysis
of several dynamic boundary condition formulations in the literature, we refer to the recent survey [34] and the references therein
for a comprehensive overview. In particular, dynamic boundary conditions of Cahn-Hilliard type that incorporate mass exchange
between bulk and boundary have received considerable attention in recent years, see, e.g., [16,18,19,24]. This context motivates the
study of the coupled bulk-surface system (1.1).

The functions F’ and G’ are the derivatives of double-well potentials F and G, respectively. A physically motivated example of
such a double-well potential, especially in applications related to material science, is the Flory-Huggins potential, which is also referred
to as the logarithmic potential. It is given as

I/Vlog(s) = % (1+s)In(1 +s)+ (1 —s)In(1 — s)] - %32, se[-1,1],

with the convention that 0In0 is interpreted as zero. The positive parameters ® and ®, denote the temperature of the mixture and
the critical temperature below which phase separation processes occur, respectively, and are supposed to satisfy ®, — © > 0. Since
W, (s) = oo as s — 1, the potential W, is a so-called singular potential. In this contribution, we consider a more general class of
sin?:ular potentials (see Section 2.3) such that, for example, the choice F = G = W, is admissible.

The free energy functional associated with system (1.1) reads as

E<¢,w>=/ §|V¢|2+F<¢> dx+/%|VrW|2+G(V/) dr
Q T

| 1.2)
+2(K) / 5 (aw = @) dr.
r
Here, to account for the different cases corresponding to the choice of K, the function
[0, co] — [0, o) * L ifr e (0, ),
. 10,00] = 10, 00), r) =
d d 0, if r € {0, 00}
is used. We observe that sufficiently regular solutions of the system (1.1) satisfy the mass conservation law
B Jod® dx+ [rw(®) dT = f [, ¢ dx + frwq dT, if L € [0, o), (1.3)
Jod® dx = [ pydx and fow(@)dl = [y dl, if L=oo
for all # € [0, o) and the energy identity
d
Lo == [ ma@IVat ax= [ m@IvroR ar - 4wy [0~ ar a9
Q r r

on [0, o). We note that the right-hand side of (1.4) is non-positive, which means that the energy dissipates over time, and the terms
appearing on the right-hand side of (1.4) can be interpreted as the dissipation rate.

Goals and novelties of this paper. System (1.1) has been extensively studied in the literature. We refer, for instance, to [6,10,16,
18,19,24-27]. An extended model with convection was recently analyzed in [22] for regular potentials, and in [15,23] for singular
potentials. However, existing analytical results on uniqueness and higher regularity have so far required the mobility functions mq
and mr to be constant. This represents a significant limitation, as in many physical applications, the diffusion intensity may vary
spatially and is not expected to be uniform throughout the domain. For the classical Cahn-Hilliard equation with homogeneous
Neumann boundary conditions, the recent work [8] establishes the uniqueness and the propagation regularity of weak solutions
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\begin {alignat}{2} \label {EQ:SYSTEM:1} &\delt \phi = \Div (m_\Om (\phi )\Grad \mu ) &&\qquad \text {in} \ \Om \times (0,\infty ), \\ \label {EQ:SYSTEM:2} &\mu = -\Lap \phi + F'(\phi ) &&\qquad \text {in} \ \Om \times (0,\infty ), \\ \label {EQ:SYSTEM:3} &\delt \psi = \Divg (m_\Ga (\psi )\Gradg \theta ) - \beta m_\Om (\phi )\deln \mu &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:4} &\theta = - \Lapg \psi + G'(\psi ) + \alpha \deln \phi &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:5} &\begin {cases} K\deln \phi = \alpha \psi - \phi &\text {if} \ K\in [0,\infty ), \\ \deln \phi = 0 &\text {if} \ K = \infty \end {cases} &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:6} &\begin {cases} L m_\Om (\phi )\deln \mu = \beta \theta - \mu &\text {if} \ L\in [0,\infty ), \\ m_\Om (\phi )\deln \mu = 0 &\text {if} \ L=\infty \end {cases} &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:7} &\phi \vert _{t=0} = \phi _0 &&\qquad \text {in} \ \Om , \\ \label {EQ:SYSTEM:8} &\psi \vert _{t=0} = \psi _0 &&\qquad \text {on} \ \Ga .\end {alignat}


$\Om \subset \R ^2$


$\Ga \:=\partial \Om $


$Q = \Om \times (0,\infty )$


$\Sigma = \Ga \times (0,\infty )$


$\Ga $


$\n $


$\deln $


$\Gradg $


$\Lapg $


$\Ga $


$\phi :Q\rightarrow \R $


$\mu :Q\rightarrow \R $


$\psi :\Sigma \rightarrow \R $


$\theta :\Sigma \rightarrow \R $


$m_\Om ,m_\Ga :[-1,1]\rightarrow \R $


$\phi $


$\psi $


$\phi $


$\mu $


$\psi $


$\theta $


$\deln \phi $


$\deln \mu $


$\phi $


$\psi $


$\mu $


$\theta $


$K,L\in [0,\infty ]$


$\alpha ,\beta \in \R $


\begin {align*}\deln \phi = \deln \mu = 0\qquad \text {on~}\Ga \times (0,\infty ),\end {align*}


$F^\prime $


$G^\prime $


$F$


$G$


\begin {align*}W_{\mathrm {log}}(s) := \frac {\Theta }{2}\Big [(1+s)\ln (1+s) + (1-s)\ln (1-s)\Big ] - \frac {\Theta _0}{2}s^2, \qquad s\in [-1,1],\end {align*}


$0\ln 0$


$\Theta $


$\Theta _0$


$\Theta _0 - \Theta > 0$


$W_{\mathrm {log}}^\prime (s) \rightarrow \pm \infty $


$s\rightarrow \pm 1$


$W_{\mathrm {log}}$


$F = G = W_{\mathrm {log}}$


\begin {equation}\label {INTRO:ENERGY} \begin {split} E(\phi ,\psi ) &= \intO \frac 12\abs {\Grad \phi }^2 + F(\phi ) \dx + \intG \frac 12\abs {\Gradg \psi }^2 + G(\psi ) \dG \\ &\quad + \chi (K)\intG \frac {1}{2}(\alpha \psi - \phi )^2\dG . \end {split}\end {equation}


$K$


\begin {align*}\chi :[0,\infty ]\rightarrow [0,\infty ), \quad \chi (r) := \begin {cases} r^{-1}, &\text {if } r\in (0,\infty ), \\ 0, &\text {if } r\in \{0,\infty \} \end {cases}\end {align*}


\begin {equation}\label {INTRO:MASS} \begin {cases} \beta \intO \phi (t)\dx + \intG \psi (t)\dG = \beta \intO \phi _0 \dx + \intG \psi _0\dG , &\textnormal {if } L\in [0,\infty ), \\ \intO \phi (t)\dx = \intO \phi _0\dx \quad \textnormal {and}\quad \intG \psi (t)\dG = \intG \psi _0\dG , &\textnormal {if } L = \infty \end {cases}\end {equation}


$t\in [0,\infty )$


\begin {equation}\label {INTRO:ENERGY:ID} \begin {split} \ddt E(\phi ,\psi ) &= - \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx - \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG - \chi (L) \intG (\beta \theta -\mu )^2\dG \end {split}\end {equation}


$[0,\infty )$


$m_\Om $


$m_\Ga $


$t\rightarrow \infty $


$X$


$\norm {\cdot }_X$


$X^\prime $


$\phi \in X^\prime $


$\zeta \in X$


$\ang {\phi }{\zeta }_X$


$L^p(I;X)$


$1\leq p \leq +\infty $


$p$


$I\subset \R $


$X$


$p = +\infty $


$W^{1,p}(I;X)$


$f\in L^p(I;X)$


$\delt f\in L^p(I;X)$


$\delt f$


$f$


$L^p_{\mathrm {uloc}}(I;X)$


$f\in L^p(I;X)$


\begin {align*}\norm {f}_{L^p_{\mathrm {uloc}}(I;X)} := \sup _{t\geq 0}\Big (\int _{I\cap [t,t+1)}\norm {f(s)}_X^p\ds \Big )^{\frac 1p} < \infty .\end {align*}


$I\subset \R $


$L^p_{\mathrm {uloc}}(I;X) = L^p(I;X)$


$I$


$X$


$C(I;X)$


$\Om \subset \R ^d$


$d\in \{2,3\}$


$\Ga := \partial \Om $


$1 \leq p \leq \infty $


$k\in \N _0$


$\Om $


$\R $


$L^p(\Om )$


$W^{k,p}(\Om )$


$\N $


$\N _0 := \N \cup \{0\}$


$1 \leq p \leq \infty $


$s\geq 0$


$W^{s,p}(\Om )$


$p = 2$


$H^s(\Om ) = W^{s,2}(\Om )$


$H^0(\Om )$


$L^2(\Om )$


$\Ga $


$H^s(\Ga ) = W^{s,2}(\Ga )$


$H^0(\Ga )$


$L^2(\Ga )$


\begin {align*}\mathcal {L}^p := L^p(\Om )\times L^p(\Ga ), \quad \text {and}\quad \mathcal {W}^{s,p} := W^{s,p}(\Om )\times W^{s,p}(\Ga ),\end {align*}


$s\geq 0$


$p\in [1,\infty ]$


$\Ga $


$\mathcal {H}^s := \mathcal {W}^{s,2}$


$\mathcal {L}^2$


$\mathcal {H}^0$


$\mathcal {H}^s$


\begin {align*}\big ((\phi ,\psi ), (\zeta ,\xi )\big )_{\mathcal {H}^s} := \scp {\phi }{\zeta }_{H^s(\Om )} + \scp {\psi }{\xi }_{H^s(\Ga )} \qquad \text {for all~} \scp {\phi }{\psi },\scp {\zeta }{\xi }\in \mathcal {H}^s\end {align*}


$\norm {\cdot }_{\mathcal {H}^s} := \scp {\cdot }{\cdot }_{\mathcal {H}^s}^{\frac 12}$


\begin {align*}\ang {\scp {\phi }{\psi }}{\scp {\zeta }{\xi }}_{\mathcal {H}^s} := \scp {\phi }{\zeta }_{L^2(\Om )} + \scp {\psi }{\xi }_{L^2(\Ga )}\end {align*}


$(\zeta ,\xi )\in \mathcal {H}^s$


$(\phi ,\psi )\in \mathcal {L}^2$


$L\in [0,\infty ]$


$\beta \in \R $


\begin {align*}\mathcal {H}_{L}^1 := \begin {cases} \mathcal {H}^1, &\text {if } L \in (0,\infty ] , \\ \displaystyle \{(\phi ,\psi )\in \mathcal {H}^1 : \phi = \beta \psi \text { a.e.~on } \Ga \}, &\text {if } L=0. \end {cases}\end {align*}


$\mathcal {H}_{L}^1$


$\scp {\cdot }{\cdot }_{\mathcal {H}_{L}^1} := \scp {\cdot }{\cdot }_{\mathcal {H}^1}$


\begin {align*}\ang {\scp {\phi }{\psi }}{\scp {\zeta }{\xi }}_{\mathcal {H}_{L}^1} := \scp {\phi }{\zeta }_{L^2(\Om )} + \scp {\psi }{\xi }_{L^2(\Ga )}\end {align*}


$\scp {\phi }{\psi }, \scp {\zeta }{\xi }\in \mathcal {L}^2$


$(\mathcal {H}_{L}^1)^\prime \times \mathcal {H}_{L}^1$


$\ang {\cdot }{\cdot }_{\mathcal {H}_{L}^1}$


$(\phi ,\psi )\in (\mathcal {H}^1_L)^\prime $


\begin {align*}\mean {\phi }{\psi } := \frac {\ang {\scp {\phi }{\psi }}{\scp {\beta }{1}}_{\mathcal {H}^1_L}}{\beta ^2\abs {\Om } + \abs {\Ga }},\end {align*}


\begin {align*}\mean {\phi }{\psi } = \frac {\beta \abs {\Om }\meano {\phi } + \abs {\Ga }\meang {\psi }}{\beta ^2\abs {\Om } + \abs {\Ga }}\end {align*}


$(\phi ,\psi )\in \mathcal {L}^2$


\begin {align*}\meano {\phi }=\frac {1}{\abs {\Omega }} \int _{\Omega } \phi \, \dx , \quad \meang {\psi }=\frac {1}{\abs {\Gamma }} \int _{\Gamma } \psi \, \dG .\end {align*}


\begin {align*}\mathcal {V}_{L}^1 &:= \begin {cases} \{\scp {\phi }{\psi }\in \mathcal {H}^1_L : \mean {\phi }{\psi } = 0 \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in \mathcal {H}^1: \meano {\phi } = \meang {\psi } = 0 \}, &\text {if~}L=\infty . \end {cases}\end {align*}


$\scp {\cdot }{\cdot }_{\mathcal {H}^1}$


\begin {align*}\chi (L) := \begin {cases} L^{-1}, &\text {if } L\in (0,\infty ), \\ 0, &\text {if } L\in \{0,\infty \}, \end {cases}\end {align*}


$\mathcal {H}^1\times \mathcal {H}^1$


\begin {align*}\big ((\phi ,\psi ), (\zeta ,\xi )\big )_{L} := &\intO \Grad \phi \cdot \Grad \zeta \dx + \intG \Gradg \psi \cdot \Gradg \xi \dG + \chi (L)\intG (\beta \psi -\phi )(\beta \xi -\zeta )\dG \end {align*}


$\scp {\phi }{\psi }, \scp {\zeta }{\xi }\in \mathcal {H}^1$


\begin {align*}\norm {\scp {\phi }{\psi }}_{L} := \big ((\phi ,\psi ), (\phi ,\psi )\big )_{L}^{\frac 12}\end {align*}


$\scp {\phi }{\psi }\in \mathcal {H}^1$


$\scp {\cdot }{\cdot }_{L}$


$\mathcal {V}^1_{L}$


$\norm {\cdot }_{L}$


$\mathcal {V}^1_{L}$


$\norm {\cdot }_{\mathcal {H}^1}$


$\mathcal {V}^1_{L}$


$\scp {\cdot }{\cdot }_{L}$


\begin {align*}\mathcal {V}_{L}^{-1} := \begin {cases} \{\scp {\phi }{\psi }\in (\mathcal {H}^1_L)^\prime : \mean {\phi }{\psi } = 0 \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in (\mathcal {H}^1)^\prime : \meano {\phi } = \meang {\psi } = 0 \}, &\text {if~}L=\infty . \end {cases}\end {align*}


$(\phi ,\psi )\in \mathcal {V}^{-1}_{L}$


$\mathcal {S}_{L}(\phi ,\psi ) = \big (\mathcal {S}_{L}^\Om (\phi ,\psi ),\mathcal {S}_{L}^\Ga (\phi ,\psi )\big )\in \mathcal {V}^1_{L}$


\begin {alignat}{2} -\Lap \mathcal {S}_{L}^\Om (\phi ,\psi ) &= \phi &&\qquad \text {in~}\Om , \\ -\Lapg \mathcal {S}_{L}^\Ga (\phi ,\psi ) + \beta \deln \mathcal {S}_{L}^\Om (\phi ,\psi ) &= \psi &&\qquad \text {on~}\Ga , \\ L\deln \mathcal {S}_{L}^\Om (\phi ,\psi ) &= \beta \mathcal {S}_{L}^\Ga (\phi ,\psi ) - \mathcal {S}_{L}^\Om (\phi ,\psi )&& \qquad \text {on~}\Ga ,\end {alignat}


\begin {align*}\big (\mathcal {S}_{L}(\phi ,\psi ),(\zeta ,\xi )\big )_{L} = \bigang {(\phi ,\psi )}{(\zeta ,\xi )}_{\mathcal {H}^1_L}\end {align*}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


$C > 0$


$\Om , L$


$\beta $


\begin {align*}\norm {\mathcal {S}_{L}(\phi ,\psi )}_{L}\leq C\norm {(\phi ,\psi )}_{(\mathcal {H}^1_L)^\prime }\end {align*}


$(\phi ,\psi )\in \mathcal {V}^{-1}_{L}$


\begin {align*}\mathcal {S}_{L}:\mathcal {V}^{-1}_{L}\rightarrow \mathcal {V}^1_{L}, \quad (\phi ,\psi )\mapsto \mathcal {S}_{L}(\phi ,\psi ) = \big (\mathcal {S}_{L}^\Om (\phi ,\psi ),\mathcal {S}_{L}^\Ga (\phi ,\psi )\big )\end {align*}


$\mathcal {V}^{-1}_{L}$


\begin {align*}&\big ((\phi ,\psi ),(\zeta ,\xi )\big )_{L,\ast } := \big (\mathcal {S}_{L}(\phi ,\psi ),\mathcal {S}_{L}(\zeta ,\xi )\big )_{L}, \\ &\norm {(\phi ,\psi )}_{L,\ast } := \big ((\phi ,\psi ),(\phi ,\psi )\big )_{L,\ast }^{\frac 12}\end {align*}


$(\phi ,\psi ), (\zeta ,\xi )\in \mathcal {V}^{-1}_{L}$


$\norm {\cdot }_{(\mathcal {H}^1_L)^\prime }$


$\mathcal {V}^{-1}_{L}$


$L\in (0,\infty )$


$m\in \R $


$L\in [0,\infty )$


$m = (m_1,m_2)\in \R ^2$


$L = \infty $


\begin {align*}\mathcal {W}_{K,L,m} := \begin {cases} \{\scp {\phi }{\psi }\in \mathcal {H}^1 : \mean {\phi }{\psi } = m \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in \mathcal {H}^1: \meano {\phi } = m_1, \ \meang {\psi } = m_2 \}, &\text {if~}L=\infty . \end {cases}\end {align*}


$K\in [0,\infty )$


$\alpha ,\beta \in \R $


$\alpha \beta \abs {\Om } + \abs {\Ga }\neq 0$


$C_P > 0$


$K,\alpha ,\beta $


$\Om $


\begin {align*}\norm {(\zeta ,\xi )}_{\mathcal {L}^2} \leq C_P \norm {(\zeta ,\xi )}_{K}\end {align*}


$(\zeta ,\xi )\in \mathcal {H}^1_K$


$\mean {\zeta }{\xi } = 0$


$C > 0$


$2 \leq r < \infty $


\begin {equation}\label {Prelim:Est:Inteprol} \norm {(\zeta ,\xi )}_{\mathcal {L}^r}\leq C\sqrt {r}\norm {(\zeta ,\xi )}_{\mathcal {L}^2}^{\frac 2r}\norm {(\zeta ,\xi )}_{\mathcal {H}^1}^{\frac {r-2}{r}} \qquad \text {for all~}(\zeta ,\xi )\in \mathcal {H}^1.\end {equation}


$\Gamma $


$1$


$\R $


$C > 0$


$2 \leq r < \infty $


\begin {align*}\norm {\zeta }_{L^r(\Om )} \leq C\sqrt {r}\norm {\zeta }_{L^2(\Om )}^{\frac {2}{r}}\norm {\zeta }_{H^1(\Om )}^{\frac {r-2}{r}} \qquad \text {for all~}\zeta \in H^1(\Om ).\end {align*}


$g,h,y$


$(t_0,\infty )$


$y^\prime $


$(t_0,\infty )$


\begin {align*}&\ddt y \leq gy + h, \\ &\int _t^{t+r} g(s)\ds \leq a_1, \quad \int _t^{t+r} h(s)\ds \leq a_2, \quad \int _t^{t+r} y(s)\ds \leq a_3 \quad \text {for all~}t\geq t_0,\end {align*}


$r,a_1,a_2,a_3$


\begin {align*}y(t) \leq \Big (\frac {a_3}{r} + a_2\Big )\e ^{a_1} \qquad \text {for all~}t\geq t_0 + r.\end {align*}


$\alpha ,\beta \in \R $


$\alpha \in [-1,1]$


$\alpha \beta \abs {\Om } + \abs {\Ga } \neq 0$


$m_\Om ,m_\Ga \in C([-1,1])$


$m^\ast ,M^\ast > 0$


\begin {equation}\label {Ass:Mobility:Bound} 0 < m^\ast \leq m_\Om (s), m_\Ga (s) \leq M^\ast \qquad \text {for all~}s\in [-1,1].\end {equation}


$F,G:\R \rightarrow \R $


\begin {align*}F(s) = F_1(s) + F_2(s), \qquad G(s) = G_1(s) + G_2(s),\end {align*}


$F_1,G_1\in C([-1,1])\cap C^2(-1,1)$


$F_1(0) = F_1^\prime (0) = G_1(0) = G_1^\prime (0) = 0$


\begin {align*}\lim _{s\searrow -1} F_1^\prime (s) = \lim _{s\searrow -1} G_1^\prime (s) = -\infty \quad \text {and}\quad \lim _{s\nearrow 1} F_1^\prime (s) = \lim _{s\nearrow 1} G_1^\prime (s) = +\infty ,\end {align*}


$\Theta _\Om ,\Theta _\Ga > 0$


\begin {equation}\label {Assumption:Pot:Convexity} F_1^{\prime \prime }(s) \geq \Theta _\Om \quad \text {and~}\quad G_1^{\prime \prime }(s) \geq \Theta _\Ga \qquad \text {for all~}s\in (-1,1).\end {equation}


$F_1$


$G_1$


$\R $


$F_1(s) = G_1(s) = + \infty $


$s\not \in [-1,1]$


$F_2$


$G_2$


$F_2,G_2\in C^1(\R )$


$\kappa _1, \kappa _2 > 0$


\begin {equation}\label {Ass:Potentials:Domination} \abs {F_1^\prime (\alpha s)}\leq \kappa _1 \abs {G_1^\prime (s)} + \kappa _2 \qquad \text {for all~}s\in (-1,1).\end {equation}


$F_1$


$G_1$


$C_\sharp > 0$


$\gamma _\sharp \in [1,2)$


\begin {equation}\label {Ass:Potentials:Growth:1} F_1^{\prime \prime }(s) \leq C_\sharp \e ^{C_\sharp \abs {F_1^\prime (s)}^{\gamma _\sharp }}\qquad \text {for all~}s\in (-1,1).\end {equation}


$\delta \searrow 0$


$\kappa > \frac 12$


\begin {equation}\label {Ass:Potentials:Growth:2} \frac {1}{F_1^\prime (1 - 2\delta )} = O\Big (\frac {1}{\abs {\ln \delta }^\kappa }\Big ), \qquad \frac {1}{\abs {F_1^\prime (-1 + 2\delta )}} = O\Big (\frac {1}{\abs {\ln \delta }^\kappa }\Big ).\end {equation}


$K,L\in [0,\infty ]$


$\scp {\phi _0}{\psi _0}\in \mathcal {H}^1_K$


\begin {equation}\label {cond:init:int} \norm {\phi _0}_{L^\infty (\Om )} \leq 1, \qquad \norm {\psi _0}_{L^\infty (\Ga )} \leq 1.\end {equation}


\begin {align}\label {cond:init:mean:L} &\beta \,\mean {\phi _0}{\psi _0}\in (-1,1), \quad \mean {\phi _0}{\psi _0}\in (-1,1), \quad \text {if~ }L\in [0,\infty ),\end {align}


\begin {align}\label {cond:init:mean:inf} & \meano {\phi _0}\in (-1,1), \quad \meang {\psi _0}\in (-1,1), \quad \text {if~ }L=\infty .\end {align}


$(\phi ,\psi ,\mu ,\theta )$


$[0,T]$


$T > 0$


$\phi , \psi , \mu $


$\theta $


\begin {align}&\scp {\phi }{\psi } \in C([0,T];\mathcal {L}^2)\cap H^1(0,T;(\mathcal {H}_{L}^1)^\prime )\cap L^\infty (0,T;\mathcal {H}_{K}^1), \label {REGPP:SING}\\ &\scp {\mu }{\theta }\in L^2(0,T;\mathcal {H}_{L}^1) \label {REGMT:SING}, \\ &\scp {F^\prime (\phi )}{G^\prime (\psi )}\in L^2(0,T;\mathcal {L}^2) \label {REGLC:SING},\end {align}


\begin {equation}\label {PROP:CONF} \abs {\phi } < 1 \quad \text {a.e.~in $Q$} \quad \text {and}\quad \abs {\psi } < 1 \quad \text {a.e.~on $\Sigma $}.\end {equation}


\begin {align*}\phi \vert _{t=0} = \phi _0 \quad \text {a.e.~in } \Omega , \quad \text {and} \quad \psi \vert _{t=0} = \psi _0 \quad \text {a.e.~on }\Gamma .\end {align*}


\begin {equation}\begin {aligned} \big \langle (\delt \phi ,\delt \psi ), (\zeta ,\xi ) \big \rangle _{\mathcal {H}_{L}^1} &= - \intO m_\Om (\phi )\Grad \mu \cdot \Grad \zeta \dx - \intG m_\Ga (\psi )\Gradg \theta \cdot \Gradg \xi \dG \\ &\quad - \chi (L)\intG (\beta \theta -\mu )(\beta \xi - \zeta )\dG , \end {aligned} \label {WF:PP:SING}\end {equation}


\begin {equation}\begin {aligned} \intO \mu \,\eta \dx + \intG \theta \,\vartheta \dG &= \intO \Grad \phi \cdot \Grad \eta + F^\prime (\phi )\eta \dx + \intG \Gradg \psi \cdot \Gradg \vartheta + G^\prime (\psi )\vartheta \dG \\ &\quad + \chi (K)\intG (\alpha \psi -\phi )(\alpha \vartheta - \eta ) \dG , \end {aligned}\label {WF:MT:SING}\end {equation}


$[0,T]$


$\scp {\zeta }{\xi }\in \mathcal {H}_{L}^1, \scp {\eta }{\vartheta }\in \mathcal {H}_{K}^1$


$\phi $


$\psi $


\begin {align}\label {MCL:SING} \begin {cases} \beta \intO \phi (t)\dx + \intG \psi (t)\dG = \beta \intO \phi _0 \dx + \intG \psi _0\dG , &\textnormal {if } L\in [0,\infty ), \\ \intO \phi (t)\dx = \intO \phi _0\dx \quad \textnormal {and}\quad \intG \psi (t)\dG = \intG \psi _0\dG , &\textnormal {if } L = \infty \end {cases}\end {align}


$t\in [0,T]$


\begin {equation}\label {WEDL:SING} \begin {split} &E(\phi (t),\psi (t)) + \int _0^t\intO m_\Om (\phi )\abs {\Grad \mu }^2\dxs + \int _0^t\intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dGs \\ &\quad + \chi (L) \int _0^t\intG (\beta \theta -\mu )^2\dGs \leq E(\phi _0,\psi _0) \end {split}\end {equation}


$t\in [0,T]$


$K\in (0,\infty ]$


$L\in [0,\infty ]$


$(\phi _0,\psi _0)\in \mathcal {H}^1$


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}\label {ContinuousDependence} &(\phi ,\psi )\in L^\infty ([0,\infty );\mathcal {H}^1)\cap L^4_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2)\cap L^2_{\mathrm {uloc}}([0,\infty );\mathcal {W}^{2,p}), \\ &(\delt \phi ,\delt \psi )\in L^2([0,\infty );(\mathcal {H}^1_L)^\prime ), \\ &(F^\prime (\phi ),G^\prime (\psi ))\in L^2_{\mathrm {uloc}}([0,\infty );\mathcal {L}^p), \\ &(\mu ,\theta )\in L^2_{\mathrm {uloc}}([0,\infty );\mathcal {H}^1),\end {align}


$2\leq p <\infty $


$m_\Om ,m_\Ga \in C^2([-1,1])$


$(\phi _1,\psi _1)$


$(\phi _2,\psi _2)$


$(\phi _1^0,\psi _1^0)$


$(\phi _2^0,\psi _2^0)$


\begin {equation}\label {cond:init:uniqueness:conv} \begin {cases} \mean {\phi _1^0}{\psi _1^0} = \mean {\phi _2^0}{\psi _2^0}, &\textnormal {if } L\in [0,\infty ), \\ \meano {\phi _1^0} = \meano {\phi _2^0} \quad \textnormal {and}\quad \meang {\psi _1^0} = \meang {\psi _2^0}, &\textnormal {if } L = \infty . \end {cases}\end {equation}


$T > 0$


$C$


\begin {align*}\norm {(\phi _1(t) - \phi _2(t),\psi _1(t) - \psi _2(t))}_{(\mathcal {H}^1_L)^\prime } \leq C\norm {(\phi _1^0 - \phi _2^0,\psi _1^0 - \psi _2^0)}_{(\mathcal {H}^1_L)^\prime }\end {align*}


$t\in [0,T]$


$C$


$T$


$E(\phi _1^0,\psi _1^0)$


$E(\phi _2^0,\psi _2^0)$


$K\in (0,\infty ]$


\begin {align*}(\phi ,\psi )\in L^4_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2),\end {align*}


$K = 0$


\begin {align*}(\phi ,\psi )\in L^3_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2),\end {align*}


$(\tau ,\infty )$


$\tau > 0$


$K\in (0,\infty ]$


$L\in [0,\infty ]$


$(\phi _0,\psi _0)\in \mathcal {H}^1$


$\tau > 0$


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}&(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p}), \quad (\delt \phi ,\delt \psi )\in L^\infty (\tau ,\infty ;(\mathcal {H}^1_L)^\prime )\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1), \label {PropReg:tau:1}\\ &(\mu ,\theta )\in L^\infty (\tau ,\infty ;\mathcal {H}^1_L)\cap L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2), \quad (F^\prime (\phi ),G^\prime (\psi ))\in L^\infty (\tau ,\infty ;\mathcal {L}^p) \label {PropReg:tau:2}\end {align}


$2\leq p < \infty $


$\Om \times (\tau ,\infty )$


$\Ga \times (\tau ,\infty )$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$(\mu ,\theta )\in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^3)$


$\tau > 0$


\begin {align}\label {PropReg:F'(psi)} F^\prime (\psi )\in L^\infty (\tau ,\infty ;L^p(\Ga )),\end {align}


$m_\Om , m_\Ga \in C^1([-1,1])$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$F$


$K$


$L$


$m_\Om , m_\Ga \in C^1([-1,1])$


$\tau > 0$


$(\phi ,\psi ,\mu ,\theta )$


$[\tau ,\infty )$


$(\phi (\tau ),\psi (\tau ))$


$(\phi ,\psi ,\mu ,\theta )$


$\tau > 0$


$\delta > 0$


\begin {align}\label {Separation:tau} \norm {\phi (t)}_{L^\infty (\Om )} \leq 1 - \delta , \quad \norm {\psi (t)}_{L^\infty (\Ga )} \leq 1 - \delta \qquad \text {for all~}t\geq \tau .\end {align}


$(\mu _0,\theta _0)\in \mathcal {H}^1_L$


\begin {align*}\intO \mu _0\;\eta \dx + \intG \theta _0\;\vartheta \dG &= \intO \Grad \phi _0\cdot \Grad \eta + F^\prime (\phi _0)\dx + \intG \Gradg \psi _0\cdot \Gradg \vartheta + G^\prime (\psi _0)\dG \\ &\quad + \chi (K) \intG (\alpha \psi _0 - \phi _0)(\alpha \vartheta - \eta )\dG \end {align*}


$(\eta ,\vartheta )\in \mathcal {H}^1_K$


$(\phi ,\psi ,\mu ,\theta )$


$\tau = 0$


$\tau = 0$


$t\rightarrow \infty $


$m_\Om ,m_\Ga \in C^2([-1,1])$


$F_1, G_1$


$(-1,1)$


$F_2, G_2$


$\R $


$(\phi ,\psi ,\mu ,\theta )$


\begin {align*}\lim _{t\rightarrow \infty }\norm {(\phi (t) - \phi _\infty ,\psi (t) - \psi _\infty )}_{\mathcal {H}^2} = 0,\end {align*}


$(\phi _\infty ,\psi _\infty )\in \mathcal {H}^2$


\begin {alignat*}{2} -\Lap \phi _\infty + F^\prime (\phi _\infty ) &= \mu _\infty &&\qquad \text {in~}\Om , \\ -\Lapg \psi _\infty + G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty &= \theta _\infty && \qquad \text {on~}\Ga , \\ K\deln \phi _\infty &= \alpha \psi _\infty - \phi _\infty && \qquad \text {on~}\Ga ,\end {alignat*}


\begin {equation*}\begin {cases} \beta \intO \phi _\infty \dx + \intG \psi _\infty \dG = \beta \intO \phi _0 \dx + \intG \psi _0\dG , &\textnormal {if } L\in [0,\infty ), \\ \intO \phi _\infty \dx = \intO \phi _0\dx \quad \textnormal {and}\quad \intG \psi _\infty \dG = \intG \psi _0\dG , &\textnormal {if } L = \infty . \end {cases}\end {equation*}


$\mu _\infty $


$\theta _\infty $


\begin {align*}\mu _\infty = \beta \theta _\infty = \frac {\beta }{\alpha \beta \abs {\Om } + \abs {\Ga }}\Big (\alpha \intO F^\prime (\phi _\infty )\dx + \intG G^\prime (\psi _\infty )\dG \Big )\end {align*}


$L\in [0,\infty )$


$L = \infty $


\begin {align*}\mu _\infty &= \frac {1}{\abs {\Om }}\Big (\intO F^\prime (\phi _\infty )\dx - \intG \deln \phi _\infty \dG \Big ), \\ \theta _\infty &= \frac {1}{\abs {\Ga }}\Big (\intG G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty \dG \Big ).\end {align*}


$\Om \subset \R ^d$


$d=2,3$


$\Ga := \partial \Om $


\begin {alignat}{2} -\Div (m_\Om (\phi )\Grad u) &= f &&\qquad \text {in~}\Om , \\ -\Divg (m_\Ga (\psi )\Gradg v) + \beta m_\Om (\phi )\deln u &= g &&\qquad \text {on~}\Ga , \\ Lm_\Om (\phi )\deln u &= \beta v - u &&\qquad \text {on~}\Ga ,\end {alignat}


$m_\Om , m_\Ga $


$\phi :\Om \rightarrow \R $


$\psi :\Ga \rightarrow \R $


$\abs {\phi } \leq 1$


$\Om $


$\abs {\psi } \leq 1$


$\Ga $


$(u,v)\in \mathcal {H}^1_L$


\begin {equation}\label {WF:EBS} \begin {split} &\intO m_\Om (\phi )\Grad u \cdot \Grad \zeta \dx + \intG m_\Ga (\psi )\Gradg v \cdot \Gradg \xi \dG + \chi (L)\intG (\beta v - u)(\beta \xi - \zeta )\dG \\ &\quad = \bigang {(f,g)}{(\zeta ,\xi )}_{\mathcal {H}^1_L} \end {split}\end {equation}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


$\Om $


$(f,g)\in \mathcal {V}_{L}^{-1}$


$(u,v)\in \mathcal {H}^1_L$


$C > 0$


$\Om , L, \beta $


$m^\ast $


\begin {equation}\label {Est:EBS:Apriori} \norm {(u,v)}_{L} \leq C\norm {(f,g)}_{(\mathcal {H}^1_L)^\prime }.\end {equation}


\begin {align*}\mathcal {S}_{L}[\phi ,\psi ]:\mathcal {V}_{L}^{-1}\rightarrow \mathcal {V}_{L}^1, \quad (f,g)\mapsto \mathcal {S}_{L}[\phi ,\psi ](f,g) = \big (\mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g)\big ),\end {align*}


$\mathcal {S}_L[\phi ,\psi ](f,g)$


$\mathcal {V}^1_{L}$


\begin {align*}\big ((f,g),(\zeta ,\xi )\big )_{L,[\phi ,\psi ]} &:= \intO m_\Om (\phi )\Grad f\cdot \Grad \zeta \dx + \intG m_\Ga (\psi )\Gradg g\cdot \Gradg \xi \dG \\ &\quad + \chi (L)\intG (\beta g - f)(\beta \xi - \zeta )\dG , \\ \norm {(f,g)}_{L,[\phi ,\psi ]} &:= \big ((f,g),(f,g)\big )_{L,[\phi ,\psi ]}^{\frac 12}\end {align*}


$(f,g), (\zeta ,\xi )\in \mathcal {V}^1_{L}$


\begin {equation}\label {NormEquivalence:1} \min \{1,\sqrt {m^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ]} \leq \norm {(f,g)}_{L} \leq \max \{1,\sqrt {M^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ]}\end {equation}


$(f,g)\in \mathcal {H}^1_L$


$\norm {\cdot }_{L}$


$\norm {\cdot }_{L,[\phi ,\psi ]}$


$\mathcal {V}^1_{L}$


$\mathcal {V}^{-1}_{L}$


\begin {align*}&\big ((f,g),(\zeta ,\xi )\big )_{L,[\phi ,\psi ],\ast } := \big (\mathcal {S}_{L}[\phi ,\psi ](f,g),\mathcal {S}_{L}[\phi ,\psi ](\zeta ,\xi )\big )_{L,[\phi ,\psi ]}, \\ &\norm {(f,g)}_{L,[\phi ,\psi ],\ast } := \big ((f,g),(f,g)\big )_{L,[\phi ,\psi ],\ast }^{\frac 12}\end {align*}


$(f,g), (\zeta ,\xi )\in \mathcal {V}^{-1}_{L}$


$\mathcal {S}_{L}$


$\mathcal {S}_{L}[\phi ,\psi ]$


$\norm {\cdot }_{L,[\phi ,\psi ],\ast }$


$\norm {\cdot }_{L,\ast }$


$\mathcal {V}^{-1}_{L}$


\begin {equation}\label {NormEquivalence} \min \{1,\sqrt {m^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ],\ast } \leq \norm {(f,g)}_{L,\ast } \leq \max \{1,\sqrt {M^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ],\ast }\end {equation}


$(f,g)\in \mathcal {V}^{-1}_{L}$


$\norm {\cdot }_{L,[\phi ,\psi ],\ast }$


$\norm {\cdot }_{(\mathcal {H}^1_L)^\prime }$


$\mathcal {V}^{-1}_{L}$


\begin {equation}\label {Est:fg:L2:SolOp:1} \begin {split} \norm {(f,g)}_{\mathcal {L}^2} &= \sqrt {\big (\mathcal {S}_{L}[\phi ,\psi ](f,g),(f,g)\big )_{L,[\phi ,\psi ]}} \\ &\leq \max \{1,\sqrt {M^\ast }\}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{L}^{\frac 12} \end {split}\end {equation}


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {H}^1_L$


$\mathcal {S}_{L}[\phi ,\psi ](f,g)$


$\Omega $


$C^2$


$(\phi ,\psi )\in \mathcal {W}^{1,\infty }$


$m_\Om ,m_\Ga \in C^1([-1,1])$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^2$


$\mathcal {S}_{L}[\phi ,\psi ](f,g)\in \mathcal {H}^2$


$C > 0$


\begin {equation}\label {Est:Sol:G:H2:thm} \begin {split} &\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2} \\ &\quad \leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^2}\big ). \end {split}\end {equation}


$(u,v)$


$\mathcal {S}_{L}[\phi ,\psi ](f,g)$


$(u,v)\in \mathcal {H}^2$


$L\in [0,\infty ]$


$L = 0$


$\xi = 0$


\begin {align}\label {L=0:Test} \intO m_\Om (\phi )\Grad u\cdot \Grad \zeta \dx = \intO f\zeta \dx \end {align}


$\zeta \in H^1_0(\Om )$


$\phi \in W^{1,\infty }(\Om )$


$\zeta = \frac {\bar \zeta }{m_\Om (\phi )}\in H^1_0(\Om )$


$\bar \zeta \in C_c^\infty (\Om )$


\begin {align*}\intO \Grad u\cdot \Grad \bar \zeta \dx = \intO \frac {1}{m_\Om (\phi )}\big (f + \Grad m_\Om (\phi )\cdot \Grad u\big ) \bar \zeta \dx \end {align*}


$\bar \zeta \in C_c^\infty (\Om )$


$\bar \zeta $


$\Lap u$


$L^2(\Om )$


\begin {align*}-\Lap u = \frac {1}{m_\Om (\phi )}\big (f + \Grad m_\Om (\phi )\cdot \Grad u\big ) \qquad \text {a.e. in~}\Om .\end {align*}


$u\vert _\Ga = \beta v \in H^1(\Ga )$


$u\in H^{\frac 32}(\Om )$


\begin {align}\label {Est:BSE:H3/2} \norm {u}_{H^{\frac 32}(\Om )} \leq C\big (\norm {f}_{L^2(\Om )} + \norm {\Grad \phi \cdot \Grad u}_{L^2(\Om )} + \norm {v}_{H^1(\Ga )}\big ).\end {align}


$\Lap u\in L^2(\Om )$


$u\in H^{\frac 32}(\Om )$


$\deln u\in L^2(\Ga )$


\begin {align}\label {Est:BSE:deln} \norm {\deln u}_{L^2(\Ga )} \leq C\norm {u}_{H^{\frac 32}(\Om )}.\end {align}


\begin {align}\label {Id:BSE:deln} \intO m_\Om (\phi )\Grad u\cdot \Grad \zeta \dx = \intO f\zeta \dx + \intG m_\Om (\phi )\deln u\zeta \dG \qquad \text {for all~}\zeta \in H^1(\Om ).\end {align}


$\xi \in H^1(\Ga )$


$\bar \xi \in H^{\frac 32}(\Om )$


$\bar \xi \vert _\Ga = \xi $


$\Ga $


$\zeta = \beta \bar \xi $


$(\zeta ,\xi )\in \mathcal {H}^1_L$


\begin {align*}\intG m_\Ga (\psi )\Gradg v \cdot \Grad \xi \dG = \intG (g - \beta m_\Om (\phi )\deln u)\xi \dG .\end {align*}


$\xi \in H^1(\Ga )$


$v$


\begin {align*}-\Lapg v = \frac {1}{m_\Ga (\psi )}\left ( g - \beta m_\Om (\phi )\deln u + \Gradg m_\Ga (\psi )\cdot \Gradg v\right ) \qquad \text {on~}\Ga .\end {align*}


$\psi \in W^{1,\infty }(\Ga )$


$m_\Ga ^\prime $


$\Gradg m_\Ga (\psi )\in L^\infty (\Ga )$


$v\in H^1(\Ga )$


$\Gradg m_\Ga (\psi )\cdot \Gradg v\in L^2(\Ga )$


$m_\Om $


$\deln u\in L^2(\Ga )$


\begin {align*}-\Lapg v = \tilde {g}\in L^2(\Ga ).\end {align*}


$\Ga $


$C^2$


$v\in H^2(\Ga )$


\begin {equation}\label {Est:BSE:H2:v:0} \begin {split} \norm {v}_{H^2(\Ga )} &\leq C\left (\norm {g}_{L^2(\Ga )} + \norm {\deln u}_{L^2(\Ga )} + \norm {\Gradg m_\Ga (\psi ) \cdot \Gradg v}_{L^2(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {\Gradg \psi \cdot \Gradg v}_{L^2(\Ga )}\right ). \end {split}\end {equation}


$u\vert _\Ga = \beta v$


$\Ga $


$u\vert _\Ga \in H^2(\Ga )$


$-\Lap u\in L^2(\Om )$


$u\in H^2(\Om )$


\begin {equation}\label {Est:BSE:H2:u:0} \begin {split} \norm {u}_{H^2(\Om )} &\leq C\left (\norm {f}_{L^2(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^2(\Om )} + \norm {v}_{H^2(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\right ). \end {split}\end {equation}


\begin {align}\label {Est:BSE:H2:0} \norm {(u,v)}_{\mathcal {H}^2} \leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\right ).\end {align}


$L\in (0,\infty )$


$\zeta = 0$


\begin {align*}\intG m_\Ga (\psi )\Gradg v\cdot \Grad \xi \dG + \chi (L)\intG (\beta v - u)\beta \xi \dG = \intG g\xi \dG \end {align*}


$\xi \in H^1(\Ga )$


$v$


\begin {align*}-\Lapg v = \frac {1}{m_\Ga (\psi )}\big (g - \beta \chi (L)(\beta v - u) + \Gradg m_\Ga (\psi )\cdot \Gradg v\big ) \qquad \text {on~}\Ga .\end {align*}


$L = 0$


$u\in H^1(\Om )$


$\beta v - u\vert _\Ga \in H^{\frac 12}(\Ga )$


$\beta v - u\vert _\Ga \in L^2(\Ga )$


$v\in H^2(\Ga )$


\begin {equation}\label {Est:BSE:H2:v:L} \begin {split} \norm {v}_{H^2(\Ga )} &\leq C\big (\norm {g}_{L^2(\Ga )} + \norm {v}_{L^2(\Ga )} + \norm {u}_{L^2(\Ga )} + \norm {\Gradg m_\Ga (\psi )\cdot \Gradg v}_{L^2(\Ga )}\big ) \\ &\leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {\Gradg \psi \cdot \Gradg v}_{L^2(\Ga )}\big ) \end {split}\end {equation}


$C > 0$


$\xi = 0$


\begin {align*}\intO m_\Om (\phi )\Grad u\cdot \Grad \zeta \dx + \chi (L)\intG (\beta v - u)\zeta \dG = \intO f\zeta \dx \end {align*}


$\zeta \in H^1(\Om )$


$u$


\begin {alignat*}{2} -\Lap u &= \frac {1}{m_\Om (\phi )}\big ( f + \Grad m_\Om (\phi )\cdot \Grad u\big ) &&\qquad \text {in~}\Om , \\ \deln u &= \frac {1}{m_\Om (\phi )} \chi (L)(\beta v - u) &&\qquad \text {on~}\Ga .\end {alignat*}


$u\in H^2(\Om )$


$C > 0$


\begin {equation}\label {Est:BSE:H2:u:L} \begin {split} \norm {u}_{H^2(\Om )} &\leq C\big (\norm {f}_{L^2(\Om )} + \norm {v}_{H^{\frac 12}(\Ga )} + \norm {u}_{H^{\frac 12}(\Ga )} + \norm {u} _{L^2(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^2(\Om )} \big ) \\ &\leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {\Grad \phi \cdot \Grad u}_{L^2(\Om )}\big ). \end {split}\end {equation}


\begin {align}\label {Est:BSE:H2:L} \norm {(u,v)}_{\mathcal {H}^2} \leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\big ).\end {align}


$L = \infty $


\begin {alignat}{2} -\Div (m_\Om (\phi )\Grad u) &= f &&\qquad \text {in~}\Om , \label {Dirichlet-Problem:Neumann}\\ m_\Om (\phi )\deln u &= 0 &&\qquad \text {on~}\Ga , \label {Dirichlet-Problem:NeumannBC}\end {alignat}


\begin {align}\label {LaplaceBeltrami:2} -\Divg (m_\Ga (\psi )\Gradg v) = g \qquad \text {on~}\Ga .\end {align}


$u\in H^2(\Om )$


$v\in H^2(\Ga )$


\begin {align*}\norm {u}_{H^2(\Om )} &\leq C\big (\norm {f}_{L^2(\Om )} + \norm {\Grad \phi \cdot \Grad u}_{L^2(\Om )}\big ), \\ \norm {v}_{H^2(\Ga )} &\leq C\big (\norm {g}_{L^2(\Ga )} + \norm {\Gradg \psi \cdot \Gradg v}_{L^2(\Ga )}\big ). \quad \qedhere \end {align*}


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {H}^1$


$f$


$g$


$f = \beta g$


$\Ga $


$L = 0$


$\mean {f}{g} = 0$


$K\in (0,\infty )$


\begin {align}\label {Est:fg:L2:SolOp:2} \norm {(f,g)}_{\mathcal {L}^2} \leq \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{K}^{\frac 12}.\end {align}


$K = \infty $


\begin {align*}\norm {(f,g)}_{L}^{\frac 12} \leq C\norm {(f,g)}_{\mathcal {H}^1}^{\frac 12} &\leq C\big (\norm {(f,g)}_{\mathcal {L}^2}^{\frac 12} + \norm {(\Grad f, \Gradg g)}_{\mathcal {L}^2}^{\frac 12}\big ) \\ &= C\big (\norm {(f,g)}_{\mathcal {L}^2}^{\frac 12} + \norm {(f,g)}_{K}^{\frac 12}\big ),\end {align*}


\begin {align*}\norm {(f,g)}_{\mathcal {L}^2} &\leq \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\big (\norm {(f,g)}_{\mathcal {L}^2}^{\frac 12} + \norm {(f,g)}_{K}^{\frac 12}\big ) \\ &\leq \frac 12\norm {(f,g)}_{\mathcal {L}^2} + \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L} + \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{K}^{\frac 12}.\end {align*}


\begin {equation}\label {Est:fg:L2:SolOp:2:K=infty} \norm {(f,g)}_{\mathcal {L}^2} \leq \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L} + \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{K}^{\frac 12}.\end {equation}


$\mathcal {H}^3$


$\Om $


$C^3$


$(\phi ,\psi )\in \mathcal {W}^{2,4}$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {H}^1$


$\mathcal {S}_L[\phi ,\psi ](f,g)\in \mathcal {H}^3$


$C > 0$


\begin {align}\label {Est:Sol:G:H3} &\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^3} \nonumber \\ &\quad \leq C\left (1 + \mathbf {1}_{\{0\}}(L)\norm {(\phi ,\psi )}_{\mathcal {H}^2}\right ) \\ &\qquad \times \Bigg ( \Bignorm {\bigg (\frac {f}{m_\Om (\phi )},\frac {g}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g)}{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g)}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1}\Bigg ), \nonumber \end {align}


$\mathbf {1}_{\{0\}}(\cdot )$


$\{0\}$


$(u,v) = \mathcal {S}_{L}[\phi ,\psi ](f,g)$


$(u,v)\in \mathcal {H}^3$


\begin {align*}&\norm {(u,v)}_{\mathcal {H}^3} \\ &\quad \leq C\Bigg ( \Bignorm {\bigg (\frac {f}{m_\Om (\phi )},\frac {g}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad u}{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg v}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\frac {m_\Om (\phi )\deln u}{m_\Ga (\psi )}}_{H^1(\Ga )}\Bigg ).\end {align*}


$L = 0$


$L = \infty $


$L\in (0,\infty )$


$Lm_\Om (\phi )\deln u = \beta v - u$


$\Ga $


\begin {align*}\Bignorm {\frac {m_\Om (\phi )\deln u}{m_\Ga (\psi )}}_{H^1(\Ga )} = \frac {1}{L}\Bignorm {\frac {\beta v - u}{m_\Ga (\psi )}}_{H^1(\Ga )} &\leq C \norm {(u,v)}_{\mathcal {H}^2} \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\right )\end {align*}


$L = 0$


\begin {align*}\Gradg \bigg (\frac {m_\Om (\phi )\deln u}{m_\Ga (\psi )}\bigg ) = \frac {m_\Om ^\prime (\phi )\deln u\Gradg \phi }{m_\Ga (\psi )^2} + \frac {m_\Om (\phi )\Gradg \deln u}{m_\Ga (\psi )^2} - \frac {m_\Om (\phi )m_\Ga ^\prime (\psi )\deln u\Gradg \psi }{m_\Ga (\psi )^2} \quad \text {a.e.~on~}\Ga .\end {align*}


\begin {align*}\norm {\deln u\Gradg \phi }_{L^2(\Ga )} \leq \norm {\deln u}_{L^4(\Ga )}\norm {\Gradg \phi }_{L^4(\Ga )} \leq C\norm {\phi }_{H^2(\Om )}\norm {u}_{H^2(\Om )}.\end {align*}


\begin {align*}\norm {\Gradg \deln u}_{L^2(\Ga )} \leq \norm {\deln u}_{H^1(\Ga )} &\leq C\norm {u}_{H^{\frac 52}(\Om )} \\ &\leq C\left (\Bignorm {\frac {f}{m_\Om (\phi )}}_{H^1(\Om )} + \Bignorm {\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad u}{m_\Om (\phi )}}_{H^1(\Om )} + \norm {v}_{H^2(\Ga )}\right ).\end {align*}


\begin {align*}\norm {\deln u\Gradg \psi }_{L^2(\Ga )} \leq \norm {\deln u}_{L^4(\Ga )}\norm {\Gradg \psi }_{L^4(\Ga )}\leq C\norm {\psi }_{H^2(\Ga )}\norm {u}_{H^2(\Om )}.\end {align*}


$L^p$


$\Om $


$C^2$


$p\in [2,\infty )$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^p$


$(\phi ,\psi )\in \mathcal {W}^{2,4}$


$\big (\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g)\big )\in \mathcal {L}^p$


$C > 0$


\begin {equation}\label {Est:BSE:W2p} \norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {W}^{2,p}} \leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^p}\right ).\end {equation}


$(u,v) := \mathcal {S}_{L}[\phi ,\psi ](f,g)\in \mathcal {H}^2$


\begin {alignat}{2}\label {Poisson-Problem} -\Lap u &= \frac {1}{m_\Om (\phi )}\left (f + \Grad m_\Om (\phi )\cdot \Grad u\right ) &&\qquad \text {a.e. in~}\Om , \\ L\deln u &= \frac {1}{m_\Om (\phi )}(\beta v - u) &&\qquad \text {a.e. on~}\Ga , \label {Poisson-Problem:BC}\end {alignat}


\begin {align}\label {LaplceBeltrami-Problem} -\Lapg v = \frac {1}{m_\Ga (\psi )}\left (g - \beta m_\Om (\phi )\deln u + \Gradg m_\Ga (\psi )\cdot \Gradg v\right ) \qquad \text {a.e. on~}\Ga .\end {align}


$L = 0$


$L\in (0,\infty )$


$L = \infty $


$L = 0$


$\Ga $


$(d-1)$


$\R ^d$


\begin {align*}u\vert _\Ga = \beta v \in W^{t,p} \qquad \text {with~} t = \frac 52 + \frac {d-1}{p} - \frac d2.\end {align*}


$f, \Grad \phi \cdot \Grad u \in L^p(\Om )$


\begin {align*}u\in W^{s,p}(\Om ) \quad \text {with}\quad s = \min \Big \{2,\frac 52 + \frac dp - \frac d2\Big \} \geq 1 + \frac 2p\end {align*}


\begin {align*}\norm {u}_{W^{s,p}(\Om )} &\leq C\left (\norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {v}_{W^{t,p}(\Ga )}\right ) \\ &\leq C\left (\norm {f}_{L^p(\Om )} + \norm {\Grad \phi \cdot \Grad u}_{L^p(\Om )} + \norm {v}_{H^2(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^p}\right ).\end {align*}


\begin {align*}\Grad u\in W^{s-1,p}(\Om ) \emb W^{\frac 2p,p}(\Om ).\end {align*}


$\frac 2p - \frac 1p = \frac 1p$


\begin {align*}\deln u\in W^{\frac 1p,p}(\Ga )\emb L^p(\Ga ).\end {align*}


$g, \Gradg \psi \cdot \Gradg v\in L^p(\Ga )$


$v\in W^{2,p}(\Ga )$


$C > 0$


\begin {equation}\label {Est:BSE:W2p:v:0} \begin {split} \norm {v}_{W^{2,p}(\Ga )} &\leq C\left (\norm {g}_{L^p(\Ga )} + \norm {\deln u}_{L^p(\Ga )} + \norm {\Gradg m_\Ga (\psi ) \cdot \Gradg v}_{L^p(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)} _{\mathcal {L}^p}\right ). \end {split}\end {equation}


\begin {align*}u\vert _\Ga = \beta v \in W^{2,p}(\Ga ).\end {align*}


$u\in W^{2,p}(\Om )$


\begin {equation}\label {Est:BSE:W2p:u:0} \begin {split} \norm {u}_{W^{2,p}(\Om )} &\leq C\left (\norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {v} _{W^{2,p}(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u, \Gradg \psi \cdot \Gradg v)} _{\mathcal {L}^p}\right ). \end {split}\end {equation}


$L = 0$


$L\in (0,\infty )$


$u\in H^2(\Om )$


\begin {align*}u\in H^{\frac 32}(\Ga )\emb W^{t,p}(\Ga ) \quad \text {with}\quad t = 2 + \frac {d-1}{p} - \frac d2.\end {align*}


$\phi \in W^{2,4}(\Om )$


\begin {align*}\Grad \phi \in W^{1,4}(\Om )\emb W^{\frac 34,4}(\Ga ) \emb L^\infty (\Ga ).\end {align*}


$m_\Om \in C^1([-1,1])$


$\frac {1}{m_\Om (\phi )} \in W^{1,\infty }(\Ga )$


$v\in H^2(\Ga )\emb W^{t,p}(\Ga )$


\begin {align*}\deln u = \frac {1}{Lm_\Om (\phi )}(\beta v - u)\in W^{t,p}(\Ga ).\end {align*}


$g,\Gradg \psi \cdot \Gradg v\in L^p(\Ga )$


\begin {equation}\label {Est:BSE:W2p:v:L} \begin {split} \norm {v}_{W^{2,p}(\Ga )} &\leq C\left (\norm {g}_{L^p(\Ga )} + \norm {\Gradg m_\Ga (\psi )\cdot \Gradg v}_{L^p(\Ga )} + \norm {\deln u}_{W^{t,p}(\Ga )}\right ) \\ &\leq C\left (\norm {g}_{L^p(\Ga )} + \norm {\Gradg \psi \cdot \Gradg v}_{L^p(\Ga )} + \norm {(u,v)}_{\mathcal {H}^2}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)} _{\mathcal {L}^p}\right ). \end {split}\end {equation}


$f,\Grad \phi \cdot \Grad u\in L^p(\Om )$


\begin {align*}u\in W^{s,p}(\Om ) \quad \text {with}\quad s = \min \Big \{2,3 + \frac dp - \frac d2\Big \} \geq 1 + \frac 2p\end {align*}


\begin {align*}\norm {u}_{W^{s,p}} &\leq C\left ( \norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {\deln u}_{W^{t,p}(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^p}\right ).\end {align*}


$1+ \frac 2p - \frac 1p = 1 + \frac 1p$


\begin {align*}u\vert _\Ga \in W^{1+\frac 1p,p}(\Ga ),\end {align*}


\begin {align*}\deln u = \frac {1}{Lm_\Om (\phi )}(\beta v - u)\in W^{1+\frac 1p,p}(\Ga ).\end {align*}


$u\in W^{2,p}(\Om )$


\begin {equation}\label {Est:BSE:W2p:u:L} \begin {split} \norm {u}_{W^{2,p}(\Om )} &\leq C\big (\norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {\deln u}_{W^{1+\frac 1p,p}(\Ga )}\big ) \\ &\leq C\big (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^p}\big ). \end {split}\end {equation}


$L = \infty $


$\mathcal {S}_{L}$


$\mathcal {S}_{L}[\phi ,\psi ]$


$\mathcal {S}_{L}[\phi ,\psi ]$


$d = 2$


$\Omega \subset \R ^2$


$C^2$


$(\phi ,\psi )\in \mathcal {W}^{2,4}$


$\abs {\phi }\leq 1$


$\Om $


$\abs {\psi }\leq 1$


$\Ga $


$m_\Om ,m_\Ga \in C^1([-1,1])$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^2$


\begin {align}\label {Est:Sol:G:H2} \norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2} \leq C\left (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}\norm {(\phi ,\psi )}_{\mathcal {H}^2}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L} + \norm {(f,g)}_{\mathcal {L}^2}\right ).\end {align}


\begin {align*}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2} &\leq C\left (\norm {(\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^2} + \norm {(f,g)}_{\mathcal {L}^2}\right ) \\ &\leq C\left (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^4} + \norm {(f,g)}_{\mathcal {L}^2} \right ) \\ &\leq C\big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}^{\frac 12}\norm {(\phi ,\psi )}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2}^{\frac 12} + \norm {(f,g)}_{\mathcal {L}^2}\big ).\end {align*}


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^4$


$p = 4$


\begin {align}\label {Est:Sol:G:W24} \begin {split} \norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {W}^{2,4}} &\leq C\big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^8}\norm {(\Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^8} + \norm {(f,g)}_{\mathcal {L}^4}\big ) \\ &\leq C\Big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}^{\frac 14}\norm {(\phi ,\psi )}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 14}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2}^{\frac 34} + \norm {(f,g)}_{\mathcal {L}^4}\Big ). \end {split}\end {align}


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}\label {Est:PP:H1:Linfty} \sup _{t\geq 0} \norm {(\phi (t),\psi (t))}_{\mathcal {H}^1} \leq C\end {align}


\begin {align}\label {Est:MT:LB:L2} \int _0^\infty \norm {(\mu (s),\theta (s))}_{L}^2 \ds \leq C,\end {align}


$E(\phi _0,\psi _0)$


$\abs {\Om }$


$\abs {\Ga }$


$\norm {(\mu ,\theta )}_{L}\in L^2(0,\infty )$


$\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )$


\begin {alignat}{2}\label {Id:M:SolOp:Mean} \mu &= -\mathcal {S}_{L}^\Om [\phi ,\psi ](\delt \phi ,\delt \psi ) + \beta \mean {\mu }{\theta } &&\qquad \text {a.e.~in~}\Om \times (0,\infty ), \\ \theta &= -\mathcal {S}_{L}^\Ga [\phi ,\psi ](\delt \phi ,\delt \psi ) + \mean {\mu }{\theta } &&\qquad \text {a.e.~on~} \label {Id:T:SolOp:Mean}\Ga \times (0,\infty ).\end {alignat}


\begin {align}\label {Est:Sol:Delt:pp:Lb} \norm {\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )}_{L} \leq C\norm {(\mu ,\theta )}_{L},\end {align}


$\mathcal {V}^{-1}_{L}$


\begin {align}\label {EST:DELT:PP:H1Lb':L2} \int _0^\infty \norm {(\delt \phi ,\delt \psi )}_{(\mathcal {H}^1_L)^\prime }^2\ds \leq C.\end {align}


$(\delt \phi ,\delt \psi )\in L^2(0,\infty ;(\mathcal {H}^1_L)^\prime )$


\begin {align}\label {Est:MEAN:MT:DELN} \abs {\mean {\mu }{\theta }} \leq C\left (1 + \norm {(\mu ,\theta )}_{L}\right ),\end {align}


\begin {align}\label {Est:MT:H1:a.e.} \norm {(\mu ,\theta )}_{\mathcal {H}^1} \leq C\left (1 + \norm {(\mu ,\theta )}_{L}\right ).\end {align}


$(\mu ,\theta )\in L^2_{\mathrm {uloc}}([0,\infty );\mathcal {H}^1)$


\begin {alignat*}{2} -\Lap \phi + F_1^\prime (\phi ) &= \mu ^\ast &&\qquad \text {a.e.~in~}\Om , \\ -\Lapg \psi + G_1^\prime (\psi ) + \alpha \deln \phi &= \theta ^\ast &&\qquad \text {a.e.~on~}\Ga , \\ K\deln \phi &= \alpha \psi - \phi &&\qquad \text {a.e.~on~}\Ga ,\end {alignat*}


$(0,\infty )$


$(\mu ^\ast ,\theta ^\ast ) = \big (\mu - F_2^\prime (\phi ),\theta - G_2^\prime (\psi )\big ) \in \mathcal {H}^1$


$F_2^\prime $


$G_2^\prime $


\begin {align}\label {Est:PP:Pot:Lp} \norm {(\phi ,\psi )}_{\mathcal {W}^{2,p}} + \norm {(F_1^\prime (\phi ),G_1^\prime (\psi ))}_{\mathcal {L}^p} \leq C\left (1 + \norm {(\mu ,\theta )}_{\mathcal {H}^1} \right )\end {align}


$(0,\infty )$


$2\leq p < \infty $


$K\in (0,\infty )$


\begin {align*}\norm {(-\Lap \phi ,-\Lapg \psi + \alpha \deln \phi )}_{\mathcal {L}^2}^2 \leq C\left (1 + \norm {(\mu + F_2^\prime (\phi ),\theta + G_2^\prime (\psi ))}_{\mathcal {H}^1}\right ) \leq C\left (1 + \norm {(\mu ,\theta )}_{L}\right ).\end {align*}


\begin {align*}\sup _{t\geq 0}\int _t^{t+1}\norm {(\phi (s),\psi (s))}_{\mathcal {H}^2}^4\ds \leq C,\end {align*}


$(\phi ,\psi )\in L^4_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2)$


$L\in [0,\infty )$


$L\in [0,\infty )$


$L = \infty $


$L = \infty $


$(\phi _0^1,\psi _0^1)$


$(\phi _0^2,\psi _0^2)$


$(\phi _1,\psi _1,\mu _1,\theta _1)$


$(\phi _2,\psi _2,\mu _2,\theta _2)$


$(\phi _1^0,\psi _1^0)$


$(\phi _0^2,\psi _0^2)$


$(\Phi ,\Psi ) = (\phi _1 - \phi _2, \psi _1 - \psi _2)$


\begin {align}\label {EQ:DELT:PHIPSI} \bigang {(\delt \Phi ,\delt \Psi )}{(\zeta ,\xi )}_{\mathcal {H}^1_L} &= - \intO m_\Om (\phi _1)\Grad (\mu _1 - \mu _2)\cdot \Grad \zeta \dx - \intG m_\Ga (\psi _1)\Gradg (\theta _1 - \theta _2)\cdot \Gradg \xi \dG \nonumber \\ &- \chi (L) \intG (\beta (\theta _1 - \theta _2) - (\mu _1 - \mu _2))(\beta \xi - \zeta )\dG \\ &- \intO \left (m_\Om (\phi _1) - m_\Ga (\psi _1)\right )\Grad \mu _2\cdot \Grad \zeta \dx - \intG \left (m_\Ga (\psi _1) - m_\Ga (\psi _2)\right )\Gradg \theta _2\cdot \Gradg \xi \dG \nonumber \end {align}


$(0,\infty )$


$(\zeta ,\xi )\in \mathcal {H}^1_L$


\begin {alignat}{2} -\Lap \Phi + F^\prime (\phi _1) - F^\prime (\phi _2) &= \mu _1 - \mu _2 &&\qquad \text {a.e.~in~}\Om \times (0,\infty ), \label {EQ:PHI}\\ -\Lapg \Psi + G^\prime (\psi _1) - G^\prime (\psi _2) + \alpha \deln \Phi &= \theta _1 - \theta _2 &&\qquad \text {a.e.~in~}\Ga \times (0,\infty ), \label {EQ:PSI} \\ K\deln \Phi &= \alpha \Psi - \Phi &&\qquad \text {a.e.~in~}\Ga \times (0,\infty ). \label {EQ:BC:PHI}\end {alignat}


$\Phi $


$\Psi $


$\Om $


$\Ga $


\begin {equation}\label {pre:comp} \begin {split} &\norm {(\Phi ,\Psi )}_{K}^2 + \intO \big (F_1^\prime (\phi _1) - F_1^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_1^\prime (\psi _1) - G_1^\prime (\psi _2)\big )\Psi \dG - \intO \big (\mu _1 - \mu _2\big )\Phi \dx - \intG \big (\theta _1 - \theta _2\big )\Psi \dG \\ &\quad = \intO \big (F_2^\prime (\phi _1) - F_2^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_2^\prime (\psi _1) - G_2^\prime (\psi _2)\big )\Psi \dG \end {split}\end {equation}


$(0,\infty )$


$\mathcal {S}_{L}[\phi _1,\psi _1](\delt \Phi ,\delt \Psi )$


$\mathcal {S}_j(f,g) = \mathcal {S}_{L}[\phi _j,\psi _j](f,g)$


$j=1,2$


$(\cdot ,\cdot )_{L,j} = (\cdot ,\cdot )_{L,[\phi _j,\psi _j]}$


\begin {align}\label {comp:mt:1-2} &- \intO \big (\mu _1 - \mu _2\big )\Phi \dx - \intG \big (\theta _1 - \theta _2\big )\Psi \dG \nonumber \\ &\quad = -\big (\mathcal {S}_1(\Phi ,\Psi ),(\mu _1 - \mu _2,\theta _1 - \theta _2)\big )_{L,1} \nonumber \\ &\quad = \bigang {(\delt \Phi ,\delt \Psi )}{\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^1_L} - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \\ &\quad = \big (\mathcal {S}_1(\delt \Phi ,\delt \Psi ),\mathcal {S}_1(\Phi ,\Psi )\big )_{L,1} - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \nonumber \\ &\quad =\big ((\Phi ,\Psi ),\mathcal {S}_1(\delt \Phi ,\delt \Psi )\big )_{\mathcal {L}^2} - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \nonumber \end {align}


$(0,\infty )$


$\mathcal {S}_1(\Phi ,\Psi )$


$(\delt \Phi ,\delt \Psi )$


$\mathcal {S}_1(\delt \Phi ,\delt \Psi )$


$\mathcal {S}_1(\Phi ,\Psi )$


\begin {align*}&\norm {(\Phi ,\Psi )}_{K}^2 + \intO \big (F_1^\prime (\phi _1) - F_1^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_1^\prime (\psi _1) - G_1^\prime (\psi _2)\big )\Psi \dG + \intO \mathcal {S}_1(\delt \Phi ,\delt \Psi )\Phi \dx + \intG \mathcal {S}_1(\delt \Phi ,\delt \Psi )\Psi \dG \\ &\qquad - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \\ &\quad = \intO \big (F_2^\prime (\phi _1) - F_2^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_2^\prime (\psi _1) - G_2^\prime (\psi _2)\big )\Psi \dG .\end {align*}


\begin {equation}\label {ChainRuleFormula} \begin {split} &\intO \mathcal {S}_1^\Om (\delt \Phi ,\delt \Psi )\Phi \dx + \intG \mathcal {S}_1^\Ga (\delt \Phi ,\delt \Psi )\Psi \dG \\ &\quad = \ddt \frac 12 \norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \frac 12 \Big (\mathcal {S}_1(\delt \phi _1,\delt \psi _1),\big (m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L} \\ &\quad = \ddt \frac 12 \norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \frac 12\intO \Grad \mathcal {S}_1^\Om (\delt \phi _1,\delt \psi _1)\cdot m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2\dx \\ &\qquad + \frac 12 \intG \Gradg \mathcal {S}_1^\Ga (\delt \phi _1,\delt \psi _1)\cdot m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\dG + \intO \Grad \mathcal {S}_1^\Om (\delt \phi _1,\delt \psi _1)\cdot m_\Om ^\prime (\phi _1) D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\dx \\ &\qquad + \intG \Gradg \mathcal {S}_1^\Ga (\delt \phi _1,\delt \psi _1)\cdot m_\Ga ^\prime (\psi _1)D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\dG \\ &\qquad + \frac 12\chi (L)\intG \big (\beta \mathcal {S}_1^\Ga (\delt \phi _1,\delt \psi _1) - \mathcal {S}_1^\Om (\delt \phi _1,\delt \psi _1)\big )\big (\beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Gradg \mathcal {S}_1^\Om (\Phi ,\Psi )}^2\big )\dG . \end {split}\end {equation}


$D^2 f$


$D^2_\Ga g$


$f$


$g$


$F_1^\prime $


$G_1^\prime $


$F_2^\prime $


$G_2^\prime $


\begin {align}\label {DiffIneq} \ddt \frac 12\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \norm {(\Phi ,\Psi )}_{K}^2 \leq C\norm {(\Phi ,\Psi )}_{\mathcal {L}^2}^2 + I_1 + I_2,\end {align}


\begin {align*}I_1 &= -\frac 12 \Big (\mathcal {S}_1(\delt \phi _1,\delt \psi _1),\big (m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L},\end {align*}


\begin {align*}I_2 = \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx + \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG .\end {align*}


$I_1$


$I_2$


$\rho \in C_c^\infty (\R )$


$\mathrm {supp}\,\rho \subset (0,1)$


$\norm {\rho }_{L^1(\R )} = 1$


$k\in \N $


\begin {align*}\rho _k(s) := k\rho (ks), \qquad s\in \R .\end {align*}


$X$


$f\in L^p(-1,T;X)$


$2\leq p < \infty $


\begin {align}\label {Def:f_k} f_k(t) := (\rho _k\ast f)(t) = \int _{t-\frac 1k}^t \rho _k(t-s)f(s)\ds \end {align}


$t\in [0,T]$


$k\in \N $


$f_k\in C^\infty ([0,T];X)$


$f_k\rightarrow f$


$L^p(0,T;X)$


$k\rightarrow \infty $


$T > 0$


$k\in \N $


$p = 4$


$X = H^2(\Om )$


$\phi _1^k$


$X = H^2(\Ga )$


$\psi _1^k$


$\delt \phi _1^k = (\delt \phi _1)^k$


$\delt \Grad \phi _1^k = \Grad \delt \phi _1^k$


$Q$


$\delt \psi _1^k = (\delt \psi _1)^k$


$\delt \Gradg \psi _1^k = \Gradg \delt \psi _1^k$


$\Sigma $


$k\in \N $


$k\rightarrow \infty $


\begin {alignat}{2} \phi _1^k &\rightarrow \phi _1 &&\qquad \text {strongly in~}L^4(0,T;H^2(\Om )), \label {Conv:Phi:H2:k} \\ \psi _1^k &\rightarrow \psi _1 &&\qquad \text {strongly in~}L^4(0,T;H^2(\Ga )), \label {Conv:Psi:H2:k} \\ (\delt \phi _1^k,\delt \psi _1^k) &\rightarrow (\delt \phi _1,\delt \psi _1^k) &&\qquad \text {strongly in~}L^2(0,T;(\mathcal {H}^1_L)^\prime ). \label {Conv:delt:pp:H1:k}\end {alignat}


$k\rightarrow \infty $


\begin {alignat}{3} \phi _1^k &\rightarrow \phi _1, \quad \Grad \phi _1^k&&\rightarrow \Grad \phi _1 &&\qquad \text {a.e. in~} \Om \times (0,T), \label {Conv:Phi:a.e.} \\ \psi _1^k &\rightarrow \psi _1, \quad \Gradg \psi _1^k &&\rightarrow \Gradg \psi _1 &&\qquad \text {a.e. on~} \Ga \times (0,T). \label {Conv:Psi:a.e.}\end {alignat}


\begin {equation}\label {Est:PP:k:LinftyH1} \begin {split} \norm {\phi _1^k}_{L^\infty (0,T;H^1(\Om ))} &\leq \norm {\phi _1}_{L^\infty (0,T;H^1(\Om ))}, \\ \norm {\psi _1^k}_{L^\infty (0,T;H^1(\Ga ))} &\leq \norm {\psi _1}_{L^\infty (0,T;H^1(\Ga ))}, \end {split}\end {equation}


\begin {align}\label {Est:PP:k:infty} \abs {\phi _k} \leq 1 \quad \text {a.e.~in~}Q, \qquad \abs {\psi _k} \leq 1 \quad \text {a.e.~on~}\Sigma \end {align}


$k\in \N $


$k_\ast \in \N $


\begin {align}\label {Est:PP:k:L4H2} \norm {(\phi _1^k,\psi _1^k)}_{L^4(0,T;\mathcal {H}^2)} \leq 1 + \norm {(\phi _1,\psi _1)}_{L^4(0,T;\mathcal {H}^2)} \qquad \text {for all~}k\geq k_\ast .\end {align}


$k\in \N $


$k\geq k_\ast $


$C$


$k\in \N $


$k\in \N $


\begin {align*}\mathcal {S}_k(\Phi ,\Psi ) := \mathcal {S}_{L}[\phi _k,\psi _k](\Phi ,\Psi ).\end {align*}


\begin {align}\label {Est:G:k:LinftyH1} \norm {\mathcal {S}_k(\Phi ,\Psi )}_{L^\infty (0,T;\mathcal {H}^1)} \leq C.\end {align}


\begin {align*}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2} \leq C\left (1 + \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}\right ),\end {align*}


\begin {align}\label {Est:Gk:PP:L4H2} \int _0^T \norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^4\ds \leq CT + C\int _0^T \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^4\ds \leq C,\end {align}


\begin {align*}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {W}^{2,4}} &\leq C\big (\norm {(\Grad \phi _1^k,\Gradg \psi _1^k)}_{\mathcal {L}^2}^{\frac 14}\norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{L}^{\frac 14}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 34} + \norm {(\Phi ,\Psi )}_{\mathcal {L}^4}\big ) \\ &\leq C\big (1 + \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 34}\big ).\end {align*}


$(0,T)$


\begin {align}\label {Est:Gk:PP:L83W24} \int _0^T \norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {W}^{2,4}}^{\frac 83}\ds \leq CT + C\int _0^T \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^4 + \norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^4\ds \leq C.\end {align}


$\mathcal {S}_k(\Phi ,\Psi )$


$k\rightarrow \infty $


$(f,g)\in L^2(0,T;\mathcal {V}^{-1}_{L})$


$\mathcal {S}_1$


$\mathcal {S}_k$


\begin {align*}&\intO m_\Om (\phi _1)\Grad \mathcal {S}_1^\Om (f,g)\cdot \Grad \zeta \dx + \intG m_\Ga (\psi _1)\Gradg \mathcal {S}_1^\Ga (f,g)\cdot \Gradg \xi \dG + \chi (L) \intG (\beta \mathcal {S}_1^\Ga (f,g) - \mathcal {S}_1^\Om (f,g))(\beta \xi -\zeta )\dG \\ &\quad = \intO m_\Om (\phi _1^k)\Grad \mathcal {S}_k^\Om (f,g)\cdot \Grad \zeta \dx + \intG m_\Ga (\psi _1^k)\Gradg \mathcal {S}_k^\Ga (f,g)\cdot \Gradg \xi \dG + \chi (L)\intG \big (\beta \mathcal {S}_k^\Ga (f,g) - \mathcal {S}_k^\Ga (f,g)\big )(\beta \xi -\zeta )\dG \end {align*}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


\begin {align}\label {WF:S1-Sk} &\intO m_\Om (\phi _1)\Grad \big (\mathcal {S}_1^\Om (f,g) - \mathcal {S}_k^\Om (f,g)\big )\cdot \Grad \zeta \dx + \intG m_\Ga (\psi _1)\Gradg \big (\mathcal {S}_1^\Ga (f,g) - \mathcal {S}_k^\Ga (f,g)\big )\cdot \Gradg \xi \dG \nonumber \\ &\qquad + \chi (L) \intG \big (\beta (\mathcal {S}_1^\Ga (f,g) - \mathcal {S}_k^\Ga (f,g))\big )(\beta \xi - \zeta )\dG \\ &\quad = \intO \big (m_\Om (\phi _1^k) - m_\Om (\phi _1)\big )\Grad \mathcal {S}_k^\Om (f,g)\cdot \Grad \zeta \dx + \intG \big (m_\Ga (\psi _1^k) - m_\Ga (\psi _1)\big )\Gradg \mathcal {S}_k^\Ga (f,g)\cdot \Gradg \xi \dG \nonumber \end {align}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


$(\zeta ,\xi ) = \mathcal {S}_1(f,g) - \mathcal {S}_k(f,g)\in \mathcal {H}^1_L$


\begin {align}\label {Est:G1-Gk:Lb} \begin {split} &\int _0^T \norm {\mathcal {S}_1(f,g) - \mathcal {S}_k(f,g)}_{L}^2\ds \\ &\quad \leq \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T \norm {\big (m_\Om (\phi _1^k) - m_\Om (\phi _1)\big )\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2 \ds + \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T\norm {\big (m_\Ga (\psi _1^k) - m_\Ga (\psi _1)\big )\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2 \ds \\ &\quad \leq \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T \norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2\norm {\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2\ds \\ &\qquad + \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2\norm {\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2\ds . \end {split}\end {align}


$k\rightarrow \infty $


\begin {align*}&\norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2\norm {\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2 + \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2\norm {\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2 \leq C\norm {\mathcal {S}(f,g)}_{L}^2\in L^1(0,T).\end {align*}


$m_\Om $


$m_\Ga $


$[-1,1]$


\begin {align*}\norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2 + \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2 &\leq C\norm {\phi _1^k - \phi _1}_{L^\infty (\Om )}^2 + C\norm {\psi _1^k - \psi _1}_{L^\infty (\Ga )}^2 \\ &\leq C\norm {\phi _1^k - \phi _1}_{H^2(\Om )}^2 + C\norm {\psi _1^k - \psi _1}_{H^2(\Ga )}^2\end {align*}


$(0,T)$


\begin {align*}&\norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2\norm {\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2 + \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2\norm {\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2 \\ &\quad \leq C\norm {(\phi _1^k - \phi _1,\psi _1^k - \psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}(f,g)}_{L}^2 \rightarrow 0\end {align*}


$k\rightarrow \infty $


$(0,T)$


\begin {align*}\norm {\mathcal {S}_k(f,g) - \mathcal {S}_1(f,g)}_{L} \rightarrow 0 \qquad \text {strongly in~}L^2(0,T)\end {align*}


$k\rightarrow \infty $


$(f,g) = (\delt \Phi ,\delt \Psi )$


$(f,g) = (\Phi ,\Psi )$


\begin {align}\label {Conv:Gk:delt:PP:L2H1} \mathcal {S}_k(\delt \Phi ,\delt \Psi )\rightarrow \mathcal {S}_1(\delt \Phi ,\delt \Psi ) \qquad \text {strongly in~}L^2(0,T;\mathcal {H}^1),\end {align}


\begin {align}\label {Conv:Gk:PP:L2H1} \mathcal {S}_k(\Phi ,\Psi ) \rightarrow \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {strongly in~} L^2(0,T;\mathcal {H}^1),\end {align}


$k\rightarrow \infty $


\begin {align}\label {Conv:Gk:PP:L4H2} \mathcal {S}_k(\Phi ,\Psi ) \rightharpoonup \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {weakly in~} L^4(0,T;\mathcal {H}^2)\end {align}


\begin {align}\label {Conv:Gk:PP:L83W24} \mathcal {S}_k(\Phi ,\Psi )\rightharpoonup \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {weakly in~} L^{\frac 83}(0,T;\mathcal {W}^{2,4}),\end {align}


$k\rightarrow \infty $


$\varepsilon \in (0,\frac 12)$


$C = C(\varepsilon ) > 0$


\begin {alignat*}{2} \norm {f}_{H^{2-\varepsilon }(\Om )} &\leq C\norm {f}_{H^1(\Om )}^\varepsilon \norm {f}_{H^2(\Om )}^{1-\varepsilon } &&\qquad \text {for all~}f\in H^2(\Om ), \\ \norm {g}_{H^{2-\varepsilon }(\Ga )} &\leq C\norm {g}_{H^1(\Ga )}^\varepsilon \norm {g}_{H^2(\Ga )}^{1-\varepsilon } &&\qquad \text {for all~}g\in H^2(\Ga ),\end {alignat*}


\begin {equation}\label {Interpol:Appl} \begin {split} \norm {(f,g)}_{L^{\frac {4}{1+\varepsilon }}(0,T;\mathcal {H}^{2-\varepsilon })} \leq C\norm {(f,g)}_{L^2(0,T;\mathcal {H}^1)}\norm {(f,g)}_{L^4(0,T;\mathcal {H}^2)} \end {split}\end {equation}


$(f,g)\in L^4(0,T;\mathcal {H}^2)$


$(f,g) = \mathcal {S}_k(\Phi ,\Psi ) - \mathcal {S}_1(\Phi ,\Psi )\in L^4(0,T;\mathcal {H}^2)$


\begin {align}\label {Conv:Gk:PP:eps} \mathcal {S}_k(\Phi ,\Psi ) \rightarrow \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {strongly in~} L^{\frac {4}{1+\varepsilon }}(0,T;\mathcal {H}^{2-\varepsilon })\end {align}


$k\rightarrow \infty $


$\sigma \in C_c^\infty (0,T)$


\begin {equation}\label {ChainRuleFormula:k} \begin {split} &\int _0^T \big (\mathcal {S}_k(\delt \Phi ,\delt \Psi ),(\Phi ,\Psi )\big )_{\mathcal {L}^2}\sigma \ds \\ &\quad = -\frac 12 \int _0^T \norm {(\Phi ,\Psi )}_{L,[\phi _1^k,\psi _1^k],\ast }^2\delt \sigma \ds + \frac 12 \int _0^T\big (\delt \phi _1^k,m_\Om (\phi _1^k)\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\cdot \Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\big )_{\mathcal {L}^2}\sigma \ds \\ &\qquad + \frac 12\int _0^T \big (\delt \psi _1^k,m_\Ga (\psi _1^k)\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )\cdot \Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )\big )_{\mathcal {L}^2}\sigma \ds . \end {split}\end {equation}


$t\in (0,T)$


$c(\cdot ,t)$


$\Om $


$d(\cdot ,t)$


$\Ga $


$(f(\cdot ,t),g(\cdot ,t))\in \mathcal {V}_{L}^{-1}\cap \mathcal {L}^2$


$(\delt c(\cdot ,t),\delt d(\cdot ,t)), (\delt f(\cdot ,t),\delt g(\cdot ,t))\in \mathcal {L}^2$


$\mathcal {S}_{L}[c,d](f,g)$


$(\zeta ,\xi ) = \mathcal {S}_{L}[c,d](f,g)\in \mathcal {H}^1_L$


\begin {align*}&\intO \delt f\,\mathcal {S}_{L}^\Om [c,d](f,g)\dx + \intG \delt g\,\mathcal {S}_{L}^\Ga [c,d](f,g)\dG \\ &\quad = \intO m_\Om ^\prime (c)\delt c\,\vert \Grad \mathcal {S}_{L}^\Om [c,d](f,g)\vert ^2\dx + \intG m_\Ga ^\prime (d)\delt d\,\vert \Gradg \mathcal {S}_{L}^\Ga [c,d](f,g)\vert ^2\dG \\ &\qquad + \intO f\,\delt \mathcal {S}_{L}^\Om [c,d](f,g)\dx + \intG g\,\delt \mathcal {S}_{L}^\Ga [c,d](f,g)\dG .\end {align*}


\begin {align}\label {ChainRuleFormula:General} \ddt \norm {(f,g)}_{L,[c,d],\ast }^2 &= \ddt \norm {\mathcal {S}_{L}[c,d](f,g)}_{L,[c,d]}^2 \nonumber \\ &= \ddt \big (\mathcal {S}_{L}[c,d](f,g),(f,g)\big )_{\mathcal {L}^2} \nonumber \\ &= \big (\mathcal {S}_{L}[c,d](f,g),(f,g)\big )_{\mathcal {L}^2} + \big (\mathcal {S}_{L}[c,d](f,g),(\delt f,\delt g)\big )_{\mathcal {L}^2} \\ &= 2\big (\mathcal {S}_{L}[c,d](\delt f,\delt g),(f,g)\big )_{\mathcal {L}^2} - \intO m_\Om ^\prime (c)\delt c\,\vert \Grad \mathcal {S}_{L}^\Om [c,d](f,g)\vert ^2\dx - \intG m_\Ga ^\prime (d)\delt d\,\vert \Gradg \mathcal {S}_{L}^\Ga [c,d](f,g)\vert ^2\dG . \nonumber \end {align}


$(c,d)$


$(f,g)$


$(c,d) = (\phi _1^k,\psi _1^k)$


$(f,g) = (\Phi ,\Psi )$


$k\rightarrow \infty $


\begin {align}\label {Conv:CRF:1} \lim _{k\rightarrow \infty }\int _0^T \left (\mathcal {S}_k(\delt \Phi ,\delt \Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\sigma \ds = \int _0^T \left (\mathcal {S}_1(\delt \Phi ,\delt \Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\sigma \ds \end {align}


\begin {align}\label {Conv:CRF:2} \lim _{k\rightarrow \infty }\frac 12\int _0^T \norm {(\Phi ,\Psi )}_{L,[\phi _1^k,\psi _1^k],\ast }^2\delt \sigma \ds &= \lim _{k\rightarrow \infty }\frac 12\int _0^T \left (\mathcal {S}_k(\Phi ,\Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\delt \sigma \ds \nonumber \\ &= \frac 12\int _0^T \left (\mathcal {S}_1(\Phi ,\Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\delt \sigma \ds \\ &= \frac 12\int _0^T\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2\delt \sigma \ds , \nonumber \end {align}


$C > 0$


$k\in \N $


\begin {align}\label {Claim} \int _0^T\norm {\left (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\right )}_{L}^2\ds \leq C.\end {align}


\begin {align*}\norm {\Grad \left (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2\right )}_{L^2(\Om )} &\leq \norm {m_\Om ^{\prime \prime }(\phi _1^k)\Grad \phi _1^k\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2}_{L^2(\Om )} + 2\norm {m_\Om ^\prime (\phi _1^k) D^2\mathcal {S}_k^\Om (\Phi ,\Psi )\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^2(\Om )} \\ &\leq C\norm {\Grad \phi _1^k}_{L^6(\Om )}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^6(\Om )}^2 + C\norm {D^2\mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )} \\ &\leq C\norm {\Grad \phi _1^k}_{L^2(\Om )}^{\frac 13}\norm {\phi _1^k}_{H^2(\Om )}^{\frac 23}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^2(\Om )}^{\frac 23}\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 43} \\ &\quad + C\norm {D^2\mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^2(\Om )}^{\frac 12}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 12}.\end {align*}


\begin {equation}\label {Est:Claim:1} \begin {split} \norm {\Grad \big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2\big )}_{L^2(\Om )} &\leq C\norm {\phi _1^k}_{H^2(\Om )}^{\frac 23}\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 43} + C\norm {D^2\mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )}\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 12} \\ &\leq C\norm {\phi _1^k}_{H^2(\Om )}^2 + C\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^2 + C\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{W^{2,4}(\Om )}^{\frac 43}. \end {split}\end {equation}


\begin {equation}\label {Est:Claim:2} \norm {\Gradg \big (m_\Ga (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )}_{L^2(\Ga )}\leq C\norm {\psi _1^k}_{H^2(\Ga )}^2 + C\norm {\mathcal {S}_k^\Ga (\Phi ,\Psi )}_{H^2(\Ga )}^2 + C\norm {\mathcal {S}_k^\Ga (\Phi ,\Psi )}_{W^{2,4}(\Ga )}^{\frac 43}.\end {equation}


\begin {equation}\label {Est:Claim:3} \begin {split} \norm {\beta m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2}_{L^2(\Ga )} &\leq C\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Ga )}^2 + C\norm {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}_{L^4(\Ga )}^2 \\ &\leq C\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^2. \end {split}\end {equation}


\begin {equation}\label {Est:Claim:Final} \norm {\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )}_{L} \leq C\norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^2 + C\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^2 + C\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {W}^{2,4}}^{\frac 43},\end {equation}


\begin {align*}&\Big (\big (\delt \phi _1^k,\delt \psi _1^k\big ),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{\mathcal {L}^2}\\ &\quad = \Big (\mathcal {S}(\delt \phi _1^k,\delt \psi _1^k),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L} \\ &\qquad + \Big (\mathcal {S}(\delt \phi _1^k-\delt \phi _1,\delt \psi _1^k-\delt \psi _1),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L}\end {align*}


$(0,T)$


$\sigma \in C_c^\infty (0,T)$


$(0,T)$


$k\rightarrow \infty $


\begin {equation}\label {IDK} \begin {split} &\lim _{k\rightarrow \infty }\int _0^T \Big (\big (\delt \phi _1^k,\delt \psi _1^k\big ),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{\mathcal {L}^2}\sigma \ds \\ &\quad = \lim _{k\rightarrow \infty }\int _0^T \Big (\mathcal {S}(\delt \phi _1^k,\delt \psi _1^k),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L}\sigma \ds . \end {split}\end {equation}


$h_1,\ldots ,h_5$


$k\rightarrow \infty $


\begin {alignat}{2} m_\Om ^{\prime \prime }(\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 &\rightharpoonup h_1 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Om )), \label {Conv:h1} \\ 2m_\Om ^\prime (\phi _1^k)D^2\mathcal {S}_k^\Om (\Phi ,\Psi )\Grad \mathcal {S}_k^\Om (\Phi ,\Psi ) &\rightharpoonup h_2 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Om )), \label {Conv:h2} \\ m_\Ga ^{\prime \prime }(\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 &\rightharpoonup h_3 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Ga )), \label {Conv:h3} \\ 2m_\Ga ^\prime (\psi _1^k) D^2_\Ga \mathcal {S}_k^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi ) &\rightharpoonup h_4 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Ga )), \label {Conv:h4} \\ \beta m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 &\rightharpoonup h_5 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Ga )). \label {Conv:h5}\end {alignat}


$h_1,\ldots ,h_5$


$\varepsilon = \frac 14$


\begin {align*}\mathcal {S}_k(\Phi ,\Psi ) \rightarrow \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {strongly in~} L^{\frac {16}{5}}(0,T;\mathcal {H}^{\frac 74})\end {align*}


$k\rightarrow \infty $


\begin {align*}\big (\vert \Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\vert ^2,\vert \Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )\vert ^2\big ) \rightarrow \big (\vert \Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\vert ^2,\vert \Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\vert ^2\big ) \qquad \text {strongly in~} L^{\frac {16}{5}}(0,T;\mathcal {L}^3).\end {align*}


\begin {align*}\big (\Grad \phi _1^k,\Gradg \psi _1^k\big ) \rightarrow \big (\Grad \phi _1,\Gradg \psi _1\big ) \qquad \text {strongly in~} L^4(0,T;\mathcal {L}^3).\end {align*}


$m_\Om ^{\prime \prime },m_\Ga ^{\prime \prime }\in C([-1,1])$


\begin {align*}\big (m_\Om ^{\prime \prime }(\phi _1^k),m_\Ga ^{\prime \prime }(\psi _1^k)\big ) \rightarrow \big (m_\Om ^{\prime \prime }(\phi _1),m_\Ga ^{\prime \prime }(\psi _1)\big ) \qquad \text {strongly in~} L^8(0,T;\mathcal {L}^{12}).\end {align*}


\begin {alignat*}{2} m_\Om ^{\prime \prime }(\phi _1^k)\Grad \phi _1^k\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 &\rightharpoonup m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2 &&\qquad \text {weakly in~} L^1(0,T;L^1(\Om )), \\ m_\Ga ^{\prime \prime }(\psi _1^k)\Gradg \psi _1^k\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 &\rightharpoonup m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )} ^2&&\qquad \text {weakly in~} L^1(0,T;L^1(\Ga )),\end {alignat*}


\begin {align*}h_1 = m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,\end {align*}


\begin {align*}h_3 = m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2.\end {align*}


\begin {align*}\big (m_\Om ^\prime (\phi _1^k),m_\Ga ^\prime (\psi _1^k)\big ) \rightarrow \big (m_\Om ^\prime (\phi _1),m_\Ga ^\prime (\psi _1)\big ) \qquad \text {strongly in~} L^8(0,T;\mathcal {L}^4),\end {align*}


\begin {alignat*}{2} 2m_\Om ^\prime (\phi _1^k)D^2\mathcal {S}_k^\Om (\Phi ,\Psi )\Grad \mathcal {S}_k^\Om (\Phi ,\Psi ) &\rightharpoonup 2m_\Om ^\prime (\phi _1)D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ) &&\qquad \text {weakly in~} L^1(0,T;L^1(\Om )), \\ 2m_\Ga ^\prime (\psi _1^k)D_\Ga ^2\mathcal {S}_k^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi ) &\rightharpoonup 2m_\Ga ^\prime (\psi _1)D_\Ga ^2\mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ) &&\qquad \text {weakly in~} L^1(0,T;L^1(\Ga )).\end {alignat*}


\begin {align*}h_2 = 2m_\Om ^\prime (\phi _1)D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\end {align*}


\begin {align*}h_4 = 2m_\Ga ^\prime (\psi _1)D_\Ga ^2\mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ).\end {align*}


$h_5$


\begin {alignat*}{2} \abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\vert _\Ga }^2 &\rightarrow \abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\vert _\Ga }^2 &&\qquad \text {strongly in~} L^{\frac {16}{3}}(0,T;L^{\frac 32}(\Ga )),\\ \abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 &\rightarrow \abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 &&\qquad \text {strongly in~} L^{\frac {16}{3}}(0,T;L^{\frac 32}(\Ga ))\end {alignat*}


$k\rightarrow \infty $


\begin {align*}\beta m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\psi )}^2 - m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 \rightharpoonup \beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2 \qquad \text {weakly in~} L^1(0,T;L^1(\Ga )).\end {align*}


\begin {align*}h_5 = \beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2.\end {align*}


\begin {align*}&\int _0^T \left (\mathcal {S}_1(\delt \Phi ,\delt \Psi )(\Phi ,\Psi )\right )_{\mathcal {L}^2}\sigma \ds \\ &\quad = \frac 12 \int _0^T \norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }\delt \sigma \ds + \frac 12 \int _0^T \left (\mathcal {S}(\delt \phi _1,\delt \psi _1),\left (m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\right )\right )_{L}\sigma \ds \end {align*}


$\sigma \in C_c^\infty (0,T)$


$C$


$E(\phi _0,\psi _0)$


$I_1$


$I_2$


$I_1$


\begin {align*}\abs {I_1} &= \big \vert \left (\mathcal {S}_{L}(\delt \phi _1,\delt \psi _1)),(m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2)\right )_L\big \vert \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2)}_{L}.\end {align*}


\begin {align*}&\norm {(m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2)}_{L} \\ &\quad \leq \norm {\big (m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\big )}_{\mathcal {L}^2} \\ &\qquad + \norm {\big (m_\Om ^\prime (\phi _1)D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\psi ),m_\Ga ^\prime (\psi _1)D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\big )}_{\mathcal {L}^2} \\ &\qquad + \chi (L)\norm {\beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2}_{L^2(\Ga )},\end {align*}


\begin {align*}\abs {I_1} &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\left (\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\right )}_{\mathcal {L}^2} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\left (D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\right )}_{\mathcal {L}^2} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\chi (L)\norm {\beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2}_{L^2(\Ga )} \\ &=: J_1 + J_2 + J_3.\end {align*}


$K\in (0,\infty )$


\begin {equation}\label {Est:S_1:H2:PhiPsi} \begin {split} &\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2} \\ &\quad \leq C\big (\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^2}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 12}\norm {(\Phi ,\Psi )}_{K}^{\frac 12}\big ). \end {split}\end {equation}


$J_1$


\begin {align}\label {Est:J1} J_1 &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^6}\norm {\left (\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\right )}_{\mathcal {L}^6}^2 \nonumber \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^2}^{\frac 13}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 43} \nonumber \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 23}\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 12}\norm {(\Phi ,\Psi )}_{L}^{\frac 12}\Big )^{\frac 43} \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 + C\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 43}\norm {(\Phi ,\Psi )}_{K}^{\frac 23}\Big ) \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2. \nonumber \end {align}


$K = \infty $


\begin {align*}J_1 \leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (1 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align*}


$K\in (0,\infty )$


$K = \infty $


$J_2$


\begin {equation}\label {Est:S_1:Grad:L4:PhiPsi} \begin {split} &\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4} \\ &\quad \leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 12} \\ &\quad \leq C\Big (\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^2}^{\frac 12}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 34}\norm {(\Phi ,\Psi )}_{K}^{\frac 14}\Big ) \\ &\quad \leq C\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 34}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big ) \end {split}\end {equation}


\begin {equation}\label {Est:PhiPsi:L4:Interpol} \begin {split} \norm {(\Phi ,\Psi )}_{\mathcal {L}^4} &\leq C\norm {(\Phi ,\Psi )}_{\mathcal {L}^2}^{\frac 12}\norm {(\Phi ,\Psi )}_{\mathcal {H}^1}^{\frac 12} \leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 14}\norm {(\Phi ,\Psi )}_{\mathcal {H}^1}^{\frac 12} \\ &\leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}, \end {split}\end {equation}


$\mean {\Phi }{\Psi } = 0$


\begin {align}\label {Est:S_1:W24:PhiPsi} \begin {split} \norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {W}^{2,4}} &\leq C\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 34} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big ) \\ &\leq C\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 32}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 58}\norm {(\Phi ,\Psi )}_{L}^{\frac 38} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big ). \end {split}\end {align}


\begin {align*}J_2 &\leq \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(D^2\mathcal {S}_1^\Om (\Phi ,\Psi ),D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4},\end {align*}


\begin {align*}J_2 &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 32}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 74}\norm {(\Phi ,\Psi )}_{K}^{\frac 14} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 54}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac {13}{8}}\norm {(\Phi ,\Psi )}_{K}^{\frac 38} + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac {11}{8}}\norm {(\Phi ,\Psi )}_{K}^{\frac 58} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 54}\norm {(\Phi ,\Psi )}_{K}^{\frac 34} + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K} \\ &\quad =: K_1 + \ldots K_6.\end {align*}


$K_1,\ldots ,K_6$


\begin {align*}K_1 &\leq C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_2 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac 87}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac {12}{7}}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_3 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac {16}{13}}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac {20}{13}}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_4 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac {16}{11}}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac {12}{11}}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_5 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac 85}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 45}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_6 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align*}


\begin {align}\label {Est:J2} J_2 \leq \frac {5}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align}


$J_3$


\begin {align}\label {Est:J3} J_3 &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\chi (L)\norm {\beta m_\Ga ^\prime (\psi _1)\vert \Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\vert ^2 - m_\Om ^\prime (\phi _1)\vert \Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\vert ^2}_{L^2(\Ga )} \nonumber \\ &\leq C\chi (L)\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{L^4(\Ga )}^2 \nonumber \\ &\leq C\chi (L)\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^2 \nonumber \\ &\leq C\chi (L)\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\left (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K}\right ) \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\chi (L)\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\chi (L)\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2. \nonumber \end {align}


$I_1$


\begin {align}\label {Est:I1} \abs {I_1} \leq \frac {7}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align}


$I_2$


\begin {align}\label {Est:I2} \abs {I_2} &= \Big \vert \intO \left (m_\Om (\phi _1) - m_\Om (\phi _2)\right )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx + \intG \left (m_\Ga (\psi _1) - m_\Ga (\psi _2)\right )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \Big \vert \nonumber \\ &\leq \norm {(\Grad \mu _2,\Gradg \theta _2)}_{\mathcal {L}^2}\norm {(m_\Om (\phi _1) - m_\Om (\phi _2),m_\Ga (\psi _1) - m_\Ga (\psi _2))}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4} \nonumber \\ &\leq C\norm {(\Grad \mu _2,\Gradg \theta _2)}_{\mathcal {L}^2}\norm {(\Phi ,\Psi )}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4} \nonumber \\ &\leq C\norm {(\mu _2,\theta _2)}_{L}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 34}\norm {(\Phi ,\Psi )}_{K}^{\frac 14}\Big ) \\ &\leq C\norm {(\mu _2,\theta _2)}_{L}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 54}\norm {(\Phi ,\Psi )}_{K}^{\frac 34} + C\norm {(\mu _2,\theta _2)}_{L}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K} \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\mu _2,\theta _2)}_{L}^{\frac 85}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 45} + \norm {(\mu _2,\theta _2)}_{L}^2\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\mu _2,\theta _2)}_{L}^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2. \nonumber \end {align}


\begin {align}\label {Est:PhiPsi:L2} C\norm {(\Phi ,\Psi )}_{\mathcal {L}^2}\leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K} \leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align}


$\mathcal {V}^{-1}_{L}$


\begin {align}\label {Est:PreGronwall:Uniq} &\ddt \frac 12\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \frac 12\norm {(\Phi ,\Psi )}_{K}^2 \leq Q(t)\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2,\end {align}


\begin {align*}Q(\cdot ) = C\Big (1 + \norm {(\mu _2,\theta _2)}_{L}^2 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big ) \in L^1(0,T) \qquad \text {for all~}T > 0.\end {align*}


$\mathcal {V}^{-1}_{L}$


\begin {align*}\norm {\left (\phi _1(t) - \phi _2(t), \psi _1(t) - \psi _2(t)\right )}_{(\mathcal {H}^1_L)^\prime }^2 \leq \norm {\left (\phi _1^0 - \phi _2^0,\psi _1^0 - \psi _2^0\right )}_{(\mathcal {H}^1_L)^\prime }^2\exp \left (\int _0^t Q(s)\ds \right )\end {align*}


$t\geq 0$


$\phi _1^0 = \phi _2^0$


$\Om $


$\psi _1^0 = \psi _2^0$


$\Ga $


$(\delth \phi ,\delth \psi )$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$m_\Om ,m_\Ga \in C^1([-1,1])$


$C^2([-1,1])$


$m_\Om ,m_\Ga \in C^2([-1,1])$


\begin {align*}&\mathcal {S}_h(f,g) = \mathcal {S}_{L}[\phi (\cdot +h),\psi (\cdot +h)](f,g), \\ &\norm {\cdot }_{L,h,\ast } = \norm {\cdot }_{L,[\phi (\cdot +h),\psi (\cdot +h)],\ast }.\end {align*}


$h\in (0,1)$


$(\phi _1,\psi _1) = (\phi ,\psi )$


$(\phi _2,\psi _2) = (\phi (\cdot + h),\psi (\cdot + h))$


$h^2$


$f$


$\delth f(t) = \frac 1h\left (f(t + h) - f(t)\right )$


\begin {equation}\label {PreGronwall:G:Delth} \begin {split} &\ddt \frac 12\norm {(\delth \phi (t),\delth \psi (t))}_{L,h,\ast }^2 + \frac 12\norm {(\delth \phi (t),\delth \psi (t))}_{K}^2 \leq Q_h(t)\norm {(\delth \phi (t),\delth \psi (t))}_{L,h,\ast }^2 \end {split}\end {equation}


\begin {align*}Q_h(\cdot ) = C\Big (1 + \norm {(\mu (\cdot + h),\theta \cdot + h))}_{L}^2 + \norm {(\delt \phi ,\delt \psi )}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi ,\psi )}_{\mathcal {H}^2}^4\Big )\in L^1(0,T)\end {align*}


$T > 0$


\begin {align}\label {Est:UniformGronwalL:Pre} \sup _{t\geq 0}\int _t^{t+1}\norm {(\delth \phi (s),\delth \psi (s))}_{L,h,\ast }^2\ds \leq C_0, \qquad \sup _{t\geq 0}\int _t^{t+1} Q_h(s)\ds \leq C_1,\end {align}


$C_0, C_1 > 0$


$E(\phi _0,\psi _0)$


$\mean {\phi _0}{\psi _0}$


$\tau > 0$


$t_0 = 0$


$r = \tau $


\begin {align}\label {Appl:GronwallUniform} &\norm {(\delth \phi (t), \delth \psi (t))}_{L,h,\ast }^2 \leq \frac {C_0}{\tau }\exp (C_1) \qquad \text {for all~}t \geq \tau .\end {align}


$\mathcal {V}^{-1}_{L}$


\begin {align}\label {Est:HighReg:Delth:pp:Prime} &\norm {(\delth \phi (t),\delth \psi (t))}_{(\mathcal {H}^1_L)^\prime }^2\leq \frac {CC_0}{\tau }\exp (C_1) \qquad \text {for all~}t\geq \tau ,\end {align}


$C > 0$


$h\rightarrow 0$


\begin {align}\label {Est:HighReg:Delt:pp:Prime} \sup _{t\geq \tau }\norm {(\delt \phi (t),\delt \psi (t))}_{(\mathcal {H}^1_L)^\prime }^2 \leq \frac {CC_0}{\tau }\exp (C_1).\end {align}


$[t,t+1]$


$h\rightarrow 0$


\begin {align}\label {Est:HighReg:pp:Ka} \sup _{t\geq \tau }\int _t^{t+1} \norm {(\delt \phi (s),\delt \psi (s))}_{K}^2\ds \leq \frac {(1+C_1)CC_0}{\tau }\exp (C_1).\end {align}


$\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )$


\begin {align*}\norm {(\mu ,\theta )}_{L} \leq C\norm {(\delt \phi ,\delt \psi )}_{(\mathcal {H}^1_L)^\prime },\end {align*}


\begin {align*}t\mapsto \norm {(\mu (t),\theta (t))}_{L} \in L^\infty (\tau ,\infty )\end {align*}


\begin {align}\label {Est:HighReg:MT:H1} \norm {(\mu ,\theta )}_{L^\infty (\tau ,\infty ;\mathcal {H}^1)}\leq C.\end {align}


\begin {align}\label {Est:HighReg:PP:Pot:p} \norm {(\phi ,\psi )}_{L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})} + \norm {(F_1^\prime (\phi ),G_1^\prime (\psi ))}_{L^\infty (\tau ,\infty ;\mathcal {L}^p)} \leq C\end {align}


$2 \leq p < \infty $


\begin {align*}&\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2} \\ &\quad = \norm {\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )}_{\mathcal {H}^2} \\ &\quad \leq C\Big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}\norm {(\phi ,\psi )}_{\mathcal {H}^2}\norm {\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )}_{L} + \norm {(\mu ,\theta )}_{L}^{\frac 12}\norm {(\delt \phi ,\delt \psi )}_{K}^{\frac 12}\Big ).\end {align*}


\begin {align*}\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2} \leq C\big (1 + \norm {(\delt \phi ,\delt \psi )}_{K}^{\frac 12}\big )\end {align*}


$(\tau ,\infty )$


\begin {align}\label {Est:HighReg:MT:mean:H2} \sup _{t\geq \tau }\int _t^{t+1}\norm {(\mu - \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2}^4 \ds \leq C.\end {align}


$(\mu ,\theta )\in L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2)$


$m_\Om ,m_\Ga \in C^2([-1,1])$


\begin {equation}\label {Est:MT:H3:mean} \begin {split} &\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^3} \\ &\quad \leq C\Bigg ( \Bignorm {\bigg (\frac {\delt \phi }{m_\Om (\phi )},\frac {\delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1}\Bigg ). \end {split}\end {equation}


\begin {align*}&\Bignorm {\bigg (\frac {\delt \phi }{m_\Om (\phi )},\frac {\delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} \\ &\quad \leq \Bignorm {\bigg (\frac {\delt \phi }{m_\Om (\phi )},\frac {\delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\delt \phi \Grad \phi }{m_\Om (\phi )^2},\frac {m_\Ga ^\prime (\psi )\delt \psi \Gradg \psi }{m_\Ga (\psi )^2}\bigg )}_{\mathcal {L}^2} + \Bignorm {\bigg (\frac {\Grad \delt \phi }{m_\Om (\phi )},\frac {\Gradg \delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} \\ &\quad \leq C\norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^2} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^2} + C\norm {(\delt \phi ,\delt \psi )}_{K}\end {align*}


\begin {align*}&\Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} \\ &\quad \leq \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} \\ &\qquad + \Bignorm {\bigg (\frac {\left (m_\Om ^{\prime \prime }(\phi )m_\Om (\phi ) - m_\Om ^\prime (\phi )^2\right )\left (\Grad \phi \cdot \Grad \mu \right )\Grad \phi }{m_\Om (\phi )^2},\frac {\left (m_\Ga ^{\prime \prime }(\psi )m_\Ga (\psi ) - m_\Ga ^\prime (\psi )^2\right )\left (\Gradg \psi \cdot \Gradg \theta \right )\Gradg \psi }{m_\Ga (\psi )^2}\bigg )}_{\mathcal {L}^2} \\ &\qquad + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )D^2\phi \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )D_\Ga ^2\psi \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )D^2\mu \Grad \phi }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )D_\Ga ^2\theta \Gradg \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} \\ &\quad \leq C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(\Grad \mu ,\Gradg \theta )}_{\mathcal {L}^2} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }^2\norm {(\Grad \mu ,\Gradg \theta )}_{\mathcal {L}^2} + C\norm {(\phi ,\psi )}_{\mathcal {W}^{2,4}}\norm {(\Grad \mu ,\Gradg \theta )}_{\mathcal {L}^4} \\ &\qquad + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2}.\end {align*}


$\mathcal {W}^{2,3}\emb \mathcal {W}^{1,\infty }$


\begin {align*}&\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^3} \\ &\quad \leq C\left (1 + \norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2} + \norm {(\delt \phi ,\delt \psi )}_{K}\right ).\end {align*}


\begin {align*}\sup _{t\geq \tau }\int _t^{t+1}\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^3}^2\ds \leq C.\end {align*}


$(\mu ,\theta )\in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^3)$


$m_\Om ,m_\Ga \in C^1([-1,1])$


$(m_{\Om ,k})_{k\in \N }\subset C^2([-1,1])$


$0 < \frac {m^\ast }{2} \leq m_{\Om ,k}(s) \leq 2M^\ast $


$s\in [-1,1]$


$k\in \N $


$m_{\Om ,k}\rightarrow m_\Om $


$C^1([-1,1])$


$k\rightarrow \infty $


$\vert m_{\Om ,k}^\prime (s)\vert \leq C_{\mathrm {mob}}\norm {m_\Om ^\prime }_{L^\infty ([-1,1])}$


$s\in [-1,1]$


$k\in \N $


$m_\ast $


$M_\ast $


$C_{\mathrm {mob}} > 0$


$k\in \N $


$(m_{\Ga ,k})_{k\in \N }\subset C^2([-1,1])$


$(\phi _k,\psi _k,\mu _k,\theta _k)$


$\tau > 0$


\begin {align*}(\phi _k,\psi _k)&\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p}), \quad (\delt \phi _k,\delt \psi _k)\in L^\infty (\tau ,\infty ;(\mathcal {H}^1_L)^\prime )\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1), \\ (\mu _k,\theta _k)&\in L^\infty (\tau ,\infty ;\mathcal {H}^1_L)\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^3), \quad (F^\prime (\phi _k),G^\prime (\psi _k))\in L^\infty (\tau ,\infty ;\mathcal {L}^p),\end {align*}


$2 \leq p < \infty $


$k\in \N $


\begin {align*}(F^{\prime \prime }(\phi _k),G^{\prime \prime }(\psi _k))\in L^\infty (\tau ,\infty ;\mathcal {L}^p)\end {align*}


$2 \leq p < \infty $


$(\delt \mu _k,\delt \theta _k)$


$k\in \N $


$(\delt \mu _k,\delt \theta _k)\in L^2_{\mathrm {uloc}}([\tau ,\infty );(\mathcal {H}^1)^\prime )$


\begin {equation}\label {WF:DELT:MT} \begin {split} \bigang {(\delt \mu _k,\delt \theta _k)}{(\eta ,\vartheta )}_{\mathcal {H}^1} &= \intO \Grad \delt \phi _k\cdot \Grad \eta + F^{\prime \prime }(\phi _k)\delt \phi _k\eta \dx + \intG \Gradg \delt \psi _k\cdot \Gradg \vartheta + G^{\prime \prime }(\psi _k)\delt \psi _k\vartheta \dG \\ &\quad + \chi (K) \intG (\alpha \delt \psi _k - \delt \phi _k)(\alpha \psi _k - \phi _k)\dG \end {split}\end {equation}


$(\tau ,\infty )$


$(\eta ,\vartheta )\in \mathcal {H}^1$


$C$


$k$


\begin {align}&\sup _{t\geq 0}\norm {(\phi _k(t),\psi _k(t))}_{\mathcal {H}^1} \leq C, \\ &\int _0^\infty \norm {(\mu _k,\theta _k)}_{L}^2 + \norm {(\delt \phi _k,\delt \psi _k)}_{(\mathcal {H}^1_L)^\prime }^2\ds \leq C, \label {Est:Low:MT:DELT:PP:k}\\ &\sup _{t\geq 0} \int _t^{t+1}\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^4\ds \leq C \label {Est:Low:PP:L4H2:k}\end {align}


\begin {align*}\norm {(\phi _k,\psi _k)}_{\mathcal {W}^{2,p}} + \norm {(F_1^\prime (\phi _k),G_1^\prime (\psi _k))}_{\mathcal {L}^p} \leq C\left (1 + \norm {(\mu _k,\theta _k)}_{L}\right )\end {align*}


$(0,\infty )$


\begin {align*}\big (\Div (m_{\Om ,k}(\phi _k)\Grad \mu _k),\Divg (m_{\Ga ,k}(\psi _k)\Gradg \theta _k) - \beta m_{\Om ,k}(\phi _k)\deln \mu _k\big ) = (\delt \phi _k,\delt \psi _k) \in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1),\end {align*}


\begin {align*}&\ddt \frac 12\left (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \right ) \\ &\quad = \bigang {(\delt \mu _k,\delt \theta _k)}{(-\Div (m_{\Om ,k}(\phi _k)\Grad \mu _k),-\Divg (m_{\Ga ,k}(\psi _k)\Gradg \theta _k) + \beta m_{\Om ,k}(\phi _k)\deln \mu _k)}_{\mathcal {H}^1} \\ &\qquad + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG \\ &\quad = -\bigang {(\delt \mu _k,\delt \theta _k)}{(\delt \phi _k,\delt \psi _k)}_{\mathcal {H}^1} + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG \\ &\quad = - \norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 - \intO F^{\prime \prime }(\phi _k)\abs {\delt \phi _k}^2\dx - \intG G^{\prime \prime }(\psi _k)\abs {\delt \psi _k}^2\dG + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG \end {align*}


$(\tau ,\infty )$


$F_1$


$G_1$


$F_2^\prime $


$G_2^\prime $


\begin {equation}\label {Est:PreGronwall:HighReg:k:1} \begin {split} &\ddt \frac 12\left (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \right ) + \norm {(\delt \phi _k,\delt \psi _k)}_{K}^2\\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG . \end {split}\end {equation}


$K\in [0,\infty )$


\begin {align}\label {Est:delt:pp:k:Ehrling} C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 \leq \frac 14\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C\norm {(\mu _k,\theta _k)}_{L}^2.\end {align}


$K = \infty $


$\varepsilon > 0$


\begin {align*}C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 &\leq \varepsilon \norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {H}^1}^2 + C_\varepsilon \norm {(\mu _k,\theta _k)}_{L}^2 \\ &\leq \varepsilon \norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 + \varepsilon \norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C_\varepsilon \norm {(\mu _k,\theta _k)}_{L}^2.\end {align*}


$\varepsilon = \frac {C}{5}$


$K = \infty $


$(\textbf {M3})$


\begin {equation}\label {Est:jonas:1} \begin {split} &\bigabs {\intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG } \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\norm {(\Grad \mu _k,\Gradg \theta _k)}_{\mathcal {L}^4}^2 \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\norm {(\mu _k,\theta _k)}_{L}\norm {(\mu _k - \beta \mean {\mu _k}{\theta _k},\theta _k - \mean {\mu _k}{\theta _k})}_{\mathcal {H}^2}. \end {split}\end {equation}


\begin {align*}&\norm {(\mu _k - \beta \mean {\mu _k}{\theta _k},\theta _k - \mean {\mu _k}{\theta _k})}_{\mathcal {H}^2} \\ &\quad = \norm {\mathcal {S}_{L}[\phi _k,\psi _k](\delt \phi _k,\delt \psi _k)}_{\mathcal {H}^2} \\ &\quad \leq C\left (\norm {(\Grad \phi _k,\Gradg \psi _k)}_{\mathcal {L}^2}\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {\mathcal {S}_{L}[\phi _k,\psi _k](\delt \phi _k,\delt \psi _k)}_{L} + \norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\right ) \\ &\quad \leq C\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{L} + \norm {(\mu _k,\theta _k)}_{L}^{\frac 12}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big ).\end {align*}


\begin {align}\label {Est:jonas:2} &\bigabs {\intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG } \nonumber \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\norm {(\mu _k,\theta _k)}_{L}\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{L} + \norm {(\mu _k,\theta _k)}_{L}^{\frac 12}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big ) \nonumber \\ &\quad \leq C\norm {(\mu _k,\theta _k)}_{L}^{\frac 32}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{L} + \norm {(\mu _k,\theta _k)}_{L}^{\frac 12}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big ) \nonumber \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{\mathcal {H}^2}^{\frac 52} + C\norm {(\delt \phi _k,\delt \psi _k)}_{K}\norm {(\mu _k,\theta _k)}_{L}^2 \\ &\quad \leq \frac 14\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^{\frac 43}\norm {(\mu _k,\theta _k)}_{L}^{\frac {10}{3}} + C\norm {(\mu _k,\theta _k)}_{L}^4 \nonumber \\ &\quad \leq \frac 14\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^4 + \norm {(\mu _k,\theta _k)}_{L}^2\Big )\norm {(\mu _k,\theta _k)}_{L}^2. \nonumber \end {align}


\begin {equation}\label {Est:PreGronwall:HighReg:k:2} \begin {split} &\ddt \frac 12\Big (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \Big ) + \frac 12\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 \\ &\leq C\Big (1 + \norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^4 + \norm {(\mu _k,\theta _k)}_{L}^2\Big )\Big (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \Big ) \end {split}\end {equation}


$(\tau ,\infty )$


$(\textbf {M3})$


\begin {align*}\sup _{t\geq \tau } \norm {(\mu _k(t),\theta _k(t))}_{L}^2 \leq \frac {C}{\tau }.\end {align*}


$[t,t+1]$


$t\geq \tau $


\begin {align*}\sup _{t\geq \tau }\int _t^{t+1}\norm {(\delt \phi _k(s),\delt \psi _k(s))}_{K}^2\ds \leq \frac {C}{\tau }.\end {align*}


\begin {align*}&\norm {(\mu _k,\theta _k)}_{L^\infty (\tau ,\infty ;\mathcal {H}^1_L)} + \norm {(\phi _k,\psi _k)}_{L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})} + \norm {(F_1^\prime (\phi _k),G_1^\prime (\psi _k))}_{L^\infty (\tau ,\infty ;\mathcal {L}^p)} + \norm {(\mu _k,\theta _k)}_{L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2)} \leq C\end {align*}


$2 \leq p < \infty $


$(\phi ,\psi ,\mu ,\theta )$


\begin {align*}&(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p}), \\ &(\delt \phi ,\delt \psi )\in L^\infty (\tau ,\infty ;(\mathcal {H}^1_L)^\prime )\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1), \\ &(\mu ,\theta )\in L^\infty (\tau ,\infty ;\mathcal {H}^1_L)\cap L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2), \\ &(F^\prime (\phi ),G^\prime (\psi ))\in L^\infty (\tau ,\infty ;\mathcal {L}^p)\end {align*}


$2 \leq p < \infty $


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}\label {Id:ddt:Energy} \ddt E(\phi (t),\psi (t)) + \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx + \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG + \chi (L) \intG (\beta \theta - \mu )^2\dG = 0\end {align}


$t > 0$


\begin {equation}\label {Id:Energy:Strong} \begin {split} &E(\phi (t),\psi (t)) + \int _0^t\intO m_\Om (\phi )\abs {\Grad \mu }^2\dx \ds + \int _0^t\intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG \ds + \chi (L)\int _0^t\intG (\beta \theta - \mu )^2\dG \ds = E(\phi _0,\psi _0) \end {split}\end {equation}


$t\geq 0$


$E_0:\mathcal {L} ^2\rightarrow (-\infty ,\infty ]$


\begin {align*}E_0(\zeta ,\xi ) := \frac 12\norm {(\zeta ,\xi )}_K^2 + \intO F_1(\zeta )\dx + \intG G_1(\xi )\dG ,\end {align*}


$F_1$


$G_1$


$F$


$G$


$E_0$


$[0,\infty )\ni t\mapsto E_0(\phi (t),\psi (t))$


\begin {align*}\ddt E_0(\phi ,\psi ) &= \bigang {(\delt \phi ,\delt \psi )}{(-\Lap \phi + F_1^\prime (\phi ), -\Lapg \psi + G_1^\prime (\psi ) + \alpha \deln \phi )}_{\mathcal {H}^1_L} \\ &= \bigang {(\delt \phi ,\delt \psi )}{(\mu - F_2^\prime (\phi ), \theta - G_2^\prime (\psi ))}_{\mathcal {H}^1_L} \\ &= \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx + \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG + \chi (L)\intG (\beta \theta - \mu )^2\dG - \intO F_2^\prime (\phi )\delt \phi \dx - \intG G_2^\prime (\psi )\delt \psi \dG \end {align*}


$(\tau ,\infty )$


$\tau > 0$


\begin {equation}\label {Id:Energy:tau} \ddt E(\phi ,\psi ) = \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx + \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG + \chi (L)\intG (\beta \theta - \mu )^2\dG \end {equation}


$(\tau ,\infty )$


$\tau > 0$


$(s,t)$


$s,t > \tau $


$s \leq t$


\begin {equation}\label {EnergyID:t-s} \begin {split} &E(\phi (t),\psi (t)) - E(\phi (s),\psi (s)) = \int _s^t \intO m_\Om (\phi )\abs {\Grad \mu }^2\dxs + \int _s^t\intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dGs + \chi (L)\int _s^t\intG (\beta \theta - \mu )^2\dGs . \end {split}\end {equation}


$\limsup _{s\rightarrow 0}E(\phi (s),\psi (s)) \leq E(\phi (0),\psi (0))$


$\liminf _{s\rightarrow 0}E(\phi (s),\psi (s)) \geq E(\phi (0),\psi (0))$


$\lim _{s\rightarrow 0} E(\phi (s),\psi (s)) = E(\phi (0),\psi (0))$


$s\rightarrow 0$


$(\phi ,\psi ,\mu ,\theta )$


\begin {align*}F_1^{\prime \prime }(\phi )\in L^\infty (\tau ,\infty ;L^p(\Om ))\end {align*}


$2 \leq p < \infty $


\begin {align*}F_1^{\prime \prime }(\psi )\in L^\infty (\tau ,\infty ;L^p(\Ga ))\end {align*}


$2 \leq p < \infty $


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})$


$(F_1^\prime (\phi ),F_1^\prime (\psi ))\in L^\infty (\tau ,\infty ;\mathcal {L}^p)$


$2 \leq p < \infty $


\begin {align*}\sup _{t\geq \tau } \norm {F_1^\prime (\phi (t))}_{W^{1,3}(\Om )} + \sup _{t\geq \tau }\norm {F_1^\prime (\psi (t))}_{W^{1,3}(\Ga )} \leq C.\end {align*}


$d = 2$


$W^{1,3}(\Om )\emb C(\overline \Om )$


$W^{1,3}(\Ga )\emb C(\Ga )$


\begin {align*}\sup _{t\geq \tau } \norm {F_1^\prime (\phi (t))}_{L^\infty (\Om )} + \sup _{t\geq \tau }\norm {F_1^\prime (\psi (t))}_{L^\infty (\Ga )} \leq C =: C_\ast .\end {align*}


\begin {align*}\delta = 1 - (F_1^\prime )^{-1}(C_\ast ),\end {align*}


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {H}^3)$


\begin {alignat*}{2} -\Lap \phi (t) &= \mu (t) - F^\prime (\phi (t)) &&\qquad \text {a.e.~in~}\Om , \\ -\Lapg \psi (t) + \alpha \deln \phi (t) &= \theta (t) - G^\prime (\psi (t)) &&\qquad \text {a.e.~on~}\Ga , \\ K\deln \phi (t) &= \alpha \psi (t) - \phi (t) &&\qquad \text {a.e.~on~}\Ga \end {alignat*}


$t\geq \tau > 0$


$F_2^\prime $


$G_2^\prime $


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})$


$\tau > 0$


\begin {align*}\sup _{t\geq \tau }\norm {(F^\prime (\phi (t)),G^\prime (\psi (t)))}_{\mathcal {H}^1} \leq C\end {align*}


$\tau > 0$


$(\mu ,\theta )\in L^\infty (\tau ,\infty ;\mathcal {H}^1)$


\begin {align}\label {Assumption:mean:L} m\in \R \quad \text {with}\quad \beta m,m\in (-1,1)\quad \text {if~} L\in [0,\infty ),\end {align}


\begin {align}\label {Assumption:mean:infty} m = (m_1,m_2)\in \R ^2\quad \text {with}\quad m_1,m_2\in (-1,1)\quad \text {if~} L = \infty .\end {align}


\begin {align*}\mathcal {Z}_m^{K,L} = \{(\phi ,\psi )\in \mathcal {W}^1_{K,L,m} : E(\phi ,\psi ) < \infty \},\end {align*}


\begin {align*}\mathrm {d}_{\mathcal {Z}_m^{K,L}}\big ((\phi ,\psi ),(\zeta ,\xi )\big ) &:= \norm {(\phi -\zeta ,\psi -\xi )}_{K} + \Big \vert \intO F_1(\phi ) \dx - \intO F_1(\zeta )\dx \Big \vert ^{\frac 12} \\ &\quad + \Big \vert \intG G_1(\psi )\dG - \intG G_1(\xi )\dG \Big \vert ^{\frac 12} \qquad \text {for all~}(\phi ,\psi ), (\zeta ,\xi )\in \mathcal {Z}_m^{K,L}.\end {align*}


$\big (\mathcal {Z}_m^{K,L},\mathrm {d}_{\mathcal {Z}_m^{K,L}}\big )$


$\mathcal {S}^{K,L}:\mathcal {Z}_m^{K,L}\rightarrow \mathcal {Z}_m^{K,L}$


\begin {align*}\mathcal {S}^{K,L}(t)(\phi _0,\psi _0) = (\phi (t),\psi (t)) \qquad \text {for all~}t\geq 0,\end {align*}


$(\phi ,\psi )$


$(\phi _0,\psi _0)\in \mathcal {Z}_m^{K,L}$


$\mathcal {S}^{K,L}\in C(\mathcal {Z}_m^{K,L},\mathcal {Z}_m^{K,L})$


$\omega $


\begin {align*}\omega ^{K,L}(\phi _0, \psi _0) := \Bigg \{(\phi _\infty , \psi _\infty )\in \mathcal {H}^2\cap \mathcal {Z}_m^{K,L} \Bigg \vert \begin {aligned} &\exists (t_n)_{n\in \N }\subset \R _{\geq 0} \text {~with~} t_n\rightarrow \infty \text {~such that~} \\ &\mathcal {S}^{K,L}_m(t_n)(\phi _0,\psi _0)\rightarrow (\phi _\infty , \psi _\infty ) \text {~in~}\mathcal {H}^2 \ \text {as~}n\rightarrow \infty \end {aligned} \Bigg \}.\end {align*}


$(\phi _0,\psi _0)\in \mathcal {Z}_m^{K,L}$


$(\phi _0,\psi _0)$


$\tau > 0$


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {H}^3)$


$(\delt \phi ,\delt \psi )\in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1)$


$(\phi ,\psi )\in C([t,t+1];\mathcal {H}^2)$


$t\geq \tau > 0$


\begin {align*}(\phi ,\psi )\in BC([\tau ,\infty );\mathcal {H}^s)\end {align*}


$s\in (2,3)$


$\tau > 0$


$\omega $


$\omega ^{K,L}(\phi _0,\psi _0)$


$\mathcal {H}^2$


\begin {align}\label {CompactnessOrbit} \lim _{t\rightarrow \infty } \mathrm {dist}_{\mathcal {H}^2}\big (\mathcal {S}^{K,L}(t)(\phi _0,\psi _0),\omega ^{K,L}(\phi _0,\psi _0)\big ) = 0.\end {align}


$E:\mathcal {Z}_m^{K,L}\rightarrow \R $


$\mathcal {S}^{K,L}$


$(\phi _\infty ,\psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0)$


$\{\mathcal {S}^{K,L}(t)\}_{t\geq 0}$


$\mathcal {S}^{K,L}(t)(\phi _\infty ,\psi _\infty ) = (\phi _\infty ,\psi _\infty )$


$t\geq 0$


$\mu _\infty $


$\theta _\infty $


$(\phi _\infty ,\psi _\infty ,\mu _\infty ,\theta _\infty )$


\begin {alignat*}{2} &\delt \phi _\infty = \Div (m_\Om (\phi _\infty )\Grad \mu _\infty ) &&\qquad \text {in~} \Om \times (0,\infty ), \\ &\mu = -\Lap \phi _\infty + F'(\phi _\infty ) &&\qquad \text {in~} \Om \times (0,\infty ), \\ &\delt \psi _\infty = \Divg (m_\Ga (\psi _\infty )\Gradg \theta _\infty ) - \beta m_\Om (\phi _\infty )\deln \mu _\infty &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\theta _\infty = - \Lapg \psi _\infty + G'(\psi _\infty ) + \alpha \deln \phi _\infty &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\begin {cases} K\deln \phi _\infty = \alpha \psi _\infty - \phi _\infty &\text {if~} K\in (0,\infty ), \\ \deln \phi _\infty = 0 &\text {if~} K = \infty \end {cases} &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\begin {cases} L m_\Om (\phi _\infty )\deln \mu _\infty = \beta \theta _\infty - \mu _\infty &\text {if~} L\in [0,\infty ), \\ m_\Om (\phi _\infty )\deln \mu _\infty = 0 &\text {if~} L=\infty \end {cases} &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\phi _\infty \vert _{t=0} = \phi _0 &&\qquad \text {in~} \Om , \\ &\psi _\infty \vert _{t=0} = \psi _0 &&\qquad \text {on~} \Ga .\end {alignat*}


$(\phi _\infty ,\psi _\infty ,\mu _\infty ,\theta _\infty )$


\begin {alignat}{2} \label {EQ:SYSTEM:STATIONARY:1} &\Div (m_\Om (\phi _\infty )\Grad \mu _\infty ) = 0 &&\qquad \text {in~}\Om , \\ \label {EQ:SYSTEM:STATIONARY:2} &\mu _\infty = -\Lap \phi _\infty + F^\prime (\phi _\infty ) &&\qquad \text {in~}\Om , \\ \label {EQ:SYSTEM:STATIONARY:3} &\Divg (m_\Ga (\psi _\infty )\Gradg \theta _\infty ) - \beta m_\Om (\phi _\infty )\deln \mu _\infty = 0 &&\qquad \text {on~}\Ga , \\ \label {EQ:SYSTEM:STATIONARY:4} &\theta _\infty = -\Lapg \psi _\infty + G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty &&\qquad \text {on~}\Ga , \\ \label {EQ:SYSTEM:STATIONARY:5} &\begin {cases} K\deln \phi _\infty = \alpha \psi _\infty - \phi _\infty &\text {if} \ K\in (0,\infty ), \\ \deln \phi _\infty = 0 &\text {if} \ K = \infty \end {cases} &&\qquad \text {on~} \Ga , \\ \label {EQ:SYSTEM:STATIONARY:6} &\begin {cases} L m_\Om (\phi _\infty )\deln \mu _\infty = \beta \theta _\infty - \mu _\infty &\text {if~} L\in [0,\infty ), \\ m_\Om (\phi _\infty )\deln \mu _\infty = 0 &\text {if~} L=\infty \end {cases} &&\qquad \text {on~} \Ga .\end {alignat}


$\mu _\infty $


$\theta _\infty $


$\Om $


$\Ga $


\begin {align*}\intO m_\Om (\phi _\infty )\abs {\Grad \mu _\infty }^2\dx + \intG m_\Ga (\psi _\infty )\abs {\Gradg \theta _\infty }^2\dG + \chi (L)\intG (\beta \theta _\infty - \mu _\infty )^2\dG = 0.\end {align*}


$L\in [0,\infty ]$


$\mu _\infty $


$\theta _\infty $


$L\in [0,\infty )$


$\beta \theta _\infty = \mu _\infty $


$\alpha $


$\Om $


$\Ga $


\begin {align}\label {STAT:MT:L} \mu _\infty = \beta \theta _\infty = \frac {\alpha }{\alpha \beta \abs {\Om } + \abs {\Ga }}\Big (\alpha \intO F^\prime (\phi _\infty )\dx + \intG G^\prime (\psi _\infty )\dG \Big )\end {align}


$L\in [0,\infty )$


$L = \infty $


\begin {equation}\label {STAT:MT:infty} \begin {split} \mu _\infty &= \frac {1}{\abs {\Om }} \Big (\intO F^\prime (\phi _\infty )\dx - \intG \deln \phi _\infty \dG \Big ), \\ \theta _\infty &= \frac {1}{\abs {\Ga }}\Big (\intG G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty \dG \Big ). \end {split}\end {equation}


\begin {alignat*}{2} &\mu _\infty = -\Lap \phi _\infty + F^\prime (\phi _\infty ) &&\qquad \text {in~}\Om , \\ &\theta _\infty = -\Lapg \psi _\infty + G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty &&\qquad \text {on~}\Ga , \\ &\begin {cases} K\deln \phi _\infty = \alpha \psi _\infty - \phi _\infty &\text {if} \ K\in (0,\infty ), \\ \deln \phi _\infty = 0 &\text {if} \ K = \infty \end {cases} &&\qquad \text {on~} \Ga ,\end {alignat*}


$\mu _\infty $


$\theta _\infty $


$L\in [0,\infty ]$


\begin {align}\label {E_infty} E_\infty = \lim _{t\rightarrow \infty } E(\phi (t),\psi (t)) \quad \text {exists, and~}\quad E(\phi _\infty ,\psi _\infty ) = E_\infty \quad \text {for all~}(\phi _\infty ,\psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0).\end {align}


$\omega $


$\omega ^{K,L}(\phi _0,\psi _0)$


$F_1, G_1$


$(-1,1)$


$F_2, G_2$


$\R $


$(\phi _\infty , \psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0)$


$\varpi \in (0,\frac 12)$


$b > 0$


$C>0$


\begin {align}C \left \|\mathbf {P}_{L}\begin {pmatrix} -\Lap \zeta + F^\prime (\zeta ) \\ -\Lapg \xi + G^\prime (\xi ) + \alpha \deln \zeta \end {pmatrix}\right \|_{\mathcal {L}^2} \geq \abs {E(\zeta , \xi ) - E(\phi _\infty , \psi _\infty )}^{1 - \varpi }\end {align}


$(\zeta ,\xi )\in \mathcal {H}^2\cap \mathcal {W}^1_{K,L,m}$


$\norm {(\zeta - \phi _\infty , \xi - \psi _\infty )}_{\mathcal {H}^2}\leq b$


$\mathbf {P}_{L}$


$\mathcal {L}^2$


\begin {equation*}\begin {cases} \{\scp {\phi }{\psi }\in \mathcal {L}^2 : \mean {\phi }{\psi } = 0 \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in \mathcal {L}^2: \meano {\phi } = \meang {\psi } = 0 \}, &\text {if~}L=\infty . \end {cases}\end {equation*}


$L = \infty $


$(\phi _0,\psi _0)\in \mathcal {Z}_m^{K,L}$


$m$


$\omega ^{K,L}(\phi _0,\psi _0)$


$\mathcal {H}^2\cap \mathcal {W}^1_{K,L,m}$


$\omega ^{K,L}(\phi _0,\psi _0)$


$\{B_j\}_{j=1,\ldots ,N}$


$\mathcal {H}^2\cap \mathcal {W}^1_{K,L,m}$


$(\phi _\infty ^j,\psi _\infty ^j)\in \omega ^{K,L}(\phi _0,\psi _0)$


$b_j$


$b_j > 0$


$(\phi _\infty ^j,\psi _\infty ^j)$


$E\vert _{\omega ^{K,L}(\phi _0,\psi _0)} = E_\infty $


$U := \bigcup _{j=1}^N B_j$


$\widetilde \varpi \in (0,\frac 12)$


$\widetilde {C} > 0$


\begin {align*}\widetilde {C} \left \|\mathbf {P}_{L}\begin {pmatrix} -\Lap \zeta + F^\prime (\zeta ) \\ -\Lapg \xi + G^\prime (\xi ) + \alpha \deln \zeta \end {pmatrix}\right \|_{\mathcal {L}^2} \geq \abs {E(\zeta , \xi ) - E_\infty }^{1 - \widetilde \varpi } \qquad \text {for all~}(\zeta ,\xi )\in U.\end {align*}


$t^\ast > 0$


$(\phi (t),\psi (t))\in U$


$t\geq t^\ast $


$H(t) := (E(\phi (t),\psi (t)) - E_\infty )^{\widetilde \varpi }$


\begin {align*}-\ddt H(t) &= -\widetilde \varpi \left (E(\phi (t),\psi (t)) - E_\infty \right )^{\widetilde \varpi - 1}\ddt E(\phi (t),\psi (t)) \\ &\geq \frac {\widetilde \varpi }{\widetilde C}\frac {\norm {(\mu (t),\theta (t))}_{L,[\phi ,\psi ]}^2}{\Bignorm {\mathbf {P}_{L}\begin {pmatrix} -\Lap \phi (t) + F^\prime (\phi (t)) \\ -\Lapg \psi (t) + G^\prime (\psi (t)) + \alpha \deln \phi (t) \end {pmatrix}}_{\mathcal {L}^2}} \\ &\geq \frac {\widetilde \varpi \min \{1,m^\ast \}}{\widetilde C}\frac {\norm {(\mu (t),\theta (t))}_{L}^2}{\Bignorm {\mathbf {P}_{L}\begin {pmatrix} -\Lap \phi (t) + F^\prime (\phi (t)) \\ -\Lapg \psi (t) + G^\prime (\psi (t)) + \alpha \deln \phi (t) \end {pmatrix}}_{\mathcal {L}^2}}\end {align*}


$t\geq t^\ast $


\begin {align*}&\Bignorm {\mathbf {P}_{L}\begin {pmatrix} -\Lap \phi (t) + F^\prime (\phi (t)) \\ -\Lapg \psi (t) + G^\prime (\psi (t)) + \alpha \deln \phi (t) \end {pmatrix}}_{\mathcal {L}^2} \\ &\quad = \norm {(\mu (t) - \beta \mean {\mu (t)}{\theta (t)},\theta (t) - \mean {\mu (t)}{\theta (t)})}_{\mathcal {L}^2} \\ &\quad \leq C_P\norm {(\mu (t),\theta (t))}_{L}.\end {align*}


\begin {align*}-\ddt H(t) \geq \frac {\widetilde \varpi \min \{1,m^\ast \}}{C_p\widetilde C}\norm {(\mu (t),\theta (t))}_{L} \qquad \text {for~a.e.~}t\geq t^\ast .\end {align*}


$t^\ast $


$\infty $


\begin {align*}\int _{t^\ast }^\infty \norm {(\mu (t),\theta (t))}_{L}\dt \leq \frac {C_p\widetilde C}{\widetilde \varpi \min \{1,m^\ast \}}H(t^\ast ),\end {align*}


$t\mapsto \norm {(\mu (t),\theta (t))}_{L}\in L^1(t^\ast ,\infty )$


$(\delt \phi ,\delt \psi )\in L^1(t^\ast ,\infty ;(\mathcal {H}^1_L)^\prime )$


$(\phi _\infty ,\psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0)$


\begin {align*}(\phi (t),\psi (t)) = (\phi (t^\ast ),\psi (t^\ast )) + \int _{t^\ast }^t (\delt \phi (s),\delt \psi (s))\ds \longrightarrow (\phi _\infty ,\psi _\infty ) \quad \text {in~}(\mathcal {H}^1_L)^\prime \quad \text {as~}t\rightarrow \infty ,\end {align*}


$\omega ^{K,L}(\phi _0,\psi _0) = \{(\phi _\infty ,\psi _\infty )\}$


$\Om \subset \R ^d$


$d=2,3$


$C^3$


$I = (a,b) \subset \R $


$(\phi ,\psi )\in H^1(I;\mathcal {L}^3)\cap L^\infty (I;\mathcal {W}^{2,4})$


$\abs {\phi }\leq 1$


$\Om $


$\abs {\psi }\leq 1$


$\Ga $


$m_\Om , m_\Ga \in C^2([-1,1])$


$(u,v)\in C(\overline {I};\mathcal {L}^2)\cap L^\infty (I;\mathcal {H}^1_L)\cap L^2(I;\mathcal {H}^3)$


$Lm_\Om (\phi )\deln u = \beta v - u$


$\Ga $


$(\delt u, \delt v)\in L^2(I;(\mathcal {H}^1_K)^\prime )$


\begin {align*}\big (\Div (m_\Om (\phi )\Grad u), \Divg (m_\Ga (\psi )\Gradg v) - \beta m_\Om (\phi )\deln u\big )\in L^2(I;\mathcal {H}^1_K).\end {align*}


$(u,v)\in C(\overline {I};\mathcal {H}^1_L)$


\begin {align*}I\ni t \mapsto \intO m_\Om (\phi (t))\abs {\Grad u(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v(t)}^2\dG + \chi (L)\intG (\beta v(t) - u(t))^2\dG \end {align*}


\begin {equation}\begin {split} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad u}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg v}^2\dG + \chi (L)\intG (\beta v - u)^2\dG \Big ) \\ &\quad = \bigang {(\delt u, \delt v)}{(-\Div (m_\Om (\phi )\Grad u), -\Divg (m_\Ga (\psi )\Gradg v) + \beta m_\Om (\phi )\deln u)}_{\mathcal {H}^1_K} + \intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v}^2\dG \end {split}\label {App:ChainRule123}\end {equation}


$I$


$u$


$v$


$(u,v)\in C([a,b];\mathcal {L}^2)$


$u$


$v$


$[2a-b,a]$


$t < a$


$\rho \in C_c^\infty (\R )$


$\mathrm {supp}\,\rho \subset (0,1)$


$\norm {\rho }_{L^1(\R )} = 1$


$k\in \N $


\begin {align*}\rho _k(s) := k\rho (ks) \qquad \text {for all~}s\in \R .\end {align*}


$X$


$f\in L^2(a-1,b;X)$


\begin {align*}f_k(t) := (\rho _k\ast f)(t) = \int _{t-\tfrac {1}{k}}^t \rho _k(t-s)f(s)\ds \qquad \text {for all~}t\in [a,b] \quad \text {and}\quad k\in \N .\end {align*}


$f_k\in C^\infty ([a,b];X)$


$f_k\rightarrow f$


$L^2(a,b;X)$


$k\rightarrow \infty $


$k\in \N $


$X = H^3(\Om )$


$u_k$


$X = H^3(\Ga )$


$v_k$


$\delt u_k = (\delt u)_k$


$\delt \Grad u_k = \Grad \delt u_k$


$\Om \times (a,b)$


$\delt v_k = (\delt v)_k$


$\delt \Gradg v_k = \Gradg \delt v_k$


$\Ga \times (a,b)$


$k\in \N $


\begin {alignat}{2} u_k &\rightarrow u &&\qquad \text {strongly in~} L^2(a,b;H^3(\Om )), \label {App:Conv:u:H3} \\ v_k &\rightarrow v &&\qquad \text {strongly in~} L^2(a,b;H^3(\Ga )), \label {App:Conv:v:H3} \\ (u_k,v_k) &\rightarrow (u,v) &&\qquad \text {strongly in~} L^2(a,b;\mathcal {H}^1_L), \label {App:Conv:uv:H1}\\ (\delt u_k,\delt v_k) &\rightarrow (\delt u, \delt v) &&\qquad \text {strongly in~} L^2(a,b;(\mathcal {H}^1_K)^\prime ) \label {App:Conv:delt:uv:H1}\end {alignat}


$k\rightarrow \infty $


\begin {equation}\label {App:Est:uv:k:LinftyH1} \begin {split} \norm {u_k}_{L^\infty (a,b;H^1(\Om ))} &\leq \norm {u}_{L^\infty (a,b;H^1(\Om ))}, \\ \norm {v_k}_{L^\infty (a,b;H^1(\Ga ))} &\leq \norm {v}_{L^\infty (a,b;H^1(\Ga ))} \end {split}\end {equation}


$k\in \N $


$C$


$k\in \N $


$k\in \N $


\begin {align}\label {App:ChainRule:Approx} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad u_k}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg v_k}^2\dG + \chi (L)\intG (\beta v_k - u_k)^2\dG \Big ) \\ &\quad = \bigang {(\delt u_k, \delt v_k)}{(-\Div (m_\Om (\phi )\Grad u_k), -\Divg (m_\Ga (\psi )\Gradg v_k) + \beta m_\Om (\phi )\deln u_k)}_{\mathcal {H}^1_K} + \intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u_k}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v_k}^2\dG \nonumber \end {align}


$[a,b]$


$j,k\in \N $


\begin {align}\label {App:ChainRule:Approx:Difference} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad (u_j - u_k)}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg (v_j - v_k)}^2\dG + \chi (L)\intG \big (\beta (v_j - v_k) - (u_j - u_k)\big )^2\dG \Big ) \nonumber \\ &\quad = \big \langle (\delt (u_j - u_k), \delt (v_j - v_k)),(-\Div (m_\Om (\phi )\Grad (u_j - u_k)), - \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) + \beta m_\Om (\phi )\deln (u_j - u_k))\big \rangle _{\mathcal {H}^1_K} \nonumber \\ &\qquad + \intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad (u_j - u_k)}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg (v_j - v_k)}^2\dG \\ &\quad \leq \norm {(\delt (u_j - u_k),\delt (v_j - v_k))}_{(\mathcal {H}^1_K)^\prime }\norm {(\Div (m_\Om (\phi )\Grad (u_j - u_k)), \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k))}_{\mathcal {H}^1} \nonumber \\ &\qquad + C\norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^3}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^6}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^2}. \nonumber \end {align}


\begin {align*}&\norm {(\Div (m_\Om (\phi )\Grad (u_j - u_k)), \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k))}_{\mathcal {H}^1} \\ &\quad \leq \norm {(\Div (m_\Om (\phi )\Grad (u_j - u_k)), \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {\big (\Grad \big (\Div (m_\Om (\phi )\Grad (u_j - u_k))\big ), \Gradg \big (\Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k)\big )\big )}_{\mathcal {H}^1} \\ &\quad \leq \norm {(m_\Om (\phi )\Lap (u_j - u_k),m_\Ga (\psi )\Lapg (v_j - v_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad (u_j - u_k),m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg (v_j - v_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om (\phi )\Grad \Lap (u_j - u_k), m_\Ga (\psi )\Gradg \Lapg (v_j - v_j))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )\Lap (u_j - u_k)\Grad \phi ,m_\Ga ^\prime (\psi )\Lapg (v_j - v_k)\Gradg \psi )}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^{\prime \prime }(\phi )(\Grad \phi \cdot \Grad (u_j - u_k))\Grad \phi , m_\Ga ^{\prime \prime }(\psi )(\Gradg \psi \cdot \Gradg (v_j - v_k))\Gradg \psi )}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )D^2\phi \Grad (u_j - u_k), m_\Ga ^\prime (\psi )D^2_\Ga \psi \Gradg (v_j - v_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )D^2(u_j - u_k)\Grad \phi , m_\Ga ^\prime (\psi )D^2_\Ga (v_j - v_j)\Gradg \psi )}_{\mathcal {L}^2} \\ &\qquad + \norm {\beta m_\Om (\phi )\deln (u_j - u_k)}_{L^2(\Ga )} + \norm {\beta m_\Om ^\prime (\phi )\Gradg \phi \deln (u_j - u_k)}_{L^2(\Ga )} \\ &\qquad + \norm {\beta m_\Om (\phi )\Gradg \deln (u_j - u_k)}_{L^2(\Ga )} \\ &\quad \leq C\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^1} \\ &\qquad + C\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} \\ &\qquad + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }^2\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^1} + \norm {(\phi ,\psi )}_{\mathcal {W}^{2,6}}\norm {(\Grad (u_j - u_k), \Gradg (v_j - v_k))}_{\mathcal {L}^3} \\ &\qquad + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} + C\norm {u_j - u_k}_{H^2(\Om )} \\ &\qquad + C\norm {\phi }_{W^{2,4}(\Om )}\norm {(u_j - u_k)}_{\mathcal {H}^2} + C\norm {u_j - u_k}_{H^3(\Om )} \\ &\quad \leq C\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}.\end {align*}


$H^3(\Om )\emb H^2(\Ga )$


\begin {align*}\norm {\deln (u_j - u_k)}_{H^1(\Ga )} \leq \norm {u_j - u_k}_{H^2(\Ga )} \leq C\norm {u_j - u_k}_{H^3(\Om )},\end {align*}


$W^{2,4}(\Om )\emb W^{1,\infty }(\Ga )$


\begin {align*}\norm {\Gradg \phi }_{L^\infty (\Ga )} \leq \norm {\phi }_{W^{1,\infty }(\Ga )} \leq C\norm {\phi }_{W^{2,4}(\Om )}.\end {align*}


\begin {align*}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^6}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^2} \leq C\norm {(u,v)}_{L^\infty (I;\mathcal {H}^1)}\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}.\end {align*}


\begin {equation}\label {App:ChainRule:Approx:Diff:Est} \begin {split} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad (u_j - u_k)}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg (v_j - v_k)}^2\dG + \chi (L)\intG \big (\beta (v_j - v_k) - (u_j - u_k)\big )^2\dG \Big ) \\ &\quad \leq C\Big (\norm {(\delt (u_j - u_k),\delt (v_j - v_k))}_{(\mathcal {H}^1_K)^\prime } + \norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^3}\Big )\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}. \end {split}\end {equation}


$s,t\in [a,b]$


$s \leq t$


$[s,t]$


\begin {align}\label {App:ChainRule:Diff:Approx:Est:Int} &\intO m_\Om (\phi (t))\abs {\Grad (u_j - u_k)(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg (v_j - v_k)(t)}^2\dG \nonumber + \chi (L)\intG \big (\beta (v_j - v_k)(t) - (u_j - u_k)(t)\big )^2\dG \nonumber \\ &\quad \leq \intO m_\Om (\phi (s))\abs {\Grad (u_j - u_k)(s)}^2\dx + \intG m_\Ga (\psi (s))\abs {\Gradg (v_j - v_k)(s)}^2\dG + \chi (L)\intG \big (\beta (v_j - v_k)(s) - (u_j - u_k)(s)\big )^2\dG \\ &\qquad + C\int _s^t \norm {(\delt (u_j - u_k), \delt (v_j - v_k))}_{(\mathcal {H}^1_K)^\prime }^2 + \norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}^2 \dtau + C\int _s^t \norm {(\delt \phi ,\delt \psi )}_{\mathcal {H}^1}\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} \dtau . \nonumber \end {align}


$s\in [a,t]$


$(u_k(s),v_k(s)) \rightarrow (u(s),v(s))$


$\mathcal {H}^3$


$k\rightarrow \infty $


$j,k\rightarrow \infty $


$m_\Om $


$m_\Ga $


$(\Grad u_k)_{k\in \N }$


$C([a,b];L^2(\Om ))$


$(\Gradg v_k)_{k\in \N }$


$C([a,b];L^2(\Ga ))$


\begin {alignat}{2} \Grad u_k &\rightarrow \Grad u &&\qquad \text {strongly in~} C([a,b];L^2(\Om )), \label {App:Conv:Grad:u}\\ \Gradg v_k &\rightarrow \Gradg v &&\qquad \text {strongly in~} C([a,b];L^2(\Ga )) \label {App:Conv:Grad:v}\end {alignat}


$k\rightarrow \infty $


$(u,v)\in C([a,b];\mathcal {L}^2)$


$(u,v)\in C([a,b];\mathcal {H}^1)$


$s,t\in [a,b]$


$s \leq t$


$s$


$t$


\begin {align}\label {App:ChainRule:Approx:Id} \begin {split} &\intO m_\Om (\phi (t))\abs {\Grad u_k(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v_k(t)}^2\dG + \chi (L)\intG (\beta v_k(t) - u_k(t))^2\dG \\ &\quad = \intO m_\Om (\phi (s))\abs {\Grad u_k(s)}^2\dx + \intG m_\Ga (\psi (s))\abs {\Gradg v_k(s)}^2\dG + \chi (L)\intG (\beta v_k(s) - u_k(s))^2\dG \\ &\qquad + 2\int _s^t \bigang {(\delt u_k, \delt v_k)}{(-\Div (m_\Om (\phi )\Grad u_k), -\Divg (m_\Ga (\psi )\Gradg v_k) + \beta m_\Om (\phi )\deln u_k)}_{\mathcal {H}^1_K}\dtau \\ &\qquad + 2\int _s^t \Big (\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u_k}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v_k}^2\dG \Big )\dtau . \end {split}\end {align}


\begin {equation*}\begin {split} &\Big \vert \int _s^t\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u_k}^2\dx \dtau - \int _s^t\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u}^2\dx \dtau \Big \vert \\ &\quad = \Big \vert \int _s^t\intO m_\Om ^\prime (\phi )\delt \phi (\Grad u_k + \Grad u)\cdot (\Grad u_k - \Grad u)\dx \dtau \Big \vert \\ &\quad \leq \norm {m_\Om ^\prime }_{L^\infty (-1,1)}\norm {\delt \phi }_{L^2(a,b;L^3(\Om ))} \norm {\Grad u_k + \Grad u}_{L^2(a,b;L^6(\Om ))}\norm {\Grad u_k - \Grad u}_{C([a,b];L^2(\Om ))} \\ &\quad \leq 2\norm {m_\Om ^\prime }_{L^\infty (-1,1)}\norm {\delt \phi }_{L^2(a,b;L^3(\Om ))}\norm {u}_{L^2(a,b;H^3(\Om ))}\norm {\Grad u_k - \Grad u}_{C([a,b];L^2(\Om ))} \\ &\quad \longrightarrow 0 \end {split}\end {equation*}


$k\rightarrow \infty $


$k\rightarrow \infty $


\begin {align*}&\intO m_\Om (\phi (t))\abs {\Grad u(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v(t)}^2\dG + \chi (L)\intG (\beta v(t) - u(t))^2\dG \\ &\quad = \intO m_\Om (\phi (s))\abs {\Grad u(s)}^2\dx + \intG m_\Ga (\psi (s))\abs {\Gradg v(s)}^2\dG + \chi (L)\intG (\beta v(s) - u(s))^2\dG \\ &\qquad + 2\int _s^t \bigang {(\delt u, \delt v)}{(-\Div (m_\Om (\phi )\Grad u), -\Divg (m_\Ga (\psi )\Gradg v) + \beta m_\Om (\phi )\deln u_k)}_{\mathcal {H}^1_K}\dtau \\ &\qquad + 2\int _s^t \Big (\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v}^2\dG \Big )\dtau .\end {align*}


$L^1(a,b)$


\begin {align*}[a,b]\ni t \mapsto \intO m_\Om (\phi (t))\abs {\Grad u(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v(t)}^2\dG + \chi (L)\intG (\beta v(t) - u(t))^2\dG \end {align*}


$[a,b]$
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for non-degenerate mobility functions in two dimensions, and thus improved the state of the art dating back to the work [2]. We
further would like to mention the recent work [9], where the authors established a weak-strong uniqueness principle for the Cahn-
Hilliard equation on an evolving surface. Building on the approach developed in [8], we extend the uniqueness theory to the Cahn-
Hilliard equation with dynamic boundary conditions (1.1). To the best of our knowledge, this is the first result addressing uniqueness
and propagation of regularity in the setting of dynamic boundary conditions with non-constant mobilities. Our proof relies on two
main ingredients: a novel well-posedness and regularity theory for a bulk-surface elliptic system with non-constant coefficients (see
Section 4), as well as a recently established result on higher time-regularity for the phase-fields (see [15, Theorem 3.3]). Then, using
our proof, particularly the key differential inequality established therein, we are able to demonstrate the propagation of regularity
for weak solutions. To this end, we introduce an additional regularization procedure for the mobility functions, which allows us to
work under minimal assumptions on their regularity. As a consequence, we also obtain the instantaneous separation property. This
separation property, in turn, enables us to prove convergence to a single stationary state by means of the standard Lojasiewicz—-
Simon approach. It is worth mentioning that our results can be readily adapted to the case of the convective model proposed in
[22] for sufficiently regular prescribed velocity fields. This might be useful in further analysis of related models for two-phase flows
with bulk-surface interaction, see, e.g., [11,14] for a bulk-surface Navier—Stokes-Cahn-Hilliard model or [21] for a bulk-surface
Navier-Stokes—Cahn-Hilliard model in an evolving domain.

Structure of this paper. The rest of this contribution is structured as follows. In Section 2, we collect some notation, assumptions,
preliminaries, and important tools. After introducing the notation of a weak solution of (1.1), we state our main results in Section 3. In
Section 4, we establish a new well-posedness and regularity theory for a bulk-surface elliptic system with non-constant coefficients.
Then, Section 5 is devoted to the proof of the well-posedness of weak solutions to (1.1). Afterwards, in Section 6, we show that
there exists a weak solution that admits the propagation of regularity and satisfies the instantaneous separation property. Lastly, in
Section 7, we study the long-time behavior of the unique weak solution of (1.1) and show its convergence to a single stationary state
ast— oo.

2. Functional framework, assumptions and preliminaries
2.1. Notation and function spaces.

For any Banach space X, we denote its norm by || - || y, its dual space by X’, and the associated duality pairing of elements ¢ € X’
and ¢ € X by (¢,¢)y. The space L?(I; X), 1 < p < 400, denotes the set of all strongly measurable p-integrable functions mapping
from any interval I C R into X, or, if p = 4+, essentially bounded functions. Moreover, the space W »(I; X) consists of all functions
f € LP(I; X) such that 9, f € LP(I; X), where 9, f denotes the vector-valued distributional derivative of f. Furthermore, L‘:loc(l : X)
denotes the space of functions f € LP(I; X) such that

1
I lep ax) == sup (/ 17Ol ds>p e
uloc >0 In[tt+1)

If I C R is a finite interval, we find that Lﬁ oo (3 X) = LP(I; X). Further, we denote the space of continuous functions mapping from
I to X by C(I; X).

Let Q c R?, d € {2,3}, be a bounded domain with sufficiently smooth boundary I' := dQ. For any 1 < p < oo and k € N, the
Lebesgue and Sobolev spaces for functions mapping from Q to R are denoted as L”(Q) and W*P(Q), respectively. Here, we use
N for the set of natural numbers excluding zero and N, :=NuU {0}. For 1 <p <o and s > 0, we denote by W*P(Q) the Sobolev-
Slobodeckij spaces. If p = 2, we write H*(Q) = W*(Q). In particular, H'(Q) can be identified with L?>(Q). The Lebesgue, Sobolev,
and Sobolev-Slobodeckij spaces on the boundary can be defined similarly, provided that I is sufficiently regular. As before, we write
H*@I) = W*2(T') and identify H°(I") with L2(T").

Next, we introduce the product spaces

LP = LP(Q)x LP(MT), and WP :=W*P(Q)x W),

for any real numbers s > 0 and p € [1, o], provided that the boundary T is sufficiently regular. We abbreviate #* := W*? and identify
£2 with H°. Note that * is a Hilbert space with respect to the inner product

((059 v), (Cf))w =(b. Oms) + W Opsry for all (¢, y), (¢, &) € H*

1
and its induced norm || - [|lys 1= (-, ’),2{:- We recall that the duality pairing can be expressed as

<(¢» v), (¢, f))HS = (¢, g)LZ(Q) + (y, é)LZ(r)
for all (¢, &) € H* if (¢, w) € £2. For L € [0, 0] and f € R, we introduce the linear subspace

- {H', if L € (0, o],

L7\ (pw)eH : p=pyaeonT), ifL=0.

The space HIL is a Hilbert space endowed with the inner product (-,-);;1 :=(-,-);;1 and its induced norm. Moreover, we define the
L
product

(CRN( §)>H11~ = (¢, C)LZ(Q) + (v, f)LZ(r)
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for all (¢, w), (£, &) € £2. By means of the Riesz representation theorem, this product can be extended to a duality pairing on (Hi)’ X Hi,
which will also be denoted as (-, ~)H1L .
For (¢, y) € (HIL)’ , we define the generalized bulk-surface mean
(P, w), (B, 1)>H1L
mean(¢,y) = W

which reduces to
BlIQIK@)q + ITw)r

e ) = T e I

if (¢, w) € £2, where

=L L
o= [#an = [vor

We then define the closed linear subspace
pi oo J @ w eH) tmean(g.y) =0}, if L €[0,00),
{(@y) e (D)o = (¥)r =0}, ifL=co.

Note that this space is a Hilbert space with respect to the inner product (-, ).
Now, we set

L', if L € (0, ),
x(L) 1= .
0, if L € {0, 00},

and we introduce a bilinear form on H! x #! by defining
(0. ). ¢.9), I=/QV¢'VC dx+/V1—y/~V1—§ dF+)((L)/(ﬁW—¢)(ﬂf—C) ar
r r
for all (¢, ), (£, &) € H'. Moreover, we set

1
(@, )l == ((¢,W),(¢,II/))Z
for all (¢, ) € H'. The bilinear form (-,-); defines an inner product on Vi, and || - ||, defines a norm on Vi, that is equivalent to the
norm || - [|;;1 (see [20, Corollary A.2]). Hence, the space Vi endowed with (-, -); is a Hilbert space.
Next, we define the space

-1 {(d.w) € (HIL)/ : mean(¢,y) =0}, if L € [0, ),

- {dw) € (Y < (d)g = (w)r =0}, if L=co.
Using the Lax-Milgram theorem, one can show that for any (¢,w) € V;!, there exists a unique weak solution S;(¢,w) =
(S5, w), SL(#,w)) € V] to the following elliptic problem with bulk-surface coupling

—ASHpw)=¢ inQ, (2.1a)
—ArSY (@) + p0, S w) = w onT, (2.1b)
Lo, SP(¢.y) = S| (¢ w) — SP(¢p.w)  onT, (2.1¢)

in the sense that it satisfies the weak formulation
(SL@w). (. 9), = ((d. ), (c,f))HlL

for all test functions (£, &) € H i Consequently, there exists a constant C > 0, depending only on Q, L and f such that
1Sl < I Wl g1y

for all (¢, w) € VZ‘. This allows us to define a solution operator
SVl =V (@) = Sy = (ST@.). S y)

as well as an inner product and its induced norm on Vzl via

(@.9)..8),, = (SL.¥). S, 0),.

N )l 2= (. w). (&, l//))é*
for all (¢, w), (¢, &) € VZ‘. This norm is equivalent to the norm || - ||(H1L y on VZ‘, see, e.g., [20, Theorem 3.3 and Corollary 3.5] for a
proof if L € (0, ). In the other cases, the proof can be carried out similarly.
Lastly, let m € R if L € [0, 00) or m = (m;,m,) € R? if L = co. Then we define
Wy g 1= {{(qs,w)eHl : mean(, y) = m), if L € [0, ),
o {(p.w) € H' : (P)g =my, (w)r =my}, if L=oo.

4
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2.2. Important tools

Throughout this paper, we will frequently use the bulk-surface Poincaré inequality, which has been established in [20, Lemma
All:

Lemma 2.1. Let K € [0, ) and a, f € R such that af|Q| + |T'| # 0. Then, there exists a constant Cp > 0, depending only on K, a, f and
Q such that

1€z < Cpll€, Ok
for all pairs (¢,€) € 7'-[11< satisfying mean(¢, &) = 0.
Furthermore, we recall the following interpolation inequality:

Lemma 2.2. There exists a constant C > 0, such that for all 2 < r < oo it holds that

2 =2
& Oller < CVAIGOIZNIE DI, forall ¢.8) e H'. 2.2)

Since I' is a I-dimensional submanifold of R, we can readily obtain (2.2) as an extension of the following Gagliardo—
Nirenberg-Sobolev inequality (see [29, Proposition and Remark 1]): there exists a constant C > 0, such that for all 2 <r < oo it
holds that

r=2

2 =2
Il < CVAIEI, o €1, forallE € H'(@).
Lastly, we present the following uniform variant of the Gronwall lemma. A proof can be found, e.g., in [32, Chapter III, Lemma 1.1].

Lemma 2.3. Let g, h, y be three positive locally integrable functions on (t,, oo) such that y' is locally integrable on (t,, o) and which satisfy

d
—y<gy+h,
VS8

t+r t+r t+r
/ g(s)ds < ay, / h(s) ds < a,, / y(s)ds <ay forallt>1,,
' ' '

where r, a|, a,, a3 are positive constants. Then it holds

y() < <af +a2>e“‘ forallt >ty +r.

2.3. Main assumptions.

(A1) The constants «, f € R appearing in system (1.1) are supposed to satisfy a € [—1, 1] as well as af|Q| + || # 0.
(A2) For the mobility functions we require mg, mr € C([—1, 1]). Furthermore, we assume the existence of constants m*, M* > 0 such
that

0 <m* < mg(s),mp(s) < M* for all s € [-1,1]. (2.3)
(A3) For the potentials, we assume that F,G : R — R are of the form
F(s) = Fi(s) + F,(s), G(s) = G1(5) + Gy(s),
where F,G, € C([-1,1]) n C?(~1, 1) such that F,(0) = F]’(O) =G 0)= G/I ) =0,
sl\iTl Fl(s) = sl\i‘IP] Gj(s) = —oco and 11/r‘r11 Fl(s) = ll/l"rll G| () = +oo,
and there exist constants g, O > 0 such that
F/'(s)>0q and GY(s)>Op for all s € (-1, 1). 2.4)

We extend F; and G, on R by defining F,(s) = G,(s) = + for s & [-1, 1]. For F, and G,, we assume F,, G, € C!(R) such that
their derivatives are globally Lipschitz continuous. Lastly, we require that the singular part of the boundary potential dominates
the singular part of the bulk potential in the sense that there exist constants x, x, > 0 such that

|F|'(aS)| < K1|G$ )|+ Ky for all s € (-1, 1). (2.5)

For certain results established in this work, we require additional growth conditions on the singular components F, and G, of
the potentials.
(A4) We assume that one of the following conditions hold:
(A4.1) There exist constants Cy>0 and rs €11,2) such that

F/'(s) < e O™ forall s e (-1, 1), (2.6)
(A4.2) As 6 \, 0, for some k > %, it holds that

1 1 1 1
=0 , =0 . 2.7
Fl’(1—2§) <|ln6|K) |F1’(—1+25)| <|1n5|K> 27)
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3. Main results
3.1. Well-posedness of weak solutions

We start by introducing the notion of a weak solution.
Definition 3.1. Let K, L € [0, ], and let (¢, w,) € H} be an initial datum satisfying

lloll oy < 1 llwollpeoqry < 1. (3.1a)
In addition, we assume that
pmean(¢,, y,) € (—1,1), mean(¢y,y,) € (-1,1), if L€ [0,), (3.1b)
and
(bo)o € L 1), (wp)r € (-1, 1), if L=co. (3.1¢0)
The quadruplet (¢, w, u, 0) is a called a weak solution of the system (1.1) on [0,T] for T > 0 if the following properties hold:
(i) The functions ¢, y, u and 0 satisfy

(¢.w) € CUO, T £ N H' (0, T;(H}))n L¥0,T; Hy.), (3.2a)

(1,0) € L0, T; H}), (3.2b)

(F'(¢).G'(w)) € L*(0.T: £?), (3.20)
and it holds

|p| <1 aeinQ and |y|<1 ae onX. 3.3)

(ii) The initial conditions are satisfied in the following sense:
Plico=¢y ae inQ, and y|_o=yw, ae onT.

(iii) The variational formulation

(08,0, (C,f))HlL = —/ng(ab)vu V¢ dx - /]_’"F(W)Vro - Vpédr

(3.4a)
- x(L) /(ﬂ9 —w(pE —¢) dl,
r
//m dx+/919 dr = / Vo - Vn+F’(¢)r]dx+/Vry/~VF19+G’(y/)19dF
Q r Q r
(3.4b)
+ x(K) /r(ml/ = ¢)ad —n) dl,
holds a.e. on [0,T] for all (¢,&) € H},(n,9) € Hy..
(iv) The functions ¢ and y satisfy the mass conservation law
B [y () dx + [ (D) dT = B [, o dx + [y dT, if L € [0, o), 3.5
Jod® dx = [pydx and [fw(®)dl = [y, dl, if L=oo
forallt €[0,T].
(v) The energy inequality
t t
E(@(t). w() + / / mo(@)|Vul* dx ds + / / mp(y)|Vr0|* dI ds
0o Ja o Jr
' (3.6)
+x(L) /0 /F (B0 — py? dT ds < E(gby, wp)
holds for all t € [0,T].
Our first main result is devoted to the well-posedness of weak solutions to (1.1) in the sense of Definition 3.1.
Theorem 3.2. Assume that the Assumptions (A1)—(A3) hold, and let K € (0, 0] and L € [0, oo]. Then, the following results hold:
I Existence of weak solutions. Let (¢, w) € H' satisfy (3.1). Then there exists a weak solution (¢, w, u,0) of (1.1) such that
(@,w) € L=([0,00); H') 0 LY, (10, 00); H?) 0 LY ([0, 00); W), (3.7a)
(0,9, 9,w) € LA([0, 00); (H})), (3.7b)
(F'($),G'(w)) € Lﬁk,c([O, c0); LP), (3.70)
(1. 0) € L% (10, 00); H"), (3.7d)

forany 2 < p < .
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II Uniqueness of weak solutions. Suppose additionally that mg, mp- € C*([—1, 1]). Let (¢, ), (¢5,w,) be two weak solutions originating
from initial conditions (7, w?), (#9,w?) satisfying (3.1) as well as

{mean(¢0, y?) = mean(¢. ), if L € [0, ), 3.8

@), = (@), and (W) =@ ifL=c.
Then, for any T > 0, there exists a positive constant C such that
1) = da0, w1 () = y2 gty < N = 8397 = WDl

for all t € [0,T). The constant C only depends on the parameters of the system, the final time T, and the initial free energies E(¢°, y/?)
and E($3, wY). In particular, the weak solution is unique.

Remark 3.3. The restriction K € (0, ] in Theorem 3.2 is necessary, as only in this case we are able to prove that

($.w) € L} ([0, 00); H?),

uloc

which is an essential ingredient in the proof of the uniqueness of weak solutions. If K = 0, one only has

(p.w) € L (10, 00); H?),

uloc

see [15, Theorem 3.3], which appears insufficient to establish the uniqueness of weak solutions to (1.1).

3.2. Propagation of regularity and instantaneous separation property.

Our next result is concerned with the propagation of regularity. We show that under certain regularity assumptions on the mobility
functions, there exists a weak solution to (1.1) that enjoys higher regularity properties on the time interval (z, o) for any = > 0.

Theorem 3.4. Suppose that the Assumptions (A1)-(A4) hold. Let K € (0, ], L € [0, o], let (¢, o) € H! be an initial datum satisfying
(3.1), and let = > 0. Then there exists a weak solution (¢, w, u,6) to (1.1) in the sense of Definition 3.1 satisfying

(,w) € L=(r,00; W), (9,6, 0,p) € L¥(z,00;(H})) N L, ([r,00); H"), (3.9)

uloc

(1,0) € L®(r,00; H}) N LY ([7,00); H?), (F'(¢),G'(y)) € L¥(r, 00; LP) (3.10)

uloc

forany 2 < p < co. Moreover, the equations (1.1a)-(1.1b) are satisfied almost everywhere in Q X (z, o0), while (1.1c)-(1.1d) and the boundary
conditions (1.1e)-(1.1f) are satisfied almost everywhere on ' X (z, o). In addition, if mg, m € C*([—1,1]), then (u,0) € L2, ([, o0); H>).

uloc
Remark 3.5. In addition to the regularities stated in (3.9)-(3.10), we have for any = > 0 that
F'(y) € L®(z, 00, LA(I)), (3.11)
see [25,26].

Remark 3.6. In Theorem 3.4 we assume that the mobilities satisfy mg, mp € C!([-1, 1]), which guarantees the existence of at least one
weak solution enjoying the regularity properties (3.9)-(3.10). If, in addition, we assume mg, mp € C2([—1, 1]), then this weak solution
is the unique weak solution provided by Theorem 3.2. In this case, the Assumption (A4) on the potential F can also be dropped.

Nevertheless, for certain choices of the parameters K and L, a weak-strong uniqueness result can be established under the weaker
assumption mg, mr- € C'([~1, 1]). In particular, for such parameters and for any 7 > 0, every weak solution (¢, y, u, 8) satisfying the
regularity properties (3.9)-(3.10) coincides on [z, o0) with the unique strong solution having initial data (¢(z), y(7)).

As a consequence, we can prove that the weak solution from Theorem 3.4 satisfies the instantaneous separation property.

Theorem 3.7. Suppose that the assumptions from Theorem 3.4 hold, and consider the corresponding weak solution (¢, v, u, 0) that satisfies
the propagation of regularity. Then, for all = > 0, there exists 6 > 0, additionally depending on the norms of the initial data, such that

¢l @y <1=6. w@lloqy <1-6  forallt>r. (3.12)

Remark 3.8. If there exists (u, 0,) € Hi such that
/ o 7 dx + /90 9dl = / Vo - Vi + F' () dx + /Vryfo V9 + G () dT
Q r Q r
+ 26 [y = do)ad =) ar
r

for all (1,9) € M., then the weak solution (¢, y, 4, 0) from Theorem 3.4 is a strong solution, namely, (3.9)-(3.10) hold for = = 0.
Furthermore, the separation property (3.12) holds also for = = 0.

The proofs of Theorems 3.4 and 3.7 are presented in Section 6.

7
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3.3. Long-time behavior.
Thanks to the separation property proven in Theorem 3.7, we can show that the unique weak solution converges to a single
equilibrium as 1 — co.

Theorem 3.9. Suppose that the assumptions from Theorem 3.4 hold. In addition, assume that mg, m € C2([—1, 1]) satisfy Assumption (A2),
and that F|, G, are real analytic on (—1,1) and F,, G, are real analytic on R. Let (¢, y, u, ) be the unique global weak solution obtained in
Theorem 3.2. Then it holds

tllglo 1) = oo w () — W) ll32 =0,
where (¢, Wo,) € H? is a solution to the stationary bulk-surface Cahn—Hilliard equation
Ay + F (D) = Heo in Q,
—Aryy, + G (W) + adpdy, = 0, onT,
Ko,po, = ayy, — Py onT,
with
B Jobeo dx + frweo AT = B [ g dx + [y T, if L € [0, o),
Jo®w dx = [ydgdx and fiw, dT = [y, dl, if L =oco.

The constants u,, and 0, appearing in (3.13) satisfy

_ _ B / /
oo = Py = e (a/g F (¢oo)dx+/rG (y/w)dl“)

if L € [0, 0), while in the case L = oo, they are given by

- lﬁll(/QF'((,sm)cbc-/ra,,¢oo dr),

0., = I_ll“l(/rGl(W""Haa"% dr).

Ko

4. Elliptic bulk-surface system with non-constant coefficients

In this section, we establish well-posedness and regularity results for an elliptic system with bulk-surface coupling and non-
constant coefficients. These regularity results will be of crucial importance in the proof of the uniqueness of weak solutions to the
system (1.1). Let Q c R?, d = 2,3, be a bounded domain with boundary I' := dQ. The precise system under investigation in this
section is the following

—div(mg($)Vu) = f inQ, (4.1a)
—divp(mp(W) Vo) + mg(d)opu = g onT, (4.1b)
Lmg(¢p)ou=pv—u onTl, (4.1¢)

where the mobility functions mq, mi- are supposed to satisfy Assumption (A2). Moreover, ¢ : @ > R and y : I’ - R are given mea-
surable functions with |¢| < 1a.e.in Q and |y| < 1 a.e. onT". System (4.1) can be seen as an extension of (2.1) and the corresponding
results proven in [20].

We call (u,v) € HIL a weak solution to (4.1) if it satisfies the following weak formulation

ng(¢)Vu V¢ dx + /Fmr(u/)VI-v -Vpédli+ y(L) [_(ﬂv —w)(pE-¢)drr
= (/.. €. )0

(4.2)

for all (,¢) € H;.
In our first result, we establish the existence of a unique weak solution to (4.1).

Theorem 4.1. Assume that Q is a Lipschitz domain, and let (f,g) € v;l. Then there exists a unique weak solution (u,v) € Hl to (4.1).
Additionally, there exists a constant C > 0, depending only on Q, L, p and m* such that

6.0l < CICL Dl - (4.3)

We omit the proof here, as it follows by analogous arguments to those used in the case of constant coefficients, see [20, Theo-
rem 3.3] for details.
In view of Theorem 4.1, we can define a solution operator

Splpwl =V >V (f.0) P SLlb.wi(f.8) = (SPIb.wl(f.8). SLId.wi(f.2)).

8
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where S; [¢, w1(f. g) is the unique weak solution to (4.1). Moreover, we can define an inner product and its induced norm on Vi by
(/-9 5))L,[¢,w] = /ng(d))Vf -V&dx + /Fmr(v/)vrg - Vpédl
+20) [ =z -0 ar,

1
IS DL igun 1= (-8 (F-0)] 141
for all (/,g), (¢, &) € V1. One readily sees that

min{1, Vm* }|(f, Ol L 1pp1 < NN < max{L, VMY, N £ g (4.4
for all (f,g) € M} . In particular, the norms || - ||, and || - || 4, are equivalent on V.

Next, we define an inner product and its induced norm on VZI by

(281 0) g 1= (SLIBWIS 8, SLBWIC D) 1y

1
I O g = (2 (F28)7 gy

for all (f,g),(.&) € Vzl. Using the respective weak formulation satisfied by the solution operators S; and S, [¢, y], one can readily
check that the norms || - || (4., @nd || - || . are equivalent on vzl with

min{1, Vm* }|(f, Ol L g1+ < N @M s < max{l, VM*HIS @l gy« (4.5)
for all (f,g) € VZ'. In particular, we also obtain that || - || (4. and || - [l 4,1, are equivalent on Vzl.
B i L

Besides, we have

I Dll2 =/ (SLb.WI 8 (f:9) 1 4.6)
4.6

1 1
< max (1, VM) IS, [ w1/ DI I/ o)l

forall (f,g) € V' nH;.
Our next result establishes higher regularity results for S; [¢, w1(f, g).

Proposition 4.2. Let Q be a domain of class C?, let (¢,w) € W', mq,mp € C'([—1,1]), and consider a pair (f,g) € V;' n L% Then
S, [, w1(f,g) € H?. Additionally, there exists a constant C > 0 such that

1S [, w1(f. ©)llzp2
<C(If.9llp2 + (V- VS, w1, 8), Viw - VST, wi(f, &)l ,2).

Proof. For the sake of brevity, we use again (u,v) to denote the unique solution S; [¢, w1(f,g) of (4.1). We start by showing that
(u,v) € H2. To this end, we make a case distinction according to the parameter L € [0, co].
Case L = 0. Choosing ¢ = 0 in the weak formulation (4.2), we obtain

4.7)

/mg(qS)Vu -V¢dx = / f¢ dx 4.8)
Q Q

forall¢ e H& (Q). Noting on ¢ € W-°(Q), we can use ¢ = —mgf(d))

it holds that

_ 1 =
/Qw.vg dx=/gmg(¢)(f+VmQ(¢)4Vu)C dx

eH S (Q) as a test function in (4.8) for some ¢ € C(Q). Consequently,

forall £ € CX(Q). In particular, as ¢ was arbitrary, this implies that the distributional derivative Au belongs to L?>(Q) and satisfies

Au= m (f +Vmg(d)-Vu)  ae. inQ.

As we further know that u| = fv € H'(I'), we may apply elliptic regularity theory for the Poisson-Dirichlet problem (see, e.g., [3,
3
Theorem 3.2] or [5, Theorem A.2]) to conclude that u € H 2 (Q) with

Il 3 o < Uiz + IV Vil 2y + el ) (4.9)
3
Now, since Au € L?*(Q) and u € HZ(Q), we can use a variant of the elliptic trace theorem (see, e.g., [3, Theorem 2.27] or [5, Theo-
rem A.1]) to deduce that d,u € L>(T") with

[10qull 12 5C||”||H%(Q)~ (4.10)
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Consequently, we find that
/ mq($)Vu - V¢ dx = / fCdx+ /mg(¢)anuc dr  forall{ € HI(Q). (4.11)
Q Q r

Consider now an arbitrary function & € H'(I'). According to the inverse trace theorem (see, e.g., [17, Theorem 4.2.3]), there exists a

— 3 _ _
function & € H2(Q) such that é|- = £ a.e. on I'. Choosing ¢ = g¢, we see that (¢, &) € Hi is an admissible test function in (4.2). Using
the identity (4.11), we obtain

/ )V - VE T = / (& = Pmg(@)dyu)é dr.
r r

As ¢ € H' (') was arbitrarily chosen, we infer similarly to above that v is a weak solution of the surface elliptic equation
1

v=——(g = Pmg($)oyu+ Vrmp(y) - Vrv)  onT.

—-A
T ()

Since y € W) and mli is bounded, we infer form the Sobolev inequality that Vimp(y) € L*(I'), which, in combination with
v € HY(I') implies that Vrmp(y) - Vro € L*(I'). Thus, since mg, is bounded, and d,u € L?(I') according to (4.10), we find that
—Arv =g e LX(I).
Recalling that T is a compact submanifold of class C?> without boundary, we can apply regularity theory for elliptic equations on
submanifolds (see, e.g., [31, 5.5, Theorem 1.3]) to infer v € H%(I'), together with the estimate
||U||H2(r) < C(”g”LZ(r) + ||6nu||L2(l—) + IVrmp(y) - VFU”LZ(r))
< C(”(f,g)“ﬁZ +IVry - VFU||L2(1‘))~

Here, we have additionally used (4.3), (4.9), and (4.10) in the last inequality. Since u| = pv a.e. on I', we further deduce that
ulr € HX(T). Recalling that —Au € L?(Q), we eventually conclude from elliptic regularity theory for the Poisson-Dirichlet problem
(see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) that u € H%(Q) with

(4.12)

llell g2y < C(I|f||L2(Q) + IVmg (@) - Vull 2 + ||U||H2(r))

(4.13)
<C(IS DMz + 1V - Vu, Vi - Vo)l p2).
Finally, combining (4.12)-(4.13) leads to
1, V)72 < C(Il(f,g)llz;z + (Vo - Vu, Vry - V]‘U)”[:Z)' (4.14)

Case L € (0, ). Here, we fix ¢ = 0. Then, the weak formulation (4.2) reduces to
[mw¥io-vear+ ) [@o-wpear= [ e ar
r r r
for all £ € H'(I'). This means that v is a weak solution of the surface elliptic problem

1
—Apv = pro) (g = Bx(LY(Bv — u) + Vrmp(w) - Vo) onTl.

1
Here, we can argue similarly to the case L = 0. Indeed, since u € H'(Q), we have by the trace theorem fv — u| € H2 ('), and thus,
in particular, fv — u| € L*(T'). Therefore, we deduce with elliptic regularity theory on submanifolds that v € H?(T') together with the
estimate

ol g2y < C(”g”LZ(r) + ol 2y + Nlull 2y + IVEmE(W) - VFU”LZ(F))
< C(”(f»g)“ﬁ +IVry - VFU“LZ(F))

for some constant C > 0. Next, we choose & = 0 in the weak formulation (4.2), which yields

(4.15)

/mg(qb)Vu -V¢dx + y(L) /(ﬁu—u)C dl' = / f¢dx
Q r Q
for all ¢ € H'(Q). This means that u is a weak solution to the Poisson-Neumann problem

1 .
—Au= m(f +Vmg(¢)-Vu)  inQ,

Opit = !
me(¢)

Applying elliptic regularity theory for Poisson’s equation with inhomogeneous Neumann boundary condition (see, e.g., [31, s.5,
Proposition 7.71), we deduce u € H?(Q) together with the existence of a constant C > 0 such that

2(L)(Bv — u) onT.

”“”HZ(Q) < C(”f”LZ(Q) + |loll % +lull 1 + ”u”L2(Q) + ||Vmg(¢) . V“”LZ(Q))
H2 () H2(I) (4.16)

<C(IICf- @l 2 + IV - Vull 12 )-

10
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Combining estimates (4.15) and (4.16) yields

@, )2 < CI @2 + (V- Vau, Vi - Vro)lg2). (4.17)

Case L = co. In this case, the system (4.1) decouples to the non-homogeneous Poisson problem with a homogeneous Neumann
boundary condition

—divimg(@)Vu) = f  inQ, (4.18)
mo(@dau=0  onT, (4.19)

and the non-homogeneous surface elliptic problem
—divp(mp(w)Vyv) = g onT. (4.20)

Applying elliptic regularity theory for Poisson’s problem with homogeneous Neumman boundary condition (4.18)-(4.19) and regu-
larity theory for the Laplace-Beltrami Eq. (4.20), respectively, we directly conclude the desired regularity u € H>(Q) and v € H*(I')
along with the estimates

lull g2(q) < C(”f”LZ(Q) +IVe- Vulle(Q))s
ol g2y < C(”g”LZ(r) +IVry - VFU||L2(F))~ |

Remark 4.3. Under the assumptions of Proposition 4.2, the estimate (4.6) even holds for all (f, g) € Vzl nH!, i.e., the functions f
and g do not need to satisfy the trace relation f = fg on I' if L = 0. This will be essential in the proof of Theorem 3.2. Moreover, since
mean(f, g) = 0, the bulk-surface Poincaré inequality yields, for K € (0, ),

1 1
(£ &)l 2 < max{l, VM*}CpClISLIb.w1(f DI IS )l (4.21)

In the case K = oo, the bulk-surface Poincaré inequality is in general not available. Instead, we use

I @lI7 < CI @I, < CI I, + VS Vel )

1 1
= C(Il(f,g)llz2 + 1 D08)
which leads to

1 1 1
(. &)llp> < max {1, VM*}CpCISLIp.wI(f- N ] (1. NI L, + 11 i)

1 1
< lII(f,g)IIL-z +max{1, VM*}CpCIISLId. wi(f. &)l + max{1, VM*}CpCIISLIb. wI(f. DI IS DI g-

Consequently, we obtain

1 1
I 2 < max{1, VM*}CpCISLI. w1(f. &)l + max{l, VM*}CpClSLI. w1/ DI N &)l & (4.22)

Similarly to the proof of Proposition 4.2, we can prove H3-regularity of the unique solution to (4.1) provided that the mobility
functions are more regular.

Corollary 4.4. Let Q be of class C°, let (¢,y) € W**, and assume that mg, mr € C*([~1,1]) and (f.g) € V;' nH'. Then S, [¢.w1(f.g) €
H3, and there exists a constant C > 0 such that

1SLIe. w1(fs Iy

< C(1+ 10, w)ll32) (4.23)
f g my(@Ve - VSPIh,wI(f,8) m.w)Vry - VrSTIh,w(f,g)
X ‘|<mg<¢>’mr<w)>”w+”< o) ’ ) )“H‘ ’

where 1,,(-) denotes the indicator function of the set {0}.

Proof. Abbreviating again (u,v) = S;[¢,w](f,g), we can move along the lines from the proof of Proposition 4.2 and show that
(u,v) € H? in combination with the estimate
‘Hl(r)>'

In the following, we will show that the last summand on the right-hand side can be bounded in terms of the first two. To do so, we
only have to take a closer look at the case L = 0. Indeed, if L = oo, this term clearly vanishes, and for L € (0, ), we make use of the
boundary condition Lmg(¢)d,u = fv —u a.e. onT to find that

mgq()opu 1 pvo—u
”W |H1(r) - Z‘ mp(y) ”H‘(F)

[1G, )33

s W@V Vu )V - Veo @),
SC<“<mg<qb>’mrgw/))“wJ“”( @ >HH'+“mir<w)u

< Cllw, vl

11
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<C(If- M2 + 1V - Vu, Viy - Vrv)lng)
in view of (4.7). Lastly, if L = 0, it holds that

v <m9(¢)0nu> _ mo(@onuVrd  mo(@)Vrduu  ma(@miy)onuVry ae onT.
"\ mrw) mp(y)? mp(yr)? mr(y)?

For the first term, we use the trace theorem together with the Sobolev inequality and find

||6anF¢||Lz(l—> < ||anu||L4(r)||VI‘¢||L4(r) < C||¢||H2(Q)||u||H2(Q)-

Next, for the second term, we argue as in the beginning of the proof of Theorem 4.2, in particular as for (4.9) and (4.10). To be
precise, we obtain

||Vran“||L2(r) < ||an“||1-11(r) < C”u”H%

7 m_(p)Ve - Vu
(I I e W

Finally, for the last term, we combine the trace theorem again with the Sobolev inequality to deduce that
”aanFW”LZ(r) < ||an”||L4(1“)”vl"W“L4(F) < C||W||H2(r)||u||H2(Q)~
Thus, from the estimates above and (4.7) we conclude (4.23), which finishes the proof. O
Next, we aim to generalize the result from Proposition 4.2 to the case of L?-regularity theory.

Proposition 4.5. Let Q be of class C, let p € [2, co) and consider a pair (f,g) € V;' n LP. Further, assume that (¢,w) € W>* such that
(Vo - VSEId,wI(f>8), Vrw - Vi ST wl(f,8)) € LP. Then there exists a constant C > 0 such that

1S, 1. w1 ®)llywzs < C(IF &l o + (V- VS[Bw1(f. &), Viw - ViSLIbw1(f. )l 0 )- (4.24)

Proof. We adapt the proof of [23, Proposition A.1] for the case of constant mobility functions. As we already know from Proposi-
tion 4.2 that (u,v) := S, [¢, w1(f,g) € H?, it holds that

—Au= @ (f + Vmg(e) - Vu) a.e.in Q, (4.25)

Loyu= m91(¢) (Bv —u) a.e.onT, (4.26)
as well as

—Apv = @ (g — Pmo($)0qu + Vrmp(w) - Vo)  ae onT. (4.27)

As in the proof of Proposition 4.2, we consider the cases L =0, L € (0, ) and L = oo separately.
Case L = 0. Since the boundary T is a (d — 1)-dimensional submanifold of R¢, Sobolev’s embedding theorem implies that

ulp = pv e wtp witht:§+u_£_
2 p 2

By assumption f, V¢ - Vu € LP(Q), we may apply elliptic regularity theory for Poisson’s equation with an inhomogeneous Dirichlet
boundary condition (see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) to deduce
u e W Q) with s=min{2,§+£—£}21+2
2 p 2 p
together with the estimate
[lullysp) < C(”f”LP(Q) + [IVmg(@) - Vull 1pq) + ”U”W’vl’(l"))
< C(”f”LP(Q) +IVe - Vull o) + ||U||H2(r))
<C(ICf Dl gr + (V- Vau, Ve - Vo)l o).

This readily yields
2
Vue WP @) o wirt(Q).

. 2 1. .. . . .
Then, since ST, =8 positive and not an integer, the trace theorem implies that

1

P
1

ogu € Wr(D) & LA(D).

Consequently, the assumptions g, Vry - Vv € LP(T') allow us to apply regularity theory for the Laplace-Beltrami equation (see, e.g.,
[33, Lemma B.1]) which yields that v € W2P(I') and the existence of a constant C > 0 such that

||U||w2,p(1‘) < C(”g”u(r) + 10null Loy + 1 Vemp(y) - VrvllLP(F))

(4.28)
<C(ICSlep + (V- Vu, Vi - Veo)l s ).

12
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This, in turn, entails
ulp = pv € WH(D).

Therefore, by means of elliptic regularity theory for Poisson’s equation with an inhomogeneous Dirichlet boundary condition (see,
e.g., [3, Theorem 3.2] or [5, Theorem A.2]), we find that u € W2?(Q) with

llelly2pq) < C(”f”LP(Q) + IVmo() - Vull 1p o) + ||U||W2,p(r))

(4.29)
< C(”(fvg)”[,P + (Ve - Vu, Vpry - VFU)HCP)'
Combining (4.28) and (4.29), we eventually obtain (4.24), which finishes the proof in the case L = 0.
Case L € (0, ). Since u € H%(Q), the trace theorem as well as Sobolev’s embedding theorem yield that
3 —
ue H2(I') > WHI) with r=2+ a-1_ %
p
Then, since ¢ € W>*(Q), the trace theorem and the Sobolev embedding theorem further imply that
3
Vo e WHQ) o with) o L2D).
Consequently, recalling that the mobility function mg € C'([-1, 1]) satisfies (2.3), we readily deduce that m;@) ewleM). Asv e
Q
H2(') & W), we find that
1
Ou = (Bv — u) € WHP(DD).
" Lmg ()

Then, since g, Vry - Vv € LP(I'), we infer from regularity theory for the Laplace-Beltrami equation (see, e.g., [33, Lemma B.1]) that

||U||W2»p(r) < C(”g”u(l") +IVpmp(y) - VFU”LP(F) + ||0nu||wr.p(r))
< C(”g”]_p(r) +IVry - Vol oy + 1l (u, U)||H2) (4.30)
<C(INer + 11V - Vu, Vi - Veo)ll g ).
Moreover, exploiting again f,V¢ - Vu € LP(Q), elliptic regularity theory for Poisson’s equation with an inhomogeneous Neumann
boundary condition (see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) provides that
d d 2

ueEWS(Q) with s=min{2,3+———}21+—
p 2 )4

together with the estimate

[lully s, < C(“f”LP(Q) + |Vmg($) - Vull o) + ||0nu||wr~p(r))
<CUIDller + 1V - Vi, Vi - Vo)l o).

Then, since 1 + % - %u =1+ i is positive and not an integer, the trace theorem shows that

1
ulp € WD),

which entails

_ 1 _ 1+l,p
Opt = Tmg(@) Po—uwyew '»r

Finally, using once more elliptic regularity theory for Poisson’s equation with an inhomogeneous Neumann boundary condition (see,
e.g., [3, Theorem 3.2] or [5, Theorem A.2]), we conclude that u € W2?(Q) along with

@).

Nl 200y < C 1 o) + IVmo(@) - Vull oy + 10l 1, )
w ) (4.31)
<CUICS Dller + 1V - Vi, Vi - Vo)l ).

Combining the estimates (4.30) and (4.31) immediately yields (4.24).

Case L = co. In this case, both the Poisson-Neumann problem (4.25)-(4.26) and the Laplace-Beltrami equation (4.27) are com-
pletely decoupled. Hence, we can apply elliptic regularity theory for Poisson’s equation with a homogeneous Neumann boundary
condition (see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) and regularity theory for the Laplace-Beltrami equation (see, e.g., [33,
Lemma B.1]), respectively, and directly reach the conclusion with the respective estimates, which finishes the proof. O

Further properties of S; and S;[¢,y] in two dimensions. In the last part of the section, we provide two useful estimates for
S [¢.w] for d = 2 which are based on the estimates (4.7) and (4.24). These will be crucial for the mathematical analysis of (1.1). To
this end, let Q c R? be of class C? and (¢, y) € W>* with |¢| < 1 a.e. in Q and |y| < 1 a.e. on T. We further assume that the mobility
functions mg, mp- € C'([~1, 1]) satisfy Assumption (A2).

Let (f,g) € V;' n £2. Then, using (2.2) and (4.32) , we find

151, w1(f s @)ll52 < C(I(V - VSPID WIS, 8), Viw - ViST b wI(f )l 2 + I/ &)l 2)

13
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< C(IVh, Vew)ll p4 (VS wl(f, 8), VSt I wl(f, )l s + (. D)l 2)

1 1 1 1
<c(lieve. er)llgz (&, ll/)llfiz 1S LI, w1, N IS LI WIS, g)llfiz + 1)l 2)-
Consequently, we infer from Young’s inequality that
1521 w1(f, D2 < C(IV, Vel 2 1€, )32 1S [, w1 ) + ICF @)l 2)- (4.32)

Furthermore, if (f,g) € ]7;1 N £*, we can choose p = 4 in (4.24), and exploiting (2.2), we find

ISLLe.w1(F . Dllwas < CIVb, Vew)l s I (VSPI IS ), Ve ST b wI(f @Dl s + 1.9l 2
1 3 1 3 (4.33)
< C(I0V. Vel L 1w 1S L w1 O IS LB W I Iy + 10l )-

5. Existence and uniqueness of weak solutions

In this section, we present the proof of Theorem 3.2 regarding the well-posedness of weak solutions of system (1.1).

Proof of Theorem 3.2. The proof is divided into several steps. We start with some basic estimates on a weak solution.
Properties of weak solutions. Let (¢, v, u, 6) be a global weak solution as in Definition 3.1 given by, e.g., [23, Theorem 3.4] or [15,
Theorem 3.2]. First, we deduce from (3.3) and the energy inequality (3.6) that

sup [[(@@®), y)llz0 < C (5.1)

>0

as well as
/ l(u(s), O3 ds < C, (5.2)

0

for some constant depending on E(¢,, ), |Q| and |I'|. Here, we have additionally used (4.4). The latter implies that ||(4,0)|l; €
L%(0, ). Then, by definition of S; [¢, w1(9,¢, d,y), it is clear that

U= —S?[qﬁ, w1(0,¢, 0,w) + pmean(u, §) a.e. in Q x (0, c0), (5.3)

0 = St [¢, w1(9,0,0,w) + mean(u, 0) a.e. on T' X (0, ). (5.4)
Thus, exploiting (5.3)-(5.4), we obtain

[ISL[, wl(0,é, 0yl < Cll(u, Dl (5.5)

from which we deduce with (5.2) and the equivalence of the corresponding norms on VZI that

/O 104012, 45 < C. (5.6)

This proves (d,¢, d,w) € L*(0, oo; (Hi)’ ). Next, analyzing the proof of [23, Theorem 3.4] reveals the estimate
|mean(u, 6)] < C(1 + [I(u, 0)Il 1), (5.7)
from which we immediately deduce, after another application of the bulk-surface Poincaré inequality that

I Ollzgr < C(1+ 11w, Ol ) (5.8

Hence, (u,0) € Lﬁloc([O, o0); H'). The inequality (5.7) is based on the Miranville-Zelik inequality (see [28, Appendix A.1] or [13,
p- 908]). Then, noticing that

—Ap+ F/(¢) = p* a.e.in Q,
—Ary + G\ (w) + adyd = 6* a.e.onT,
Ko,p=ay —¢ a.e.onl,

almost everywhere in (0, o), where (4*,6%) = (4 — Fj(¢),0 - G;(q/)) € H', an application of [15, Proposition 6.5] together with the
Lipschitz continuity of F, and G, respectively, as well as (5.1) yields that

1@, Wllyzs + I (D), GL Dl o < C(1+ 1112, O)ll31) (5.9)
almost everywhere in (0, o) for all 2 < p < . Lastly, noting on K € (0, o) and applying [15, Corollary 5.4], we find that

(=Ad, ~Arw + adyd)ll, < C(1+ [l + Fy(#).0 + Gyw))llz) < C(1+ 11 Ol ).

Thus, by (5.2) and elliptic regularity theory for systems with bulk-surface coupling (see, e.g., [20, Theorem 3.3]), we have
t+1
sup / (@) w NI}, ds < C.
>0 Jt

14
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which provides (¢, w) € Lﬁloc([o, o0); H?).

Continuous dependence estimate and uniqueness of weak solutions. In what follows, we restrict ourselves to the case L € [0, o).
This case distinction is needed due to a different mass conservation in the cases L € [0, ) and L = oo, see (3.5). The case L = oo
can be handled more easily with the obvious modifications. To this end, let (¢, w,) and (¢3, w3) be two admissible pairs of initial
data satisfying (3.1a)-(3.1c), and consider two weak solutions (¢, y;, u1,8;) and (¢, w,, 4y, 8,) originating from (¢, w?) and (¢?2, wg),
respectively. Then, defining (®,¥) = (¢; — ¢, ¥; — v»), we have

((0,9,0,9), (C,§)>H1L = —/ngz(¢1)v(ﬂl —Hp) - VEdx — /mF(Wl)VI‘(el —0,) - Vp&dl’
r
- x(L) /(ﬂ(91 = 6) = (uy — )P - ) dl’ (5.10)
r

- /Q (m9(¢|) - mr(ll/l))vllz - V¢ dx - /l" (mr(lll|) - mr(llfz))vr92 - Vpédl

a.e. on (0, o) for all (£,¢) € Hi, as well as

—AD + F'(¢) — F'(¢y) = pt; — tp a.e. in Q x (0, ), (5.11)
—ArY + G (y)) — G'(yy) + ad, @ = 0, — 0, a.e. in I' X (0, o), (5.12)
Ko, ® =a¥ - a.e. in I' X (0, o). (5.13)

Now, we multiply (5.11) with ® and (5.12) with ¥, integrate over Q and T, respectively, and perform integration by parts. Adding
the resulting equations leads to

@i+ [ (o= Fep)o it [ (6w -Gun)var- [ (u-moa- [ (0 -0)var
Q r Q r (5.14)
- /Q (EL(hy) — Fl(¢))® dx + /r (Gyy) = Gy ¥ dI

almost everywhere on (0, ). Next, we want to rewrite the integrals involving the chemical potentials in terms of the solution
operator Sy [¢y,y1(9,®,0,¥). To this end, to make the following computations more readable, we use the abbreviation S;(f,g) =
Sl w;1(f,g) for j=1,2aswellas (-,-) ; = (-, ')L,l¢j,wj1 and find

—/ (/41—/42)®dx—/(01 - 0,)¥dl’
Q r
= —(51(‘1), Y), (uy — mp, 61 — 92)),“’1

= ((a,@,a,ly),sl(@,‘P))H]L —/Q(mn(¢1)—mg(¢2))v,42-vslﬂ(cb,w) dx—/(mr(wl)—mr(w))vrez-vrsf(cb,w) dr (5.15)
r
= (S1(0,,0,%), S(®, V), | -/ (ma (1) — mo()) Vi - VSR(®,'P) dx-/(mr(.,/l)-mr(%))vrez.vrsf@,\P) dr
’ Q r

= (@, ), 5,(0,®,0,9)) > —/Q(mﬂ(¢])—mg(qsz))w2 . vsfz(<1>,l11) dx — /F (mpQyy) = mp(wy)) Vb, - vrslr@,lll) dr

a.e. on (0, o), using, in this order, the weak formulations for S, (®, ¥), for (9,®, 9,¥) (see (5.10)), for S, (9,P, 9,¥) and again for S, (P, ¥).
Plugging the identity (5.15) back into (5.14) yields

i@, ¥)l1% +/Q (F(¢)) — F(¢y)) @ dx + /r (G (w) - G (y))¥ dr+/Qs, (0,®,0,9)® dx +/rs] 0,®,0,9)¥ dI'
- /Q (mo(d)) — mo($y)) Vi - VSHD,P) dx — / (mrQwy) = mp(w)) Vi, - VpSTH(@, W) dI
r

= /Q (Fy (1) = Fy(¢))® dx + /r (Gh(w1) = Gy(wp)) ¥ dI'.
Now, we claim that
/ S8(0,®,0,¥)® dx + / ST (0,@,0,%)¥ dI
Q r
d

1 1
32 1@ WLy e+ 5 (S.(a,qbl,a,wl), (Mo @DIVSEH@, W), mi(w)| VST (@, ‘P)Iz))L
d1 1
=53 @ DL gy e * 5 /9 VSP0,01,0,y1) - m(h))Vep [VSP(@, W)[* dx
1 (5.16)
+ 5/Vrsf(a,d)l,d,wl)~m’r’(w1)VFy/1|VFS}_((D,‘P)|2 dF+/ VSR(0,¢1, 01) - mp (1) D2SH@, ¥)VSE(D, W) dx
r Q

+ / VST (9,01, 0,y1) - m-(y ) DEST (@, P)V- ST (@, ¥) dT
r

+ %x(L) /r (BS] 0,1, 0,w1) = SP(0,b1. 0,w)) (Bmp-(w I VST (@, W)|* = miy ()| Vi SPH(@, W)|?) dT".
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Here, D?f and Dlz_g denote the Hessian and the surface Hessian of f and g, respectively. Then, having (5.16) at hand, we exploit the
monotonicity of F| and G| as well as the Lipschitz continuity of F, and G, respectively, which leads to

5 2||<<1> SN 110 + @I < CH@WDIZ, + 1 + 1, (5.17)
where

I = =2 ($101. 000, (my@)IVSE@ WP m )1V ST @, ) )
and

L= /Q (ma(d1) = mo($)) Viy - VSH®, W) dx + /F (mr@) = mpy)) Vrb; - VeS| (@, ) dr.

The rest of the proof now consists of justifying the chain-rule formula (5.16) as well as estimating the nonlinear terms I, and I,.
Proof of (5.16). Let p € C*(R) be non-negative with supp p C (0, 1) and ||p|| 1) = 1. For k € N, we set

pi(s) 1= kp(ks), s € R.

Then, for any Banach space X and any function f € L’(—1,T; X) with 2 < p < co, we define

t
Fe@) 1= (p = )H@) = / . pr( — ) f(s)ds (5.18)
1L
k
for all 7 € [0, 7] and all k € N. By this construction, we have f, € C*([0,T]; X) with f, — f strongly in L?(0,T; X) as k — co.
Now, let T > 0, k € N and p = 4. We choose X = H%(Q) to define qb" and X = H3(I) to define w{‘ as described above. By this
construction, we then have o, d)k (9,¢))* and 9, Vd)k Vo, d)k a.e. in Q as well as 0,1//1 (0,w))* and a,qu/f‘ = Vrd,yll" a.e. on X for
all kK € N. Moreover, as k — oo,

> ¢, strongly in L*(0, T; HX(Q)), (5.19)
v = strongly in L*(0,T; H(T"), (5.20)
@ ¢%. 0wf) = (9,¢1.0,wf)  strongly in L*(0,T:(H})"). (5.21)
In particular, along a non-relabeled subsequence, as k — oo,
- ¢, Vot >V a.e. in Q x (0,7), (5.22)
wk >y, ViyF > Vg, ae onI'x(0,7). (5.23)

Additionally, we find that

k
”4’1 ”Lm((),T;H](Q)) = ||¢1 ||Leo(()T H'(Q)’

. (5.24)
||1I/1 ||Loo(0,T;Hl(r)) <y, ||Loo(0T HI(D)>
as well as
|l <1 ae.inQ, el <1 ae.onX (5.25)

for all k € N. We further point out that in light of the convergences (5.19)-(5.20) we infer the existence of k, € N such that

||(¢1f, W]k)||L4(OT 12y < 1+ @ vl sorae) for all k > k.. (5.26)

In the following, we assume that k € N satisfies k > k,. Furthermore, we denote by the letter C a generic positive constant whose
value may change from line to line, but is independent of the parameter k € N. We now define, for k € N, the sequence

Si(@, ) 1= Spld, wi 1(D,'P).
It readily follows from (4.3) and (5.25) that

[1S(@, W)l oo o 7741y < C- (5.27)
Next, in view of (5.24) and (5.27), an application of (4.32) entails that

1Se(@, W)ll;2 < C(1+ @Y, w)lly2)

which implies that

T
/ IS, (@, W, ds < CT + c/ I vl ds < . (5.28)
0

due to (5.26). Furthermore, employing the estimate (4.33) in combination with (5.24) and (5.27), we deduce that

1 3
15(@, V)ll2s < C(II(VY, Ve )|I42|I(¢" v )|I42|I5k(‘1>, DI} 1S (@. DL, + 1@ W)l 24 )
3

<c(1+ ||<¢",wf>||,§2||sk<<1>, Wli,)-
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Hence, integrating the foregoing inequality in time over (0, T') and using Young’s inequality together with (5.26) and (5.28), we have
T 8
[ 1scemn, sscrac / IG5 WO, + 1S, @ WY, ds < C. (5.29)
0

Now, we study the convergence properties of the operator S, (®,¥) as k — o. To this end, let (f,g) € LZ(O,T;VZI). Then, by
definition of S| and S, we know that

/ﬂ mao(d)VSP(f,8) - V¢ dx + /F mp(w VS| (f,8) - Vié dT + y(L) /F (BS{ (/. 8) = SP(f, )(BE — &) dT
= /Q mo (@ )VSA(f.g) - V¢ dx + /r mp(pF)VESE(f.g) - Vp& dl + (L) /r (BS{(f.8) = SL(f.9)(BE - ) dT
for all (¢,£) € H}, which implies that
/Q mo(@V (SP(f.8) = S(f.8)) - V¢ dx + /r mp( )V (S| (f,8) = Sy (f,8)) - Vpé dl
+ (L) /F (BCS(f,8) = Si.(f,e))(BE - &) dT (5.30)
= /ﬂ (ma(@¥) — mo(d)))VSZ(f.8) - VE dx + /F (mpQpf) = mpQu)) VrS{(f. ) - Vpé dT

for all (¢,¢&) € H‘L. Therefore, taking (£, &) = S|(f,g) — S (f.g) € H‘L as a test function in (5.30), we find with (4.4) that

T
/0 15,0/, 8) - S/, I ds

Q r
<1 {1 - / (ma@}) = ma(@) VS £ g, ds + —o—s T / (W) = me ) VESTC DI, 1 ds
(5.31)
S ST [ 1m0 = o) 192 9 0

1 ! k r
t T | ) = me ) B 19 ST

We aim to pass to the limit k — oo in (5.31) by applying the dominated convergence theorem. Toward this end, we first notice by
(4.5) that

lma (@) = mo(d DI IVSEU 5 o + Imr@w) = me@)I o IVESL (I35, < CIS(F, 917 € L0, T).

Q) LX)

On the other hand, since mg and m- are Lipschitz continuous on [—1, 1], the Sobolev inequality shows that
lIma (@) = ma( @D gy + Imr@) = mrwDI e ry < ClY = dill7oq) + Cllvf = willeg
< ClFY = b1l + Clwt =il
almost everywhere on (0, 7). Thus, in light of (5.19)-(5.20), we obtain that
lIma (@) = mo(@DI 7w VS N2 g + Iy = me@)I oy Ve S, (- I
< Cl@, = drovf = w5 IS¢ 9l = 0

up to a subsequence k — oo almost everywhere on (0, T'). Consequently, we can use (5.31) and the Lebesgue convergence theorem to
conclude that

L2(D)

1S, (f.8) = S1(f.9)ll, =0  strongly in L*(0,T)

up to a subsequence k — 0. In particular, for (f,g) = (0,9, 9,¥) and (f, g) = (®,¥), we find that

S (0,®,0,¥) = S;(0,®,0,¥)  strongly in L>(0,T; H'), (5.32)
as well as
Sp(@,¥) > S(®,¥)  strongly in L*(0,T; 1Y), (5.33)

as k — oo, respectively. Furthermore, in view of the uniform estimates (5.28) and (5.29), we deduce that
Sp(@,¥) = $,(@,%)  weakly in L*(0, T; H?) (5.34)
and

S (@, %) = S(®,¥)  weakly in Lg(O,T;W“), (5.35)
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respectively, as k — co. Next, for any ¢ € (0, %), by interpolation, there exists a constant C = C(g) > 0 such that

1— 2

I llgmeqy < CIFIE, o I IS, forall £ € HAQ),
€ 1-¢ 2

gl -y < Cllglly  lglls,,  forallg € HAD),

see, for instance, [7, Lemma 2.2]. Thus, combining these two estimates, by Young’s inequality, we deduce
I S CUE Dl o 10 Olsorse (5.36)
for all (f,g) € L*(0,T; H?). Choosing (f, g) = Si(®,¥) — S;(®,¥) € L*(0,T; H?) in (5.36), the convergences (5.33) and (5.34) lead to
S (D, F) - S(D,T) strongly in Lﬁ (0,T; H*>™) (5.37)
as k — co. Now, we claim that for any ¢ € C(0,T) it holds that

T
[ (s:00.00.@) 005

T T
_ 1 2 1 K kg cQ Q
== /0 l(D, ‘P)llL’[(ﬁ,f’Wf],*a,o ds + 3 /0 (0,05, mg(dF)VSH(@, W) - VSH(@, \P))sz’ ds (5.38)

T

1

+ 5/ (0w, mrwIVES, (@, ) - ViS[ (D, W) 50 ds.
0

To this end, for almost every ¢ € (0, T), let ¢(-, t) be measurable in Q, d(-,t) be measurable on I', and (f(-,7), g(-,1)) € V]:' N £2 such that
0,¢(-, 1), 0,d (-, 1)), (0, f (-, 1), 3,&(-, 1)) € L. Then, differentiating the weak formulation (4.2) that is satisfied by S; [c,d](f,g) and taking
&,8) =Slc.dl(f.g) € Hi as a test function, we obtain that
/ 0,f SPle,dI(f, g) dx + / 0,8 Stle.dI(f.g) dl
Q r
= / mp (), [VSPLe,dI(f, &) dx + /m’r(d)a,d IVeSTle. d1(f, @)l dT
Q r
+ / f0,SPle.dI(f.g) dx + / g0,S}lc.d)(f.g)dI.

Q r

Hence, noting again on (4.2), we find that

d d
T ONL ey = G ISLLE AT DN ey

= $(S1e. 1.9 (/.9)
= (Sile,d1(f,8).(/,8)) ;2 + (Sile,d1(/,£). (0, f,0,8)) 2 (5.39)
=2(S,le,d10,f,0,8).(f+8) 2 — /Q my(€)9,¢ |VSPLe, d1(f, )| dx — / mi(d)d,d |Vr-Sy[e,d)(f, &)|* dI.

r

As (c,d) and (f, g) were arbitrary, we can simply take (c, d) = (¢¥, l[/lk) and (f, g) = (®,¥) in (5.39) obtaining (5.38). Now, we wish to
take the limit k — oo in (5.38). To this end, we first notice that from the convergences (5.32) and (5.33) we easily conclude that

T T
lim (Sk(0,@,0,9), (D, W)) ;20 ds = / (81(0,®,0,9),(®,¥)) ;20 ds (5.40)
0

k= Jo

as well as
1 /T ) 1 /T
fim 3 [ @ oo s = jin 3 (50.9.0.9) 000

T
- %/0 (S1(@.¥), (@, W)) ,0,0 ds (5.41)

T
— 1 2
-1 /0 1@, )00 ds.

respectively. To handle the last two terms on the right-hand side of (5.38), we show that there exists a constant C > 0, independent
of k € N, such that

T
/ | (mgy (I VSE@, V)2, mp(w ) VES, (@, W)*) 13 ds < C. (5.42)
0

In fact, by (2.2), we have
IV (mp (@) VSE@. B)) [l 120 < IImy(@IVA | VSR@, ¥) 2|l 120 + 2llmp(d1) D SH®, ¥)VSE(@, W)l 2

< ClIVEL I s@ I VSE@. D ) + CIDSH®. W) 120 IV SEH@. W)l 140
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B 1 B 2 2 4
<Vt ekl ; 3

@ IVSE@, Pl

Is2(@,w)|

H2(Q) L2(Q) H2(Q)

1 1
+ CID2SH@, W)l 14 IVSE@ W, IVSP@ D, -

Hence, applying the estimates (5.24) and (5.27), we find

2 4 1
IV (me@NDIVSE@ D))l 20) < CIDYI o ISE@ By ) + CIDZSE@ )l 20 I SE@ W o 543
) .
k2 Q 2 Q 3
S Clb g+ CISE@ W) o) + CISE@ W g -
In a similar manner, we derive the estimate
4
k T 2 k2 T 2 T 3
IV (mr)IVES) (@, D) 2y < Cllwy o) + CISL @D ) + CUS (@D, - (5.44)
Lastly, we use the trace theorem and the Sobolev inequality to obtain
IBm(w)IVeSE (@, W) = my(@DIVSE@, W) 2ry < CUVSH@, W, 1) + CIVESL@ W, 5.45)
< ClIS@, DI,
Thus, in conclusion, combining the estimates (5.43)-(5.45) yields
4
I (me@DIVSE@ W) mi(w ) VS (@, V)Pl < CH@Y W, + CIS (@I, + ClIS @I, (5.46)

and the desired claim (5.42) readily follows in light of the estimates (5.26), (5.28) and (5.29). We then compute

((a,qs’;, owf). (my@N)IVSE@, W) 12, mi-(y5) |V Sp (@, 9)[?) ),;z

= (St 0w (mp@pIVSE@ W mwHIVESL@WP) )
+ (SO = 01,0t = o). (my@HIVSE@ )P ml IV ST@ W) )|

almost everywhere on (0,7). Thus, multiplying the above identity by ¢ € C*(0,T) and integrating in time over (0,T), we take the
limit kK - oo and obtain using (5.19)-(5.20) and (5.42) that

T
lim /0 ((a,qb’f,a,wf), (m’g<¢’;>|VS§2<<D,W)F,m’r(w{‘)WrS{@,wz))Ezads

k—oo

T (5.47)
= lim /0 (S8t 0w ). (mp@OIVSE@ R M wDIVESL@. W) ) o ds.

To compute the limit of the right-hand side of (5.47), we first note that by our above computations, specifically (5.43)-(5.45), there
exist functions A, ..., hs such that, along a non-relabeled subsequence k — o,

mi()IVSE(@,W)|> ~ b, weakly in L*(0,T; L*(Q)), (5.48)

2my(PF)D* SHD, W)VSH(®, W) — h,  weakly in L*(0,T; L*(Q)), (5.49)
m!(wH)|VpSE(@,W)|* = hy  weakly in L2(0,T; LX), (5.50)

2m{(wf)DES (@, ¥)V-S (@, W) =~ hy  weakly in L*(0,T; L*(I)), (5.51)

Bt VpSH(@, W)1* — mp (@) VSH(@, W)[* = hs  weakly in L2(0,T; L*(I)). (5.52)

As a last step, we are left with identifying the weak limits &, ..., hs. First, using (5.37) with € = -, we find that

1
i

Si(D,¥) = S;(D,¥) strongly in L]576(0, T, H%)
as k — oo. In particular, this implies that

(1VSE@, )1, |VSE@, P)?) > (IVSH(@, P12, |V ST (@, ¥)]*)  strongly in L?(O,T;@).
Next, due to (5.19)-(5.20), we have

(Vor. Vrwf) - (V. Vrw,)  strongly in L40,T: £3).
Finally, since mg,m’r’ € C([-1,1]), (5.22) implies that

(mB(@5), ml(w)) — (m(#)),m'(wy))  strongly in L3(0,T;£'%).
Thus, we readily infer that

m(PIVHLVSH®, P> = m(h)Veh [VS@, W)|* weakly in L'(0,T; L'(Q)),
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m (V| VeSE@, W12 = m () Ve, [VEST(@,W)]F  weakly in L'(0,T; L1(I)),
from which we deduce that
hy = m3($)Ve [VSP@, V),
as well as
hy = m{(y)Vry; VeS| (@, P)].
Similarly, owing to (5.33) and (5.35), and noting on
(mpy(@5), mi(w)) > (miy(dh).m(wy))  strongly in L3(0,T; L),
we obtain
2miy (P) D2 SHD, W)VSH(D, W) — 2m,($)) D’ SP(@, ¥)VSP*(@,¥)  weakly in L'(0,T: L'(Q)),
2m () DES (®, ¥)VE-SL (D, ¥) = 2m[ () DEST (@, ¥)V-S] (@,¥)  weakly in L'(0,T; L'(I)).
This entails that
hy = 2mp () D*SH@, ¥)VSR (D, ¥)
and
hy = 2m!-(y)DEST (@, ¥)V-SH(@, D).
Lastly, to identify i5 we note that given the aforementioned convergences and the trace theorem, we find that
I[VS2(@,W)|p* = [VSR(@.W)|r|>  strongly in L5, T; L2 (D)),
IVES{(@,W)[? - |V-S] (@, )] strongly in L?(O,T; L%(r))
as k —» oo, and thus, readily deduce that
B OIVESE (@, w)|* = my(P)IVSZ(@,W)|* = fml(y))| Vi S| (@, W)|* — myy ()| VSH@,W)[*  weakly in L'(0,T; L' ().
This shows
hs = pmi(y)| VST (@, W) — mpy(d)|VSP(@, ¥)[.
Therefore, by exploiting (5.48)-(5.52) in (5.47), we finally deduce that

T
/0 (51 (0,9, 9,¥)(P, \P))Cza ds

1 /T 1 [T
3 / 1P, )l 14, 100, ds + 5 / (S@,b1. 0. (mip(DIVSH®, W), mif- ()| V-SE (@, P)%)) & ds
0 0

for any ¢ € C°(0,T). The latter readily implies the desired conclusion (5.16).

Estimates of the nonlinear terms. In the rest of the proof, the letter C denotes a generic positive constant that may change its
value from line to line, and which depends on the parameter of the system and the initial energy E(¢y,y,). We now intend to bound
the terms I, and I,.

Regarding I, we have

111 = | (SL1ebr. 9w (my@DIVSH@ )P mf -y VST (@, 9)) |
< CllOD1 0Dl g1y 0GB DIVSPH@, D, mp () VST (@, D) -
For the second term on the right-hand side, we note that
l(mgy (b )IVSP(@, W) %, my-(y)) VST (@, )]l
< N (mB )V IVSR(@, )2, mll (w))Vry, [VrST (@, %)) || 22
+ [|(mpy (1) D SP(@, ¥)VS®, w), m[.(y;) DES] (@, P)V-S| (@, D)) || 2
+ (D IBmL DI VST (@, V)| = my (b)) IVSHP, V)] 12r)s
which entails
11 < Cll@rbys 0wl g1 (Vb IVSE@, WP, Vi VST (@, 9)P) 2
+ Cll@ b1, 0wl g1 ¢ | (D SP@, W)VSH®, W), DEST (@, ¥)V ST (@, 9)) 2
+ Cll @by, 0wl g1 y 2 DIBmE- ) VST (@, W) = my(@)IVSE@, W) 2y

= T+ D+ 5
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Utilizing (4.32) and owing to (4.21) in the case K € (0, ), we see that

[151(@, W)li32
L 1 (5.53)
< C(IVL VewDll 211, w2 151 (@ Pl + 11512, DI 1@, V)l )-

Then, concerning J,, we employ the estimates (2.2), (5.1) and (5.53), and find

1 2O 0Dl gty IVP1, Viw)ll s [ (VSE@, W), ViST (@, W) 17,

1 2 2 4
< C”(atd’l,atlﬂl)“(yb/ ||(V¢1, VFWI)”Zz ||(¢1,W1)||;_[2 ||51 (@, \]’)”z ||51 (@, \P)”;-lz

2 2 1

2 2 1 1
< Cll@¢r- 0wl g1 y [[CIRZD] RGN Sl (II(¢1,W1)IIH2 1S1(@, D)l + 15(@, D)1 7 I(@, V)| 7 ) ' (5.54)

SIS

2 4 2

< 010wl (161 WDIEL 1S @ DI + Clr w151 1@, PR )

IA

1
T 1@ + (1010wl g1y 11 WD + 1@ 3wt 11wz ) 15:(@ DI

1 2 2 4 2
< JgI@ I + C (101001, + 161l IS @I

If however K = oo, a similar argumentation owing to (4.22) leads to the estimate

1
5y £ g I@ DI + (141081 0wIZ,, | + 1@l )IS/@ PR
L

In the following, we restrict ourselves to the case K € (0, ), as the case K = o can be handled similarly as above. Next, we consider
J,. Due to (2.2), (5.1) and (5.53) we have

I(VSH@,¥), VrST (@, )] 24

1 1
S ClIS @ DL 1S (@, ),

1 1 3 1 (5.55)
< C(II(V¢1, VewDl o 1@ vl 151 (@ D) + [151(@, W)l 1@, ‘P)Il,‘i)
1 3 3
< (1@ w2151 @, Pl + 15, @, )} 1@, 91l )
On the other hand, exploiting
1 1 1 1 1
1@, W)l 4 < CI@, V)L, (@, < CIUS (@, VI (@, VI (@, (5.56)

1 3
<ClISs (@, ‘P)llz l(D, ‘1’)||,4<,
which follows from Lemma 2.1 (note that mean(®, ¥) = 0), (2.2) and (4.21), we obtain similarly from (4.33), using again (5.1) as
well as (5.53), that

1 3 1 3
151 @, g2 < C (111wl 11 @IS @D, + 15@ DI 1@, ) ) 55

3 3 5 3 1 3
< (I WD, 1S @ WL + 1y, w) I, 1S1 @D 1@ WIS+ 115,(@, I 1@, W ).
Consequently, noticing that

T < 1@b1, 0Dl g1 (D>SP(®. W), DLST(®, ¥))|| 4 [(VSTHD, W), VST (@, ¥))| o4

we deduce from (5.55) and (5.57) that
3 7 1
Jr < C||(07¢1,6;W1)|I(H;‘)/||(¢1’W1)||§12I|51(<I>, )12 + CII(01¢1s0rW1)|I(H;_)/I|(¢1,W1)||,212||51(<1>, Y 1@, )l
H 1 3 3 1 5
+ CII(6,¢1,0tW1)II(H1L)/||(¢1,W1)|I2,2||51(<I>, YIS @,y + Cll(ar¢1,0,W1)II(H1L)/ 1wl 115 (@, )l 7 11(@, Pl

1 3 3
+ClO P10y D g1 y 11w, 151 (@D I@ D + Cl@r b1 9wl gy 151(@ DL N@ Pl
=: K| +... K.

Next, we control the terms K|, ..., Ky separately. Applying Young’s inequality, we readily find that
Ky < (1101 0wDIR 1, + 161 WDl )11 @ DI
) H
1 2 g = 2
Ky < 1@ D)l + C||(01¢1,atwl)IIZHl),I|(¢1,l//1)||7;2||51(<D,‘P)IIL
L
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IN

%u@,%lliw(n(a D1 owIZ,, |, + vl IS @ WL,

M}y

1 16
K; < —||<c1>,\f'>||%< +Cll9,¢y, 3w

ol 1@l ‘32||51<c1> w3

< 1@ + (1019w, + b1 w0l IS @ W,

16

1
Ky = ﬁll(‘ll‘l’)ll2 +CNO P wDI L, Dyl ”2”51((1) Wl

)y

< i||<d>,qf)||%<+<:(||<a 10w, + 1@l )I1Si@ WIS,

™Y
4

Ks < 75 ||<<1> Y)[I% +ClI@, ¢, ,wl)u @1 v, 1151 (@, I

)y

< —||<®,W)||%(+C(||(a,¢1, oI, + 1wl IS @ PR,

My
Ks < =@ W% + ClO, W1 I151(@ DI
Therefore, we conclude that
12 % 1@ W+ (1001001, + 1wl 1S, @. . (558)

For J;, we can simply use the trace theorem and the Sobolev inequality in combination with (4.3) and (5.53) to find that
I3 £ Cl@O$1 0Dl gy A DB VEST (@, DI = mig ()IVSTH@, VPl 2y
< CxDlo, ¢y, 1W1)|I(HI)III(V59(<P ), Vrsr(‘l" )12

< CHDNOP1. W)l g ¢ 151@ PG ,

LA[T)

< CxWIO b1 0Dl gty (161 WD 151 @I + 1151 @, DL I@. W)l ) (5.59)

IN

1
1@ DI +Cx(1@b10w)IR,1 , + 1013wl g 1w )1 @I

™}y

IN

@I+ Cr (101 0wDI, ,, + Il IS @, W

™,y

Collecting the estimates (5.54), (5.58) and (5.59), we obtain the following bound for 7;:

111 < T l@ DI + (1010w, + 11wl IS @D (5.60)

(Hy)
Next, concerning I,, we employ again (2.2), (5.55) and (5.56), and deduce
|| = |/ (mo(ey) — mg () Vity - VSIQ(CD, ¥) dx + / (mpQyy) = mp()) Vi, - VFS}‘(CD’ ¥) dF|
Q r
< (Vg Vi)l g2 [img(dy) — mo(hy), mp(y) — mpwo))ll 4 II(VS?(Q", ¥), VrSlF(‘I), )|l 4
< CIV g, Ve 2 1D, B)|| 24 [I(VSTH@, W), VST (@, W)l £
1 3 1 3 1
< CliCug, 0D LIS (@, D)} II(D, lI’)I|,4<(II(¢1 R )Ilfi2 1S1(@, D), + [1S)(@, D)l II(D, ‘I’)II}) (5.61)
1 3 3
< C||(M2792)||L||(¢1,W1)||72{2||51(‘D7 D 1@, Pl g + Cllpz, 01 L 1151 (@, D) (D, P ¢
1 8 4
< 5 1@ DI +C (100 017 b1 vl + 1. 0213 ) 151 (@, )1
1
< 5 1@ +C (102 01 + 11wl ) 151 (@ L.
Lastly, utilizing (4.21) once more, we find
1
Cl@, Pl g2 < CIISH(P, )L 1D, D) g < ﬁll(‘b, Y% + CIIS (@, ¥)]15. (5.62)

Recalling the equivalence of the respective norms on V;!, we combine the differential inequality (5.17) with the estimates (5.60),
(5.61) and (5.62), and end up with

CN@IE 4 1 + S IO < QON@DIE (5.63)
where

00) = C(1+ 162, 01 + 101 0wDI2, 1, + 1@ 1wl ) € L'O.T)  forall T >0,

)y
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Therefore, noting again the equivalence of the respective norms on Vzl, an application of Gronwall’s lemma entails that
t
2 0_ 40 0 _ . 0\)2
(b1 (1) = a0, wy (1) — Wz(’))”(HlL)/ < (e — 5 w) — lllz)ll(HlL), €xp </0 o(s) dS)

for all > 0. Consequently, if ¢) = ¢) a.e. in Qand y! = y) a.e. onT, the above inequality yields the uniqueness of weak solutions. [J

6. Propagation of regularity and instantaneous separation property

In this section, we prove Theorems 3.4 and 3.7 regarding the propagation of regularity and the instantaneous separation property.

The proof of Theorem 3.4 is based on deriving suitable estimates for the time difference quotients (8" ¢, 9"y ) by exploiting the dif-
ferential inequality (5.63). This argument, however, requires the mobility functions to satisfy higher regularity assumptions, namely,
mg, mp- € C2([—1,1]). Therefore, the strategy of the proof is as follows. First, under the stronger assumption mg, mr € C*([—1, 1]), we
prove that the unique weak solution to (1.1) satisfies the desired propagation of regularity. Then, in the second step, we return to
the original assumption mg, mr € C'([-1, 1]), and construct a sequence of smooth approximations of the mobility functions lying in
C2([—1, 1]). This allows us to apply the results from the first step to obtain a corresponding sequence of approximate solutions to (1.1),
where now the mobility functions are replaced by their respective regularizations. Then, employing the chain-rule formula established
in Proposition A.1, we derive uniform estimates for the approximate solutions with respect to the approximation parameter. Finally,
standard compactness arguments yield the desired result.

Proof of Theorem 3.4.
Step 1: We start by assuming mq, mi € C%([—1, 1]). To prove the propagation of regularity, we make use of the differential in-
equality (5.63) proven in the uniqueness part of Theorem 3.2. First, for brevity, we use the notation

Sp(f,8) = SLlp(- + h), w(- + WIS, &),

- W pse = U L ptmyprmy -
Then for any & € (0,1), we apply the estimate (5.63) to (¢, y;) = (¢,y) and (¢,, ) = (¢(- + h), y(- + h)). Dividing the resulting
inequality by A2, and denoting the difference quotient in time of a function f by 0{‘ f@= %( f@+ h)— f(1)), we obtain

& 1O, LW IR, + IO, WO < QI0L D@, W, ©.1)
where, now,

0400 = €1+ 1+ 1.0+ + 109 9wy, + 1B ) € L1 0.T)

for any T > 0. To apply the uniform Gronwall Lemma 2.3, we note that

t+1 t+1
sup / 0f' p(s). 0! w(sHIF ., ds < Co,  sup / 0y(s) ds < €, (6.2)
>0 Jt >0 Jt

where the constants Cy, C; > 0 solely depend on E(¢,,y,), mean(¢,,y,), and the parameters of the system. Let = > 0. Then, an
application of Lemma 2.3 with ¢, = 0 and r = 7 yields

C
10} $(@). 0y (DI, < — exp(Cy)  forall 1>z (6.3)
Recalling again the equivalence of the corresponding norms on VL" , we readily obtain

CC,
||(a['¢>(t),a{'q/(z))an1 )< TO exp(C;)  forallt>r, (6.4)
L
where the constant C > 0 depends solely on the parameters of the system. This allows us to pass to the limit 2 — 0 in (6.4) to deduce
that
) cG,
sup ||(0,¢(f),0,lll(1))||(H1), < —exp(Cy). (6.5)
>7 L T
Then, we integrate (6.1) over the time interval [z, + 1], and employ the estimates (6.2) and (6.5). Passing again to the limit 2~ — 0 in
the resulting estimate yields
t+1
1+ c))cc,
sup [ 10,060 0wl a5 < D
t

27

exp(C)). (6.6)

Next, testing (3.4a) with S; [¢, w](0,¢,0,%) and noting on the identities (5.3)-(5.4), an application of the bulk-surface Poincaré in-
equality together with Young’s inequality shows that

[[[e7R 0)”L < C||(a,¢, atW)ll(Hi)/s
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which proves that
te l(u@, 0@l € L*(z, 00)

in view of (6.5). Thus, in light of (5.7), we use the bulk-surface Poincaré inequality to obtain that

[1Ct, Dl Lo 7, 00:741) < C- (6.7)
By (5.9) we learn that
[I(p, W)||L00(T,co;w2.p) + ||(F],(¢')a G; (II/))”LOO(r,oo;U) <C (6.8)

for all 2 < p < o0. To derive higher regularity estimates for the chemical potentials, we first recall that
(4 — pmean(u, 6), 6 — mean(u, 0));,2
= 1SL[#, w1(0,9, 0 w)ll32
1 1
< (V. Vel 2 16wl 1S w1 ol + G 01 10,b, 0w ).

Thus, thanks to (6.5), (6.7) and (6.8), we have

1
l(u — pmean(y, 6),0 — mean(u, 0)|l;,2 < C(1 + 10,8, 9wl )

a.e. on (z, ). Therefore, we infer with (6.6) that

t+1
Sup/ l(4 — mean(u, 6), & — mean(u, 9))||;‘12 ds<cC. (6.9)
t

>

In light of (5.7), the latter implies that (u,0) € Luloc([r, ©); H2).
Furthermore, exploiting the additional assumption mg,, m- € C%([-1, 1]), we can use Corollary 4.4 to find that

[I(u — pmean(y, 6), 6 — mean(u, 0))l3;3

m;l(¢)V¢~V/4 m}(u/)Vru/-VI—H (6.10)
<o (5 o | (g O, )

By standard computations, we estimate the terms on the right-hand side of (6.10) as

IGrer mr<w>)|)m

” < , > ” “ ( mgz(d’)atd’Vd’ m'r(lll)d,vlvrv/ ) “ + ” < Va,cﬁ Vrow > ”
mo(#)” mp(y) ) 2 mo@?  mp(y)? S mo($)” mp(y)
< CllO,, 0wl g2 + ClI(V, Vew)ll £ 10,0, 0) |l 22 + CII(0, b, Oyl ¢

and

M (V- Vi ml )iy - Vo
I( Mo

mo(¢) mp(y)
- ”<mg2(¢)v¢~ Vu my)Vrw - Vr9>”
B mo(d) mp(y) 2
N ” ( (mp(Img () — my($)*) (Vb - Vﬂ)VdJ (mp@ymeQw) = mi.()?) (Vry - Vi) Vry ) ”
Mo () mp(y)? 2
”<m W DD>pV e ml.(y)DE WVr9>” ”<m£1(¢)D2/4V¢ m’r(w)D%9VrlI/>H
mo(@) T mp(w) & mo(@) T mp(w) 2

< ClVP. Vel eoo (Vi Vi)l 2 + CIV, Vo) 2 1(V i, Vbl 22 + Cll (b w)ll gt (Vi Vi)l
+ Cl|(Ve, Vi)l p || (4 — pmean(u, 0), 0 — mean(u, 0))||;,2-
Recalling the Sobolev embedding W23 < W' and exploiting (6.8), we arrive at
[I( — pmean(u, 6), 0 — mean(u, 0))ll;
< C(1+ li(u — pmean(u, 6), 0 — mean(u, 0))ll52 + 19,6, ¥l )-

Hence, by (6.6) and (6.9), we conclude that

t+1
sup/ ll(4 — pmean(u, 6), 6 — mean(u, 0)17, ds < C.
> Jt

In light of (5.7), the latter entails that (4, 0) € Luloc.([r’ o0); H3).

Step 2: Now, let mq, mp- € C!([-1, 1]). Then, we can construct a sequence (mg K ken C C%([-1, 1)) such that
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(M1) 0 < 2 < mg(s) < 2M* for all s € [~1,1] and k € N;
(M2) mg, — mg in C'([-1,1]) as k > oo;
M3) |m,§l,k(s)| < Coop lImiy |l oo g—1,17) for all s € [-1, 1] and k € N,

where m, and M, are the constants from Assumption (A2), and the constant C,,,, > 0 does not depend on k € N. Similarly, we can
construct a sequence (mp;)reny C C*([—1, 1)) that satisfies analogous properties. Considering the corresponding unique weak solution
(dr> Wi» Hy» 0,) Which exists according to Theorem 3.2, the results from Step 1 show that for any = > 0, it holds that

(- wi) € L¥(z,00 WHP), (9, 0,w) € L™ (7,005 (H})) N LY (I, 00); HY),

uloc

(- 0)) € L¥(1,00:H) N L2 ([r,00): 1Y), (F'(¢). G’ () € L™(z, 00; LP),

uloc

for any 2 < p < o and all k € N. Moreover, with these regularities at hand, and exploiting the additional Assumption (A4), one can
show similarly to [25, Theorem 2.3] and [26, Theorem 2.2] that

(F" (1), G" () € L™ (z, 00 LP)

for any 2 < p < oo (see also [23, Theorem 3.11]). From this, one can deduce that the time derivative (9, u,, 9,6, ) exists for all k € N in
the sense that (9,4, 9,6) € Lﬁloc([r, ®); (H!Y), and it satisfies
(@t 0,00), (1. 9)) ;1 = / Vo, by - Vi + F' (¢ )0,y dx + / Vo - Vid + G (w,)d,y, 9 dT
Q r
(6.11)

+ x(K) /(aatu’k — 0Py — ¢y ) AT’
r

a.e. on (z, o0) for all (5, 9) € H'. For more details, we refer to [15]. In the following, the letter C will denote generic positive constants
that are independent of k.

As shown at the beginning of the proof of Theorem 3.2, one readily deduces from the energy inequality (3.6) the following uniform
estimates

sup [|(& (), v DIz < C, (6.12)
>0
(g, 013 + 110,y Gwi)lI%,, -, ds < C, (6.13)
0 H})
t+1
SUP/ ||(¢k’lllk)||;‘_[2 ds<C (6.14)
>0 Jt
as well as

[1(br> willwar + ||(F1,(¢k)’ G; Wllgr < C(l + ||(I4k,9k)||L)

a.e. on (0, ). To establish the main estimates for the regularity argument, we aim to apply Proposition A.1. To this end, noting on

(div(mg, ()Y ), divp (mp , W)V E0,) — Bmg 1 (b )0ni ) = @by, dwy) € L2, ([7, 00); HY),

uloc

the aforementioned proposition yields that

o ( [ @iV ax+ [ mewnivio,ar+ om0, - w2 dr>
Q r r

= <(0;llk7 2,0,), (—diV(mg,k(d’k)Vﬂk)’ —din(mr,k(Wk)Vrek) + ﬁmg,k((ﬁk)anﬂk));i]
+/Qm§29k(¢k)6,d)k|Vﬂk|2 dX+/Fm{—'k(Wk)0sz|vr9k|2 dr
= —( (O ty> 9,01), 0,y Oy ) 51 +/ﬂm;lk(¢k)a,¢k|wk|2 dx+Am},k(wk)6,wk|Vr9k|2 dr
= @b Ol — /Q F @Ol dx - /r G" (WOl T + /Q mly (B0 bV dx + /r )0 10, T

a.e. on (7, ). Exploiting the strong convexity of F; and G, respectively, as well as the Lipschitz continuity of F,Z’ and G;, respectively,
we readily infer

d1
—= / Mo (I V iy |* dx + / me g (WOl Vrb ] dU + y(L) / (B0 — m)* dU ) + 110, 9. w5
(6.15)
< Cll@Ob oI, + /Q B0 b Vi dx + /r i 0w V6,2 T
For the first term on the right-hand side of (6.15), if K € [0, o), we employ Ehrling’s lemma and (5.5) to find that
1
Cll@ipi Oyl < 7 1@rbs Ayl + CllGags O (6.16)
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On the other hand, if K = o, Ehrling’s lemma yields that, for any £ > 0,
CllOr: AwilZ, < ell @i w5, + Cell (s 0117

< ell @i owN7, + €ll @i, w5 + Cell (g, B -

Consequently, choosing € = C, we conclude that (6.16) also holds in the case K = c.
Next, to control the remaining terms on the right-hand side of (6.15), we use (2.2) and (M3), obtaining

| /Q iy B0 b Vi P dx + /r e 0w V0, 2 d

< Cll@Brs 0wl 22 (Vs VeI,
< C0: b O will 2 1 g, O 1 1 (e — Pmean(py, 0y), 0 — mean(puy, 0;)) 1342
Arguing as previously done in Step 1, we deduce with (4.21), (4.32), (5.1), and (5.5) that

(6.17)

[y — pmean(uy, 0), 6 — mean(uy, 0,))|l22
= ISPk wil0;Pis w32
< C(IVei: Vewll 2 1 Wil 2 1S L Lk wi 10, bscs Wil 1 + 110,61 Byl 2)

1 1

< C (i w2 Nt B + 1 O 10ycbis Ol )-
Consequently, we infer with Young’s inequality that
| / mgz’k(¢k)0,¢k|V/4k|2 dx + /m}’k(q/k)d,y/kWrOklz dF|
Q r

1 1

< Cll(at¢ksath)||£2||(/4ksek)|lL<”(¢kall/k)”7-[2”(/"/pgk)”L + (g 0112 ||(0,¢k,6,ll/k)||,2<>
3 1 1 1
< Cltis 8011 10, O (165 Wl Nk 0N + 11 0011 1@t Ol )
1 5
< C||(0,¢k, a,y/k)||}<||(¢k, lI/k)”HZ ||(14k,9k)||72_12 + C”@;‘Pk,aﬂllk)”l(”(ﬂk, 91()||2L (6.18)

4 10
< 210,91 3wl + Cli(dy, l//k)ll32||(Mk,49k)|IL3 + Cll (- 0I5

— A=

< 710001 + € (b vl + Nk 0013 )N 01

Thus, in view of (6.15), we obtain from (6.17) and (6.18) that

dl1
dr 2

< (1 1wl + 110013 ) (| mo @I Vin dx + | mpsu)IVe0, > dU + 2(L) | (90, = )? )
H Q r r

3 ([ max@orvin ax+ [ meuoiveon a2y [0, - m)? ar) + 100wl
(6.19)

a.e. on (7, 00). In light of (6.13) and (6.14), we may now apply the uniform Gronwall Lemma 6.3 and deduce with (M3) that

sup [l (0. 6, NI < <.
>7 T

Integrating (6.19) in time over [z, + 1] for ¢t > 7, we find

t+1 C
sup / 10, (5), i (D% ds < <
t

127

Based on these bounds, we can follow along the lines of Step 1 and conclude that
[1Che» gk)”Loo(,_oo;Hp + (@i Will Lo (002 + ||(F1,(¢k)7 Gll WD Lo (z,0050) F (g 9k)||L4 REXSTIORS <C

for all 2 < p < oo. These estimates ensure, by standard compactness arguments, the existence of a limit quadruple (¢, y, u, 0) solving
(1.1) in the sense of Definition 3.1, and satisfying

(@.y) € L¥(z, 00, W),
(0,9,0,y) € L¥(z, o0; (HL) )N Luloc([T, o) HY),
(u,0) € L™(r,00;H}) N LYy (7, 00); H?),
(F'(¢),G' () € L®(z,00; L)
for any 2 < p < oo. This finishes the proof. O
As a consequence of Theorem 3.4, we can improve the energy inequality (3.6) to be an energy equality.
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Proposition 6.1. Suppose the assumptions from Theorem 3.4 hold, and consider a global weak solution (¢, y, u,0) that satisfies the
propagation of regularity. Then

%E(qb(z), w(n) + /ﬂ mo ()| Vul* dx + /F mp)|Vro]* dT + (L) /F (B8 — > dr =0 (6.20)
for a.e. t > 0, and

E(p@t), w(@)) + /Ot /9 me(9)|Vul? dx ds + /Ot /rrnr(WlVr@Iz drds + ;((L)/O’ /r(ﬂﬁ — )2 dT ds = E(¢bg, o) (6.21)
forallt>0.

Proof. We start by defining the functional E; : £? — (—c0, o] given by

E(¢.) = %u(c,@n; + /Q Fi(©) dx + /r G,(9) dr,

where F, and G, are the convex parts of the potentials F and G in Assumption (A3), respectively. Then, the functional E, is proper,
convex, and lower-semicontinuous (see, e.g., [15, Lemma 5.1]). Owing to [30, Lemma 4.1] in combination with [15, Proposition 5.2]
we deduce that [0, ) 3 1 = Ey(¢(t), w (1)) is absolutely continuous and it holds

S B 0) = (0.0, (<20 + F(@. =B + G| 1) + adu)) 1

= (0.0, (u = Fy(#).0 = Gyu)) )1
= /Q mo(@)|Vul* dx + /F mp(y)|Vr6|* dT + y(L) /F (B6 — u)* dr" — /Q Fy(¢)0,¢p dx — /F G)(y)o,y dT
almost everywhere in (, co) for any 7 > 0. Consequently,
3 p@w = /Q @I VAl dx + /r me@IVEOP T+ £(L) /r (§0 - w? dr (6.22)

almost everywhere in (z, o). Since = > 0 was arbitrary, we readily obtain (6.20). Then, integrating (6.22) over (s, ?) for s,7 > = with
s < t, we infer

t t t
E(p®), w(®) — E((s), w(s)) = / /QmQ(tlﬁ)IVMI2 dx ds +/ /rmr(l//)IVrf)I2 drds + )((L)/ /r(ﬂf) — w?*dr ds. (6.23)

It follows from (3.6) that limsup,_y E(¢(s), y(s)) < E(¢(0),y(0)). On the other hand, by weak lower-semicontinuity of norms
and Lebesgue’s dominated convergence theorem, we have liminf,_q E(¢(s), w(s)) > E(¢(0),w(0)). As a result, it holds that
lim,_, 5 E(¢(s), w(s)) = E(¢(0), w(0)). This allows us to pass to the limit s — 0 in (6.23) and conclude the energy identity (6.21). O

Now, we are in a position to present the proof of Theorem 3.7.

Proof of Theorem 3.7. The case with Assumption (A4.1). Let (¢, y, u, 0) be a weak solution to (1.1) that exhibits the propagation
of regularity. Then, we have already seen in the proof of Theorem 3.4 that

Fl”(tlﬁ) € L™(z, 00; LP(Q))
for any 2 < p < oo (see, e.g., [23, Theorem 3.11]). Analogously, one can show that
Fl”(ll/) € L®(z, 005 LP(I))

for all 2 < p < « (see, e.g., [26, Theorem 2.2]). On the other hand, since (¢, ) € L®(z, c0; W>P) and (Fl’(d)), Fl’(y/)) € L*®(z, 00; LP)
for any 2 < p < o, it holds that

sup ||F1,(¢(t))||wly3(g) + sup ”F]/(‘l/(t))”WI,S(I‘) <C.
127 27

As d = 2, we have the Sobolev embeddings W!3(Q) & C(Q) and W'3(I') & C(I), and deduce that

sup || F{ (@)l Loy + 5up [ F{ W)l ooy < € =: C,.
2T 127

Thus, taking
s=1-(F)(C,

we arrive at the conclusion (3.12).

The case with Assumption (A4.2). In this case, we exploit the dissipative structure of (1.1) in combination with a De Giorgi-type
iteration scheme, following the recent approach developed in [12]. This method has already been successfully adapted to dynamic
boundary conditions in the case of constant mobility functions, see, for instance, [25,26]. The extension to the setting with a non-
degenerate mobility is straightforward and follows along similar lines. For brevity, we omit the details and refer the interested reader
to the aforementioned works. O
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As a direct consequence of the separation property (3.12) and regularity theory for elliptic systems with bulk-surface coupling
(see, e.g., [20, Theorem 3.3], we can prove further regularity of the phase fields.

Corollary 6.2. Let the assumptions from Theorem 3.7 hold, and consider a weak solution of (1.1) that satisfies the propagation of regularity.
Then we have (¢, w) € L®(z, 00; H).

Proof. First, recall that
—Ag(t) = ut) — F' () a.e. in Q,
—Apy(t) + ady () = 0(t) — G’ (w (1)) a.e.onT,
Ko,o(t) = ay(t) — (1) a.e.onl’

for almost all 7 > z > 0. Then, from the separation property (3.12), the Lipschitz continuity of F; and G/, respectively, and the fact
that (¢, w) € L®(z, co; W>P) for any 7 > 0, we readily deduce that

sup ICF" (@), G’ W@z < C

for any 7 > 0. As additionally (u,8) € L®(z, oo; H'), the claim follows from elliptic regularity theory (see, e.g., [20, Theorem 3.3]). O

7. Convergence to equilibrium

The following argument is inspired by the approach developed in [1] and its subsequent extension to the Cahn-Hilliard system
with dynamic boundary conditions, see, for instance, [10,25,26].
Let

meR with pmme(=1,1) if L €[0, ), (7.1a)
and

m=(m,my)) € R? with my,m, €(~1,1) if L=co. (7.1b)
We define the phase space

Zot = (. w) e Wy, 1 Edy) < oo},

equipped with the metric
1
doxi (@) (60) = @=Ly =Bl +| /ﬂ Fi () dx—/QFl(C) dx|?

1
+| / Gy(y) dr - / GO Ar|”  forall (,y).((.6) € ZK".
r r

Thus, (Z,I,f’L ,dZK,L) is a complete metric space. We then have the following conclusion, which follows from Theorem 3.2 and is a

straightforward extension of [10, Proposition 4.1] (see also [25, Proposition 4.1]).

Proposition 7.1. Suppose that the assumptions from Theorem 3.9 hold. Then, the system (1.1) defines a strongly continuous semigroup
SKL . ZKL _, ZzKL such that

SEL0(po. o) = (@O, w(®)  forali >0,
where (¢, ) is the unique global weak solution of (1.1) subject to the initial datum (¢, ) € ZXL. Moreover, SK-L e c(zK-E, ZK-Ly,
Next, we define the w-limit set
3(t,)nen C Ryo with 7, = co such that
0K LG wy) 1= { (P we) € HP A ZKE|™ WIS T2 o .
Sh (o, wo) = (Beos Woo) in H? as n — oo

Let (¢g. vy € Z ’Wf ‘L and consider the unique global weak solution to (1.1) departing from (¢, ;). Then, since for any z > 0 it
holds that (¢, w) € L®(z, 00; H3) as well as (d,¢,d,w) € Lﬁloc([r, o); H!), we find from the Aubin-Lions-Simon lemma that (¢, y) €
C([t,t + 11; H?) for all 1 > = > 0. Hence, it holds that

(¢, w) € BC([z, 00); H)

for any s € (2,3) and for any 7 > 0. It then follows that the w-limit set XX (¢, y) is non-empty, compact and connected in H? (see,
e.g., [4, Theorem 9.1.8]), and we have

lim disty> (SELD(Bo, wo), (g, wp)) = 0. (7.2)

Additionally, as E : ZXf - R serves as a strict Lyapunov functional for the strongly continuous semigroup SX-L, we observe
that every (¢, Ws) € @X-L(ehy, wy) is a stationary point of {SK-L(1)} 5, that is, SEL ()P, Weo) = (P, W) for all 1 > 0. Denoting the
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corresponding bulk and surface chemical potentials by p,, and 6, respectively, we find that (¢, ¥, s, 0s) can be regarded as a
global weak solution of

0,ps = diV(mQ(q.')m)Vyoo) in Q x (0, ),
u==0¢y + F($) in QX (0, ),
0 Wy = divr(mr(y/m)vrem) — Pmo (P )0 Moo on I' X (0, 00),
0, = —Arwo, + G (W) + adydoy on I'x (0, ),
Ko = - if K 0, c0),
hboo = Moo = oo 1 €0, on I x (0, ),
an¢oo =0 if K =00
Lmg(¢e)0nte = POs — Hoo %f L € [0, ), on T'x (0, 0o).
Mo (Poo)Onteo =0 if L=
Peoli=0 = P in Q,
Vooli=0 = W0 onTl.

In light of the regularity properties proven in Theorem 3.4, (¢, Woo» Hoo» O) 1S actually a strong solution to the stationary problem

div(mg(¢e,) V) = 0 inQ, (7.4a)

Heo = =D + F' () inQ, (7.4b)

divr(mr (W) Vrbe) = Ao (o) Op e = 0 onT, (7.4¢)

0 = —ArWe + G (o) + a0p o onT, (7.4d)

{Kﬁnqbw =ay, —dy if K € (0,00), onT. 7.40)
Oy =0 if K =00

{ng((ﬁm )anﬂoc = ﬁgoo ~ Hoo ifLe [0, ©), onl. (74f)

Mo (P Voo =0 if L =00

Multiplying (7.4a) with u, and (7.4c) with 6, integrating over Q and T, respectively, adding the resulting equations and using the
boundary condition (7.4f), we obtain

/ Mo (o) Vg |* dx + / mp(We)| Vb | T+ (L) / (B0 — 1eo)* AT = 0.
Q r r

Thus, for all L € [0, o] we infer that u, and 6, are both constant. Furthermore, if L € [0, ), we can conclude that 86, = u.,. Then,
multiplying (7.4b) with « and integrating over Q, and integrating (7.4d) over I, we get

— __ o ’ ’
oo = P00 = oo (a/QF (¢m)dx+/rG (u/w)dl“) (7.5)

if L € [0, 00). If L = o0, we find instead

oo = lﬁll(/ﬂF’(%) dx - /ra,,zpm ar),
0, = I_ll“l(/rGl(W“Haa"(ﬁ"" dr).

Consequently the stationary problem (7.4) reduces to
Hoo = —AP, + F’((]ﬁoo) in Q,
0 = —Arwy, + G (W) + a0ude, onT,

Koy = ay,, — ¢, if K € (0, ),
an¢oo =0 if K =0

(7.6)

onl,
with u, and 6, given by (7.5) or (7.6) depending on the value of L € [0, «].
Finally, we learn from [4, Theorems 9.2.3 and 9.2.7] that

Ey = lim E@@).y (1) exists,and  E(¢e. W) = Eo,  for all (. eo) € 0 (g, ). (7.7)

Now, to prove that the w-limit set o®-L (¢, y) is a singleton, we apply the Lojasiewicz-Simon approach, see, for instance, [1,10].
The main tool is the following extended Lojasiewicz-Simon inequality.

Lemma 7.2 (Lojasiewicz-Simon inequality). Suppose that the assumptions from Theorem 3.9 are satisfied. In addition, assume that F,, G,
are real analytic functions on (—1,1), and F,, G, are real analytic functions on R. Let (¢, W) € @1 (¢y, wy). Then, there exist constants
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w € (0, %), b> 0, and C > 0, such that

P —AL+ F(©)
L\-ArE+ G + ad ¢

forall (£,&) € H?n Wich,m satisfying (¢ — ¢oo» € — Weo)llz2 < b. Here, P, denotes the projection of £L? onto

{(¢.w) € £ : mean(p,y) =0}, if L €[0, ),
{dw) e (p)o=(y)r=0}, fL=co.
The proof of Lemma 7.2 can be found in [25, Lemma 5.2] in the case L = o0, and can be readily adapted to our current setting
(see also [10, Lemma 5.2] and [26, Lemma 5.2]).

c 2 |E(,9) = E(be we)l' ™™ (7.8)

r2

Proof of Theorem 3.9.

Let (¢, wo) € ZX'E with mas in (7.1). Then, as &L (¢, w;) is compact in H2 n W}(,L’m, we can cover XL (¢, w) with finitely many

yinH?n W11< .., centered at (@, wl) € WK L(¢hy, wp) with radius b;, where b; > 0 is the constant from Lemma 7.2

open balls { B;};_,

corresponding to (¢, wl). Recalling that E lokL(ggwy) = Ee and setting U := UJ.N=1 B;, we find universal constants @ € (0, 1y and

C > 0 such that

PL< ~AL+F(©) >
—Apé +G'(€) + a0y 2

Then, in light of (7.2), there exists * > 0 such that (¢(#), (1)) € U for all ¢ > ¢*. Thus, recalling the energy identity (6.20) and setting
H() := (E(¢p(0), w(1)) — E,)®, we have that

c > |E(.& - E '™  forall ((.&) e U.

—% H(1) = =@ (E(@), y(1) - Eoo)ﬁ_l%E(d)(t)’ w (1)

[[CTONION P

”P —Ag(t) + F'(¢(1)) “
L\=Ary () + G'(w(0) + adg() ) ll 2
@ min{1,m"} (), O@DII2

- C e —Ag(®) + F'(¢(1) H
E\ Ay () + G'(w (1) + ady (1) ) llc2

for almost every ¢ > r*. By (1.1b) and (1.1d) we deduce that
”PL< N —A¢(t),+ F'(¢(1) >H ]
—Apy (@) + G'(y (1) + ady () ) I
= ||(u(®) — pmean(u(r), (1)), (1) — mean(u(), 6(1)l .2
< Cpll(u@®), Ol .-

Therefore, we arrive at

>

ol

\%

d @ min{1, m*}

—gHO2 ICu@, 0NN, fora.e.t>r".

P
Integrating the previous inequality in time from * to oo, we derive from (7.7) that

c,C

min{l,m*}H(t )

/ 1. 0l dr < =
1* w

from which we deduce that = ||(u(t), ()|, € L'(t*, =), entailing by comparison 0,¢,0,w) € L(t*, oo; (Hi)’ ). Hence, there exists
(Do Woo) € @FL (. y) such that

(¢(t),l//(1))=(¢(t*),w(t*))+/(0,¢(S),0,W(S)) ds — (¢, Weo) in(H}) ast— oo,

and, by the uniqueness of the limit, we conclude that XL (¢, wy) = {(Peos Weo)}. O
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Appendix A. A bulk-surface chain rule

Proposition A.1. Let Q c RY, d = 2,3, be an open bounded domain with C3-boundary, let I = (a, b) C R be an open interval and (¢, y) €
HY(I; L3 0 LR, W with |¢| < 1 a.e inQand |y| < 1 a.e. onT. Furthermore, let mg, mp- € C%([—1, 1]) satisfy Assumption (A2). Consider
(w,0) € C(I; L2) 0 L=(I; H} ) n L*(I; H?) such that Lmg(¢)d,u = v —u a.e. on T and (8,u,9,v) € L*(I;(H)'). In addition, assume that

(div(mg () Vu), divp(mp(w)Vrv) — fmg(¢)opu) € LA Hy).

Then, the continuity property (u,v) € C(I; Hi) holds, the mapping

Iat / mo(¢(®)|Vu(®)|* dx + / mp(w () |Vro@®))? dr + x(L) / (Bo(t) — u(r))* dT
Q r T

is absolutely continuous, and the chain rule formula

il(/mg(di)lvuﬁ dx+/mF(W)|VrU|2 dr+}((L)/(ﬂU—u)2 dl“)
dr 2\ Jo r ; .

= ((a,u, 0,0), (—div(mg(¢p)Vu), —divp(mp(w) Vo) + ﬂmg(d’)an“));.,ll( + /ng)(¢)6,¢|vu|2 dx + /m}(u/)d,x//lvrw2 dr
r
holds a.e. on I.

Proof. Our proof is inspired by the approach in [7, Proposition A.1]. In the present setting, additional care is required to handle the
terms arising from the non-degenerate mobility, which necessitates further technical considerations. First, fix u and v as arbitrary
representative of their respective equivalence class. Then, since (u, v) € C([a, b]; £L?), we can extend the functions u and v onto [2a — b, a]
by reflection for all ¢ < a.

Let p € CX(R) be non-negative with supp p € (0,1) and ||l ;1) = 1. For any k € N, we set

pi(8) := kp(ks) for all s € R.

Then, for any Banach space X and any function f € L(a — 1, b; X), we define

t

Fo®) 1= (py % 1)@ :/ | pt=5)f(s)ds  forallz€[ab] and keEN.
t

By this construction, we have f;, € C®([a,b]; X) with f, — f strongly in L%(a, b; X) as k — co.

Now, for any k € N, we use X = H*(Q) to define v, and X = H3(I') to define v, as described above. By this construction, it
holds that o,u; = (0,u), and 9,Vu;, = Vo,u, a.e. in Q X (a, b) as well as 9,v; = (,v), and 9,Vrv, = Vo,v, a.e. on T X (a,b) for all k € N.
Moreover, we have

T strongly in L*(a, b; H*(Q)), (A.2)

v > strongly in L*(a, b; H3(I')), (A.3)

(uy vg) = (u, ) strongly in L*(a, b H}), (A.4)
(O, 9,v;) = (du, 0,0)  strongly in L2(a, b; (HL)) (A.5)

as k —» oo. Furthermore, we readily see that

Nt ll poo a1 @) < Nl oo a1 )y
(a,b;H' () (a,b;H' () (A.6)

||”k||L°°(a,b;H1(r)) < ||U||L°°(a,b;H1(r))

for all k € N. In the following, we will denote with C generic positive constants independent of k € N, which may change their value
from line to line. Now, for any k € N, we derive the identity

d 1

d—-(/ mo ()| Vu, |? dx + /mI-(y/)|Vrvk|2 dar+ ;((L)/(ﬁvk —u? dr) (A7)
12\ Jo r r
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= (@ 0,0). (~diV(me(@)Vit). ~diVi-(mp W)V o) + Brmg(B)gie)) 1 + /Q ()0, b1 Vi | dx + / )0y Vrv | dr
r

a.e. on [a, b] by differentiating under the integral sign and applying integration by parts. Similarly, for j, k € N, we calculate

S3( [ ma@I¥a, ~uoP ax+ [ m@iVew, = e ar 4 2m) [ (0, = 0= = up) ar)
Q r r

= (010 = 1. 0,(0; = 0)). (~divlma(#)V () =), ~dVr(mp (WIVE(W; = 0) + g (Bog(u; =) )11

+ / mly($)9,01V(u; — up)|* dx + /m’r(w)a,wwr(uj — > dl’ (A.8)
Q r
< N0 (uj — uy), 0,(v; — Uk))ll(H’l()/ 1(div(mg @)V (u; — up), divp(mp) Vi (v; — vy)) = fmg(@)onw; — )iz
+ CllOd, 0yl 3 |(V(u; — ), Vir(v; — o)l g6 1V @y = w), Ve(v; = o)l g2
To estimate the right-hand side suitably, we use standard computations together with the Sobolev inequality to find that
||(diV(mQ(¢)V(uj - up)), diVI‘(mF(W)VF(Uj = Ug)) — Bmq(h)0n (u; — up)llzp
< ||(diV(mQ(¢)V(uj — ), din(mr(lI/)Vr(Uj =) = Pmg ()0 (u; — u))ll 2
+ 1(V(div(mq () V(u; — wy))), Vi (divr(mp(p) V() — v)) — Bmg ()0 @; — u))) 300
< ma(P)A(u; — wy), mpW)AR(v; — )l 2
+ mg @)V - Vu; = u), mp@)Vry - Ve, — o))l g2
+ [(ma(@)V A, — wy), mp(W)VrAr(v; — v))ll 2
+ | mgy(P)AW; — u )V, mp)Ar(; — v)Vrw)ll 2
+ | mgy( DYV - V(u; = )V, ml W) (Vry - Vr(v; — o) Vry)ll 2
+ [[(mp (P D>V (u; — w), m{-(p) DRy V() = o)l 2
+ [(my (D) D () — up)Vep, m{-(w)DE(; — v)Vrw)ll o2
+ ”ﬂmQ(d’)an(uj - uk)”LZ(r) + ||ﬁm£1(¢)vr¢an(uj - “k)”Lz(l")
+ 1Bmo (@) Vo (u; — u)ll L2
< C”(“j — U, U — vl + C”(qu,vrllf)”mon(uj — U, Uy — vl
+ Cll(u; = ug, v; = vl + ClIVE, V)l peo Iy — g, v; = v ll32
+Cll(Vo, Vl—‘l’l)”ioc 1 = g, v; = Vg + 11D, Wl 1(V(u; — ), Vir(v; — o))l g3
+ ClI(V, Vel peo I — wges v — v)ll32 + Clluy — wiell g2y
+ Clidllp2a@ll; —udllz2 + Cllu; — will g3 )
< C||(uj — Uy, 0 — Ul 33
Here, we have additionally used the embedding H3(Q) < H?(T) yielding
”an(uj - uk)”HI(r) < ”uj - uk”HZ(r) < C”uj - “k”HB(Q),
whereas the embedding W2*(Q) & W (I') shows that
||Vr¢||L°°(F) < ||¢||W1~°°(l“) < C||¢||W2»4(Q)'
Next, employing (A.6), we have
1V (; = uw), Vi = o)l gs IV @ = up), Vi — o)l g2 < Cll(, O)| pooy gy 1) — g, v = 0 ) ll343-

Collecting our previous estimates, we conclude from (A.8) that

%%(/ ma(@)|V(u; — up)|* dx + /mr(lI/)Wr(Uj — vl dr + x(L)/ (P, = v = ;= ) dr)
Q r r (A9)
< (110, = ). 0,0; = Dl g1y + 10,9 3 )1ty = 10, = V-
Now, let s, € [a, b] be arbitrary with s < 7. We then integrate (A.9) with respect to time over [s,7], and obtain
/ mg(p)|V(u; — w ) dx + /mr(ll/(t))IVr(U,- — v O dI' + ){(L)/ (Bw; — )@ — () — Mk)(t))2 dar
Q r r
< /ng(dJ(S))IV(uj —u)(®)? dx + /rmr(lll(s))lvr(vj — (9> dr + }((L)/r (Bw; — v () — (u; — Mk)(S))2 dar (A.10)

t I3
e / 10,0y = .00, = 0, + 10y =0, = 0l b +C / 10,69 1 Nty — 0, — 0y .
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In light of the convergences (A.2)-(A.3), we can fix s € [, 1] such that (u,(s), v (5)) = (u(s), v(s)) strongly in 7> along a non-relabeled
subsequence k — co. Recalling (A.2)—(A.5), we thus deduce that the right-hand side of (A.10) tends to zero as j, k — co. As mq, and mp-
are uniformly positive according to (2.3), we infer that (Vu, ),y is a Cauchy sequence in C([a, b]; L%(Q)) and (Vrup)ken is a Cauchy
sequence in C([a, b]; L*(T")). Consequently,

Vu, — Vu strongly in C([a, b]; L*(Q)), (A.11)
Vrv, — Vpo  strongly in C([a, b]; L*(I) (A12)

as k — co. In view of the assumption (u, v) € C([a, b]; £L?), we readily deduce that (u, v) € C([a, b]; H).
Let now s, € [a, b] be arbitrary with s < r. We then integrate (A.7) in time from s to ¢ and find

/ﬂ Mo (@) Vu ()]* dx + /r mp(y ()| Vroe®1* dr + x(L) /F (B () — w (1)* dT

- / Mo (@(s) Vag (I d + / e DIVro () T+ 7(L) / (Poy(s) — g (5))? I
Q r r
t (A.13)
+2 / ((@yuy, 3,03), (—div(mg () Vuy), —divr(mr(q/)Vruk)+ﬂm9(¢)0nuk)>Hll< dr
t
+2/ (/m’Q(qs)a,¢|w,{|2 dx+/m’r(q/)a,w|vruk|2 dr) dr.
K Q r

It is now clear from the convergences (A.2)-(A.5) and (A.11)-(A.12) to pass to the limit in all terms except the last one on the
right-hand side. Here, we notice that

t t
/ / mly ()0, Vi |* dx dr —/ / mp ($)9,0] Vul* dx d‘L"
K Q K Q

t
= ‘ / / mly ()9, (Vg + Vu) - (Vi = V) dx d'r‘
s Q

!
S Mlmgll oo 1,1y 10: PN 120,513 @) 1 Vitr + Vll 20, ;16 I Vit = V“”cua,b];L?(Q))

< 2”'";1||L°°(—1,])”az¢”LZ(a,b;Lf*(Q))||’4||L2(a,b;H3(g))”V”k - V””c([a,hJ;LZ(Q))

— 0

as k — oo in light of (A.11). A similar computation shows that the corresponding term on the boundary also converges. Altogether,
we are now able to pass to the limit k — oo in (A.13) and conclude that

/ﬂ ma (@) Vu(®)]? dx + /r mp(p ()| Vro@)|? dr + y(L) /F (Bo(t) — u(®)* dT
= /Q ma(P()|Vu(s))* dx + / mp(y(s)|Vro(s))? dU + y(L) / (Bo(s) — u(s))* dT
r r
+2 / {((9,u, 0,v), (=div(mg () Vi), —divy-(mp () V) + ﬂmg(¢)anuk)>ﬂlk dr

t
+ 2/ ( / ()0, Vul® dx + /m’r(y/)a,l,/|vru|2 dr) dr.
s Q r
By our previous considerations, we readily see that the integrands on the right-hand side belong to L!(a, b), and thus, that the mapping
[a.b] 51w / mo(¢®)|Vu(d)|* dx + / mp(p ()| Vro@)]* dT + x(L) / (Bo(t) = u(n))* dT
Q r r

is absolutely continuous. It is therefore differentiable almost everywhere on [q, b] and its derivative satisfies the formula (A.1). This
finishes the proof. O
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