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 a b s t r a c t

We study a bulk-surface Cahn–Hilliard model with non-degenerate mobility and singular poten-
tials in two dimensions. Following the ideas of the recent work by Conti, Galimberti, Gatti, and 
Giorgini [Calc. Var. Partial Differential Equations, 64(3):Paper No. 87, 32, 2025] for the Cahn–
Hilliard equation with homogeneous Neumann boundary conditions, we show the uniqueness of 
weak solutions together with a continuous dependence estimate for sufficiently regular mobility 
functions. Next, under weaker assumptions on the mobility functions, we show the existence of 
a weak solution that exhibits the propagation of uniform-in-time regularity and satisfies the in-
stantaneous separation property. Lastly, we consider the long-time behavior and prove that the 
unique weak solution converges to a solution of the stationary bulk-surface Cahn–Hilliard equa-
tion. Our approach for the uniqueness proof relies on a new well-posedness and regularity theory 
for a bulk-surface elliptic system with non-constant coefficients, which may be of independent 
interest.

1.  Introduction

In this paper, we investigate the following bulk-surface Cahn–Hilliard model 
𝜕𝑡𝜙 = div(𝑚Ω(𝜙)∇𝜇) in Ω × (0,∞), (1.1a)

𝜇 = −Δ𝜙 + 𝐹 ′(𝜙) in Ω × (0,∞), (1.1b)

𝜕𝑡𝜓 = divΓ(𝑚Γ(𝜓)∇Γ𝜃) − 𝛽𝑚Ω(𝜙)𝜕𝐧𝜇 on Γ × (0,∞), (1.1c)

𝜃 = −ΔΓ𝜓 + 𝐺′(𝜓) + 𝛼𝜕𝐧𝜙 on Γ × (0,∞), (1.1d)
{

𝐾𝜕𝐧𝜙 = 𝛼𝜓 − 𝜙 if 𝐾 ∈ [0,∞),
𝜕𝐧𝜙 = 0 if 𝐾 = ∞

on Γ × (0,∞), (1.1e)

{

𝐿𝑚Ω(𝜙)𝜕𝐧𝜇 = 𝛽𝜃 − 𝜇 if 𝐿 ∈ [0,∞),
𝑚Ω(𝜙)𝜕𝐧𝜇 = 0 if 𝐿 = ∞

on Γ × (0,∞), (1.1f)

𝜙|𝑡=0 = 𝜙0 in Ω, (1.1g)
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J. Stange

𝜓|𝑡=0 = 𝜓0 on Γ. (1.1h)

System (1.1) is a special case of the model proposed in [22]. There, the authors considered an extended version of (1.1) with 
convection.

In (1.1), Ω ⊂ ℝ2 is a bounded domain with boundary Γ = 𝜕Ω. We use the abbreviation 𝑄 = Ω × (0,∞) and Σ = Γ × (0,∞). The 
outward pointing unit normal vector on Γ is denoted by 𝐧, while 𝜕𝐧 denotes the outward normal derivative on the boundary. Moreover, 
the symbols ∇Γ and ΔΓ stand for the surface gradient and the Laplace–Beltrami operator on Γ, respectively.

The functions 𝜙 ∶ 𝑄 → ℝ and 𝜇 ∶ 𝑄→ ℝ denote the phase-field and the chemical potential in the bulk, whereas 𝜓 ∶ Σ → ℝ and 
𝜃 ∶ Σ → ℝ represent the phase-field and the chemical potential on the boundary, respectively. The functions 𝑚Ω, 𝑚Γ ∶ [−1, 1] → ℝ are 
the so-called Onsager mobilities, and typically depend on the phase-field variables 𝜙 and 𝜓 , respectively. They model the spatial 
locations and intensity at which the diffusion processes take place.

In (1.1), the time evolution of the bulk-variables 𝜙 and 𝜇 is governed by the bulk Cahn–Hilliard subsystem (1.1a)-(1.1b), while the 
evolution of the surface quantities 𝜓 and 𝜃 is given by the surface Cahn–Hilliard subsystem (1.1c)-(1.1d), which is coupled to the bulk by 
expressions involving the normal derivatives 𝜕𝐧𝜙 and 𝜕𝐧𝜇. Moreover, the phase-field 𝜙 and 𝜓 are coupled by the boundary condition
(1.1e), while the chemical potentials 𝜇 and 𝜃 are coupled by the boundary condition (1.1f). Here, the parameters 𝐾,𝐿 ∈ [0,∞] are 
used to distinguish different types of these coupling conditions and 𝛼, 𝛽 ∈ ℝ describe different physical phenomena, see, for instance, 
[14,22] for a more extensive description. These types of boundary conditions fall into the class of dynamical boundary conditions, 
which generalize the classical homogeneous Neumann boundary conditions 

𝜕𝐧𝜙 = 𝜕𝐧𝜇 = 0 on Γ × (0,∞),

typically imposed in standard Cahn–Hilliard models. Although Neumann boundary conditions are widely used, they can be overly 
restrictive when a precise description of boundary dynamics is required, see, e.g., [14,22]. This has led to the development and analysis 
of several dynamic boundary condition formulations in the literature, we refer to the recent survey [34] and the references therein 
for a comprehensive overview. In particular, dynamic boundary conditions of Cahn–Hilliard type that incorporate mass exchange 
between bulk and boundary have received considerable attention in recent years, see, e.g., [16,18,19,24]. This context motivates the 
study of the coupled bulk-surface system (1.1).

The functions 𝐹 ′ and 𝐺′ are the derivatives of double-well potentials 𝐹  and 𝐺, respectively. A physically motivated example of 
such a double-well potential, especially in applications related to material science, is the Flory-Huggins potential, which is also referred 
to as the logarithmic potential. It is given as 

𝑊log(𝑠) ∶=
Θ
2

[

(1 + 𝑠) ln(1 + 𝑠) + (1 − 𝑠) ln(1 − 𝑠)
]

−
Θ0
2
𝑠2, 𝑠 ∈ [−1, 1],

with the convention that 0 ln 0 is interpreted as zero. The positive parameters Θ and Θ0 denote the temperature of the mixture and 
the critical temperature below which phase separation processes occur, respectively, and are supposed to satisfy Θ0 − Θ > 0. Since 
𝑊 ′

log(𝑠) → ±∞ as 𝑠 → ±1, the potential 𝑊log is a so-called singular potential. In this contribution, we consider a more general class of 
singular potentials (see Section 2.3) such that, for example, the choice 𝐹 = 𝐺 = 𝑊log is admissible.

The free energy functional associated with system (1.1) reads as

𝐸(𝜙,𝜓) = ∫Ω
1
2
|∇𝜙|2 + 𝐹 (𝜙) d𝑥 + ∫Γ

1
2
|∇Γ𝜓|

2 + 𝐺(𝜓) dΓ

+ 𝜒(𝐾)∫Γ
1
2
(𝛼𝜓 − 𝜙)2 dΓ.

(1.2)

Here, to account for the different cases corresponding to the choice of 𝐾, the function 

𝜒 ∶ [0,∞] → [0,∞), 𝜒(𝑟) ∶=

{

𝑟−1, if 𝑟 ∈ (0,∞),
0, if 𝑟 ∈ {0,∞}

is used. We observe that sufficiently regular solutions of the system (1.1) satisfy the mass conservation law
{

𝛽 ∫Ω 𝜙(𝑡) d𝑥 + ∫Γ 𝜓(𝑡) dΓ = 𝛽 ∫Ω 𝜙0 d𝑥 + ∫Γ 𝜓0 dΓ, if 𝐿 ∈ [0,∞),
∫Ω 𝜙(𝑡) d𝑥 = ∫Ω 𝜙0 d𝑥 and ∫Γ 𝜓(𝑡) dΓ = ∫Γ 𝜓0 dΓ, if 𝐿 = ∞

(1.3)

for all 𝑡 ∈ [0,∞) and the energy identity
d
d𝑡
𝐸(𝜙,𝜓) = −∫Ω

𝑚Ω(𝜙)|∇𝜇|2 d𝑥 − ∫Γ
𝑚Γ(𝜓)|∇Γ𝜃|

2 dΓ − 𝜒(𝐿)∫Γ
(𝛽𝜃 − 𝜇)2 dΓ (1.4)

on [0,∞). We note that the right-hand side of (1.4) is non-positive, which means that the energy dissipates over time, and the terms 
appearing on the right-hand side of (1.4) can be interpreted as the dissipation rate.

Goals and novelties of this paper. System (1.1) has been extensively studied in the literature. We refer, for instance, to [6,10,16,
18,19,24–27]. An extended model with convection was recently analyzed in [22] for regular potentials, and in [15,23] for singular 
potentials. However, existing analytical results on uniqueness and higher regularity have so far required the mobility functions 𝑚Ω
and 𝑚Γ to be constant. This represents a significant limitation, as in many physical applications, the diffusion intensity may vary 
spatially and is not expected to be uniform throughout the domain. For the classical Cahn–Hilliard equation with homogeneous 
Neumann boundary conditions, the recent work [8] establishes the uniqueness and the propagation regularity of weak solutions 
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\begin {alignat}{2} \label {EQ:SYSTEM:1} &\delt \phi = \Div (m_\Om (\phi )\Grad \mu ) &&\qquad \text {in} \ \Om \times (0,\infty ), \\ \label {EQ:SYSTEM:2} &\mu = -\Lap \phi + F'(\phi ) &&\qquad \text {in} \ \Om \times (0,\infty ), \\ \label {EQ:SYSTEM:3} &\delt \psi = \Divg (m_\Ga (\psi )\Gradg \theta ) - \beta m_\Om (\phi )\deln \mu &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:4} &\theta = - \Lapg \psi + G'(\psi ) + \alpha \deln \phi &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:5} &\begin {cases} K\deln \phi = \alpha \psi - \phi &\text {if} \ K\in [0,\infty ), \\ \deln \phi = 0 &\text {if} \ K = \infty \end {cases} &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:6} &\begin {cases} L m_\Om (\phi )\deln \mu = \beta \theta - \mu &\text {if} \ L\in [0,\infty ), \\ m_\Om (\phi )\deln \mu = 0 &\text {if} \ L=\infty \end {cases} &&\qquad \text {on} \ \Ga \times (0,\infty ), \\ \label {EQ:SYSTEM:7} &\phi \vert _{t=0} = \phi _0 &&\qquad \text {in} \ \Om , \\ \label {EQ:SYSTEM:8} &\psi \vert _{t=0} = \psi _0 &&\qquad \text {on} \ \Ga .\end {alignat}


$\Om \subset \R ^2$


$\Ga \:=\partial \Om $


$Q = \Om \times (0,\infty )$


$\Sigma = \Ga \times (0,\infty )$


$\Ga $


$\n $


$\deln $


$\Gradg $


$\Lapg $


$\Ga $


$\phi :Q\rightarrow \R $


$\mu :Q\rightarrow \R $


$\psi :\Sigma \rightarrow \R $


$\theta :\Sigma \rightarrow \R $


$m_\Om ,m_\Ga :[-1,1]\rightarrow \R $


$\phi $


$\psi $


$\phi $


$\mu $


$\psi $


$\theta $


$\deln \phi $


$\deln \mu $


$\phi $


$\psi $


$\mu $


$\theta $


$K,L\in [0,\infty ]$


$\alpha ,\beta \in \R $


\begin {align*}\deln \phi = \deln \mu = 0\qquad \text {on~}\Ga \times (0,\infty ),\end {align*}


$F^\prime $


$G^\prime $


$F$


$G$


\begin {align*}W_{\mathrm {log}}(s) := \frac {\Theta }{2}\Big [(1+s)\ln (1+s) + (1-s)\ln (1-s)\Big ] - \frac {\Theta _0}{2}s^2, \qquad s\in [-1,1],\end {align*}


$0\ln 0$


$\Theta $


$\Theta _0$


$\Theta _0 - \Theta > 0$


$W_{\mathrm {log}}^\prime (s) \rightarrow \pm \infty $


$s\rightarrow \pm 1$


$W_{\mathrm {log}}$


$F = G = W_{\mathrm {log}}$


\begin {equation}\label {INTRO:ENERGY} \begin {split} E(\phi ,\psi ) &= \intO \frac 12\abs {\Grad \phi }^2 + F(\phi ) \dx + \intG \frac 12\abs {\Gradg \psi }^2 + G(\psi ) \dG \\ &\quad + \chi (K)\intG \frac {1}{2}(\alpha \psi - \phi )^2\dG . \end {split}\end {equation}


$K$


\begin {align*}\chi :[0,\infty ]\rightarrow [0,\infty ), \quad \chi (r) := \begin {cases} r^{-1}, &\text {if } r\in (0,\infty ), \\ 0, &\text {if } r\in \{0,\infty \} \end {cases}\end {align*}


\begin {equation}\label {INTRO:MASS} \begin {cases} \beta \intO \phi (t)\dx + \intG \psi (t)\dG = \beta \intO \phi _0 \dx + \intG \psi _0\dG , &\textnormal {if } L\in [0,\infty ), \\ \intO \phi (t)\dx = \intO \phi _0\dx \quad \textnormal {and}\quad \intG \psi (t)\dG = \intG \psi _0\dG , &\textnormal {if } L = \infty \end {cases}\end {equation}


$t\in [0,\infty )$


\begin {equation}\label {INTRO:ENERGY:ID} \begin {split} \ddt E(\phi ,\psi ) &= - \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx - \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG - \chi (L) \intG (\beta \theta -\mu )^2\dG \end {split}\end {equation}


$[0,\infty )$


$m_\Om $


$m_\Ga $


$t\rightarrow \infty $


$X$


$\norm {\cdot }_X$


$X^\prime $


$\phi \in X^\prime $


$\zeta \in X$


$\ang {\phi }{\zeta }_X$


$L^p(I;X)$


$1\leq p \leq +\infty $


$p$


$I\subset \R $


$X$


$p = +\infty $


$W^{1,p}(I;X)$


$f\in L^p(I;X)$


$\delt f\in L^p(I;X)$


$\delt f$


$f$


$L^p_{\mathrm {uloc}}(I;X)$


$f\in L^p(I;X)$


\begin {align*}\norm {f}_{L^p_{\mathrm {uloc}}(I;X)} := \sup _{t\geq 0}\Big (\int _{I\cap [t,t+1)}\norm {f(s)}_X^p\ds \Big )^{\frac 1p} < \infty .\end {align*}


$I\subset \R $


$L^p_{\mathrm {uloc}}(I;X) = L^p(I;X)$


$I$


$X$


$C(I;X)$


$\Om \subset \R ^d$


$d\in \{2,3\}$


$\Ga := \partial \Om $


$1 \leq p \leq \infty $


$k\in \N _0$


$\Om $


$\R $


$L^p(\Om )$


$W^{k,p}(\Om )$


$\N $


$\N _0 := \N \cup \{0\}$


$1 \leq p \leq \infty $


$s\geq 0$


$W^{s,p}(\Om )$


$p = 2$


$H^s(\Om ) = W^{s,2}(\Om )$


$H^0(\Om )$


$L^2(\Om )$


$\Ga $


$H^s(\Ga ) = W^{s,2}(\Ga )$


$H^0(\Ga )$


$L^2(\Ga )$


\begin {align*}\mathcal {L}^p := L^p(\Om )\times L^p(\Ga ), \quad \text {and}\quad \mathcal {W}^{s,p} := W^{s,p}(\Om )\times W^{s,p}(\Ga ),\end {align*}


$s\geq 0$


$p\in [1,\infty ]$


$\Ga $


$\mathcal {H}^s := \mathcal {W}^{s,2}$


$\mathcal {L}^2$


$\mathcal {H}^0$


$\mathcal {H}^s$


\begin {align*}\big ((\phi ,\psi ), (\zeta ,\xi )\big )_{\mathcal {H}^s} := \scp {\phi }{\zeta }_{H^s(\Om )} + \scp {\psi }{\xi }_{H^s(\Ga )} \qquad \text {for all~} \scp {\phi }{\psi },\scp {\zeta }{\xi }\in \mathcal {H}^s\end {align*}


$\norm {\cdot }_{\mathcal {H}^s} := \scp {\cdot }{\cdot }_{\mathcal {H}^s}^{\frac 12}$


\begin {align*}\ang {\scp {\phi }{\psi }}{\scp {\zeta }{\xi }}_{\mathcal {H}^s} := \scp {\phi }{\zeta }_{L^2(\Om )} + \scp {\psi }{\xi }_{L^2(\Ga )}\end {align*}


$(\zeta ,\xi )\in \mathcal {H}^s$


$(\phi ,\psi )\in \mathcal {L}^2$


$L\in [0,\infty ]$


$\beta \in \R $


\begin {align*}\mathcal {H}_{L}^1 := \begin {cases} \mathcal {H}^1, &\text {if } L \in (0,\infty ] , \\ \displaystyle \{(\phi ,\psi )\in \mathcal {H}^1 : \phi = \beta \psi \text { a.e.~on } \Ga \}, &\text {if } L=0. \end {cases}\end {align*}


$\mathcal {H}_{L}^1$


$\scp {\cdot }{\cdot }_{\mathcal {H}_{L}^1} := \scp {\cdot }{\cdot }_{\mathcal {H}^1}$


\begin {align*}\ang {\scp {\phi }{\psi }}{\scp {\zeta }{\xi }}_{\mathcal {H}_{L}^1} := \scp {\phi }{\zeta }_{L^2(\Om )} + \scp {\psi }{\xi }_{L^2(\Ga )}\end {align*}


$\scp {\phi }{\psi }, \scp {\zeta }{\xi }\in \mathcal {L}^2$


$(\mathcal {H}_{L}^1)^\prime \times \mathcal {H}_{L}^1$


$\ang {\cdot }{\cdot }_{\mathcal {H}_{L}^1}$


$(\phi ,\psi )\in (\mathcal {H}^1_L)^\prime $


\begin {align*}\mean {\phi }{\psi } := \frac {\ang {\scp {\phi }{\psi }}{\scp {\beta }{1}}_{\mathcal {H}^1_L}}{\beta ^2\abs {\Om } + \abs {\Ga }},\end {align*}


\begin {align*}\mean {\phi }{\psi } = \frac {\beta \abs {\Om }\meano {\phi } + \abs {\Ga }\meang {\psi }}{\beta ^2\abs {\Om } + \abs {\Ga }}\end {align*}


$(\phi ,\psi )\in \mathcal {L}^2$


\begin {align*}\meano {\phi }=\frac {1}{\abs {\Omega }} \int _{\Omega } \phi \, \dx , \quad \meang {\psi }=\frac {1}{\abs {\Gamma }} \int _{\Gamma } \psi \, \dG .\end {align*}


\begin {align*}\mathcal {V}_{L}^1 &:= \begin {cases} \{\scp {\phi }{\psi }\in \mathcal {H}^1_L : \mean {\phi }{\psi } = 0 \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in \mathcal {H}^1: \meano {\phi } = \meang {\psi } = 0 \}, &\text {if~}L=\infty . \end {cases}\end {align*}


$\scp {\cdot }{\cdot }_{\mathcal {H}^1}$


\begin {align*}\chi (L) := \begin {cases} L^{-1}, &\text {if } L\in (0,\infty ), \\ 0, &\text {if } L\in \{0,\infty \}, \end {cases}\end {align*}


$\mathcal {H}^1\times \mathcal {H}^1$


\begin {align*}\big ((\phi ,\psi ), (\zeta ,\xi )\big )_{L} := &\intO \Grad \phi \cdot \Grad \zeta \dx + \intG \Gradg \psi \cdot \Gradg \xi \dG + \chi (L)\intG (\beta \psi -\phi )(\beta \xi -\zeta )\dG \end {align*}


$\scp {\phi }{\psi }, \scp {\zeta }{\xi }\in \mathcal {H}^1$


\begin {align*}\norm {\scp {\phi }{\psi }}_{L} := \big ((\phi ,\psi ), (\phi ,\psi )\big )_{L}^{\frac 12}\end {align*}


$\scp {\phi }{\psi }\in \mathcal {H}^1$


$\scp {\cdot }{\cdot }_{L}$


$\mathcal {V}^1_{L}$


$\norm {\cdot }_{L}$


$\mathcal {V}^1_{L}$


$\norm {\cdot }_{\mathcal {H}^1}$


$\mathcal {V}^1_{L}$


$\scp {\cdot }{\cdot }_{L}$


\begin {align*}\mathcal {V}_{L}^{-1} := \begin {cases} \{\scp {\phi }{\psi }\in (\mathcal {H}^1_L)^\prime : \mean {\phi }{\psi } = 0 \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in (\mathcal {H}^1)^\prime : \meano {\phi } = \meang {\psi } = 0 \}, &\text {if~}L=\infty . \end {cases}\end {align*}


$(\phi ,\psi )\in \mathcal {V}^{-1}_{L}$


$\mathcal {S}_{L}(\phi ,\psi ) = \big (\mathcal {S}_{L}^\Om (\phi ,\psi ),\mathcal {S}_{L}^\Ga (\phi ,\psi )\big )\in \mathcal {V}^1_{L}$


\begin {alignat}{2} -\Lap \mathcal {S}_{L}^\Om (\phi ,\psi ) &= \phi &&\qquad \text {in~}\Om , \\ -\Lapg \mathcal {S}_{L}^\Ga (\phi ,\psi ) + \beta \deln \mathcal {S}_{L}^\Om (\phi ,\psi ) &= \psi &&\qquad \text {on~}\Ga , \\ L\deln \mathcal {S}_{L}^\Om (\phi ,\psi ) &= \beta \mathcal {S}_{L}^\Ga (\phi ,\psi ) - \mathcal {S}_{L}^\Om (\phi ,\psi )&& \qquad \text {on~}\Ga ,\end {alignat}


\begin {align*}\big (\mathcal {S}_{L}(\phi ,\psi ),(\zeta ,\xi )\big )_{L} = \bigang {(\phi ,\psi )}{(\zeta ,\xi )}_{\mathcal {H}^1_L}\end {align*}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


$C > 0$


$\Om , L$


$\beta $


\begin {align*}\norm {\mathcal {S}_{L}(\phi ,\psi )}_{L}\leq C\norm {(\phi ,\psi )}_{(\mathcal {H}^1_L)^\prime }\end {align*}


$(\phi ,\psi )\in \mathcal {V}^{-1}_{L}$


\begin {align*}\mathcal {S}_{L}:\mathcal {V}^{-1}_{L}\rightarrow \mathcal {V}^1_{L}, \quad (\phi ,\psi )\mapsto \mathcal {S}_{L}(\phi ,\psi ) = \big (\mathcal {S}_{L}^\Om (\phi ,\psi ),\mathcal {S}_{L}^\Ga (\phi ,\psi )\big )\end {align*}


$\mathcal {V}^{-1}_{L}$


\begin {align*}&\big ((\phi ,\psi ),(\zeta ,\xi )\big )_{L,\ast } := \big (\mathcal {S}_{L}(\phi ,\psi ),\mathcal {S}_{L}(\zeta ,\xi )\big )_{L}, \\ &\norm {(\phi ,\psi )}_{L,\ast } := \big ((\phi ,\psi ),(\phi ,\psi )\big )_{L,\ast }^{\frac 12}\end {align*}


$(\phi ,\psi ), (\zeta ,\xi )\in \mathcal {V}^{-1}_{L}$


$\norm {\cdot }_{(\mathcal {H}^1_L)^\prime }$


$\mathcal {V}^{-1}_{L}$


$L\in (0,\infty )$


$m\in \R $


$L\in [0,\infty )$


$m = (m_1,m_2)\in \R ^2$


$L = \infty $


\begin {align*}\mathcal {W}_{K,L,m} := \begin {cases} \{\scp {\phi }{\psi }\in \mathcal {H}^1 : \mean {\phi }{\psi } = m \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in \mathcal {H}^1: \meano {\phi } = m_1, \ \meang {\psi } = m_2 \}, &\text {if~}L=\infty . \end {cases}\end {align*}


$K\in [0,\infty )$


$\alpha ,\beta \in \R $


$\alpha \beta \abs {\Om } + \abs {\Ga }\neq 0$


$C_P > 0$


$K,\alpha ,\beta $


$\Om $


\begin {align*}\norm {(\zeta ,\xi )}_{\mathcal {L}^2} \leq C_P \norm {(\zeta ,\xi )}_{K}\end {align*}


$(\zeta ,\xi )\in \mathcal {H}^1_K$


$\mean {\zeta }{\xi } = 0$


$C > 0$


$2 \leq r < \infty $


\begin {equation}\label {Prelim:Est:Inteprol} \norm {(\zeta ,\xi )}_{\mathcal {L}^r}\leq C\sqrt {r}\norm {(\zeta ,\xi )}_{\mathcal {L}^2}^{\frac 2r}\norm {(\zeta ,\xi )}_{\mathcal {H}^1}^{\frac {r-2}{r}} \qquad \text {for all~}(\zeta ,\xi )\in \mathcal {H}^1.\end {equation}


$\Gamma $


$1$


$\R $


$C > 0$


$2 \leq r < \infty $


\begin {align*}\norm {\zeta }_{L^r(\Om )} \leq C\sqrt {r}\norm {\zeta }_{L^2(\Om )}^{\frac {2}{r}}\norm {\zeta }_{H^1(\Om )}^{\frac {r-2}{r}} \qquad \text {for all~}\zeta \in H^1(\Om ).\end {align*}


$g,h,y$


$(t_0,\infty )$


$y^\prime $


$(t_0,\infty )$


\begin {align*}&\ddt y \leq gy + h, \\ &\int _t^{t+r} g(s)\ds \leq a_1, \quad \int _t^{t+r} h(s)\ds \leq a_2, \quad \int _t^{t+r} y(s)\ds \leq a_3 \quad \text {for all~}t\geq t_0,\end {align*}


$r,a_1,a_2,a_3$


\begin {align*}y(t) \leq \Big (\frac {a_3}{r} + a_2\Big )\e ^{a_1} \qquad \text {for all~}t\geq t_0 + r.\end {align*}


$\alpha ,\beta \in \R $


$\alpha \in [-1,1]$


$\alpha \beta \abs {\Om } + \abs {\Ga } \neq 0$


$m_\Om ,m_\Ga \in C([-1,1])$


$m^\ast ,M^\ast > 0$


\begin {equation}\label {Ass:Mobility:Bound} 0 < m^\ast \leq m_\Om (s), m_\Ga (s) \leq M^\ast \qquad \text {for all~}s\in [-1,1].\end {equation}


$F,G:\R \rightarrow \R $


\begin {align*}F(s) = F_1(s) + F_2(s), \qquad G(s) = G_1(s) + G_2(s),\end {align*}


$F_1,G_1\in C([-1,1])\cap C^2(-1,1)$


$F_1(0) = F_1^\prime (0) = G_1(0) = G_1^\prime (0) = 0$


\begin {align*}\lim _{s\searrow -1} F_1^\prime (s) = \lim _{s\searrow -1} G_1^\prime (s) = -\infty \quad \text {and}\quad \lim _{s\nearrow 1} F_1^\prime (s) = \lim _{s\nearrow 1} G_1^\prime (s) = +\infty ,\end {align*}


$\Theta _\Om ,\Theta _\Ga > 0$


\begin {equation}\label {Assumption:Pot:Convexity} F_1^{\prime \prime }(s) \geq \Theta _\Om \quad \text {and~}\quad G_1^{\prime \prime }(s) \geq \Theta _\Ga \qquad \text {for all~}s\in (-1,1).\end {equation}


$F_1$


$G_1$


$\R $


$F_1(s) = G_1(s) = + \infty $


$s\not \in [-1,1]$


$F_2$


$G_2$


$F_2,G_2\in C^1(\R )$


$\kappa _1, \kappa _2 > 0$


\begin {equation}\label {Ass:Potentials:Domination} \abs {F_1^\prime (\alpha s)}\leq \kappa _1 \abs {G_1^\prime (s)} + \kappa _2 \qquad \text {for all~}s\in (-1,1).\end {equation}


$F_1$


$G_1$


$C_\sharp > 0$


$\gamma _\sharp \in [1,2)$


\begin {equation}\label {Ass:Potentials:Growth:1} F_1^{\prime \prime }(s) \leq C_\sharp \e ^{C_\sharp \abs {F_1^\prime (s)}^{\gamma _\sharp }}\qquad \text {for all~}s\in (-1,1).\end {equation}


$\delta \searrow 0$


$\kappa > \frac 12$


\begin {equation}\label {Ass:Potentials:Growth:2} \frac {1}{F_1^\prime (1 - 2\delta )} = O\Big (\frac {1}{\abs {\ln \delta }^\kappa }\Big ), \qquad \frac {1}{\abs {F_1^\prime (-1 + 2\delta )}} = O\Big (\frac {1}{\abs {\ln \delta }^\kappa }\Big ).\end {equation}


$K,L\in [0,\infty ]$


$\scp {\phi _0}{\psi _0}\in \mathcal {H}^1_K$


\begin {equation}\label {cond:init:int} \norm {\phi _0}_{L^\infty (\Om )} \leq 1, \qquad \norm {\psi _0}_{L^\infty (\Ga )} \leq 1.\end {equation}


\begin {align}\label {cond:init:mean:L} &\beta \,\mean {\phi _0}{\psi _0}\in (-1,1), \quad \mean {\phi _0}{\psi _0}\in (-1,1), \quad \text {if~ }L\in [0,\infty ),\end {align}


\begin {align}\label {cond:init:mean:inf} & \meano {\phi _0}\in (-1,1), \quad \meang {\psi _0}\in (-1,1), \quad \text {if~ }L=\infty .\end {align}


$(\phi ,\psi ,\mu ,\theta )$


$[0,T]$


$T > 0$


$\phi , \psi , \mu $


$\theta $


\begin {align}&\scp {\phi }{\psi } \in C([0,T];\mathcal {L}^2)\cap H^1(0,T;(\mathcal {H}_{L}^1)^\prime )\cap L^\infty (0,T;\mathcal {H}_{K}^1), \label {REGPP:SING}\\ &\scp {\mu }{\theta }\in L^2(0,T;\mathcal {H}_{L}^1) \label {REGMT:SING}, \\ &\scp {F^\prime (\phi )}{G^\prime (\psi )}\in L^2(0,T;\mathcal {L}^2) \label {REGLC:SING},\end {align}


\begin {equation}\label {PROP:CONF} \abs {\phi } < 1 \quad \text {a.e.~in $Q$} \quad \text {and}\quad \abs {\psi } < 1 \quad \text {a.e.~on $\Sigma $}.\end {equation}


\begin {align*}\phi \vert _{t=0} = \phi _0 \quad \text {a.e.~in } \Omega , \quad \text {and} \quad \psi \vert _{t=0} = \psi _0 \quad \text {a.e.~on }\Gamma .\end {align*}


\begin {equation}\begin {aligned} \big \langle (\delt \phi ,\delt \psi ), (\zeta ,\xi ) \big \rangle _{\mathcal {H}_{L}^1} &= - \intO m_\Om (\phi )\Grad \mu \cdot \Grad \zeta \dx - \intG m_\Ga (\psi )\Gradg \theta \cdot \Gradg \xi \dG \\ &\quad - \chi (L)\intG (\beta \theta -\mu )(\beta \xi - \zeta )\dG , \end {aligned} \label {WF:PP:SING}\end {equation}


\begin {equation}\begin {aligned} \intO \mu \,\eta \dx + \intG \theta \,\vartheta \dG &= \intO \Grad \phi \cdot \Grad \eta + F^\prime (\phi )\eta \dx + \intG \Gradg \psi \cdot \Gradg \vartheta + G^\prime (\psi )\vartheta \dG \\ &\quad + \chi (K)\intG (\alpha \psi -\phi )(\alpha \vartheta - \eta ) \dG , \end {aligned}\label {WF:MT:SING}\end {equation}


$[0,T]$


$\scp {\zeta }{\xi }\in \mathcal {H}_{L}^1, \scp {\eta }{\vartheta }\in \mathcal {H}_{K}^1$


$\phi $


$\psi $


\begin {align}\label {MCL:SING} \begin {cases} \beta \intO \phi (t)\dx + \intG \psi (t)\dG = \beta \intO \phi _0 \dx + \intG \psi _0\dG , &\textnormal {if } L\in [0,\infty ), \\ \intO \phi (t)\dx = \intO \phi _0\dx \quad \textnormal {and}\quad \intG \psi (t)\dG = \intG \psi _0\dG , &\textnormal {if } L = \infty \end {cases}\end {align}


$t\in [0,T]$


\begin {equation}\label {WEDL:SING} \begin {split} &E(\phi (t),\psi (t)) + \int _0^t\intO m_\Om (\phi )\abs {\Grad \mu }^2\dxs + \int _0^t\intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dGs \\ &\quad + \chi (L) \int _0^t\intG (\beta \theta -\mu )^2\dGs \leq E(\phi _0,\psi _0) \end {split}\end {equation}


$t\in [0,T]$


$K\in (0,\infty ]$


$L\in [0,\infty ]$


$(\phi _0,\psi _0)\in \mathcal {H}^1$


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}\label {ContinuousDependence} &(\phi ,\psi )\in L^\infty ([0,\infty );\mathcal {H}^1)\cap L^4_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2)\cap L^2_{\mathrm {uloc}}([0,\infty );\mathcal {W}^{2,p}), \\ &(\delt \phi ,\delt \psi )\in L^2([0,\infty );(\mathcal {H}^1_L)^\prime ), \\ &(F^\prime (\phi ),G^\prime (\psi ))\in L^2_{\mathrm {uloc}}([0,\infty );\mathcal {L}^p), \\ &(\mu ,\theta )\in L^2_{\mathrm {uloc}}([0,\infty );\mathcal {H}^1),\end {align}


$2\leq p <\infty $


$m_\Om ,m_\Ga \in C^2([-1,1])$


$(\phi _1,\psi _1)$


$(\phi _2,\psi _2)$


$(\phi _1^0,\psi _1^0)$


$(\phi _2^0,\psi _2^0)$


\begin {equation}\label {cond:init:uniqueness:conv} \begin {cases} \mean {\phi _1^0}{\psi _1^0} = \mean {\phi _2^0}{\psi _2^0}, &\textnormal {if } L\in [0,\infty ), \\ \meano {\phi _1^0} = \meano {\phi _2^0} \quad \textnormal {and}\quad \meang {\psi _1^0} = \meang {\psi _2^0}, &\textnormal {if } L = \infty . \end {cases}\end {equation}


$T > 0$


$C$


\begin {align*}\norm {(\phi _1(t) - \phi _2(t),\psi _1(t) - \psi _2(t))}_{(\mathcal {H}^1_L)^\prime } \leq C\norm {(\phi _1^0 - \phi _2^0,\psi _1^0 - \psi _2^0)}_{(\mathcal {H}^1_L)^\prime }\end {align*}


$t\in [0,T]$


$C$


$T$


$E(\phi _1^0,\psi _1^0)$


$E(\phi _2^0,\psi _2^0)$


$K\in (0,\infty ]$


\begin {align*}(\phi ,\psi )\in L^4_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2),\end {align*}


$K = 0$


\begin {align*}(\phi ,\psi )\in L^3_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2),\end {align*}


$(\tau ,\infty )$


$\tau > 0$


$K\in (0,\infty ]$


$L\in [0,\infty ]$


$(\phi _0,\psi _0)\in \mathcal {H}^1$


$\tau > 0$


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}&(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p}), \quad (\delt \phi ,\delt \psi )\in L^\infty (\tau ,\infty ;(\mathcal {H}^1_L)^\prime )\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1), \label {PropReg:tau:1}\\ &(\mu ,\theta )\in L^\infty (\tau ,\infty ;\mathcal {H}^1_L)\cap L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2), \quad (F^\prime (\phi ),G^\prime (\psi ))\in L^\infty (\tau ,\infty ;\mathcal {L}^p) \label {PropReg:tau:2}\end {align}


$2\leq p < \infty $


$\Om \times (\tau ,\infty )$


$\Ga \times (\tau ,\infty )$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$(\mu ,\theta )\in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^3)$


$\tau > 0$


\begin {align}\label {PropReg:F'(psi)} F^\prime (\psi )\in L^\infty (\tau ,\infty ;L^p(\Ga )),\end {align}


$m_\Om , m_\Ga \in C^1([-1,1])$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$F$


$K$


$L$


$m_\Om , m_\Ga \in C^1([-1,1])$


$\tau > 0$


$(\phi ,\psi ,\mu ,\theta )$


$[\tau ,\infty )$


$(\phi (\tau ),\psi (\tau ))$


$(\phi ,\psi ,\mu ,\theta )$


$\tau > 0$


$\delta > 0$


\begin {align}\label {Separation:tau} \norm {\phi (t)}_{L^\infty (\Om )} \leq 1 - \delta , \quad \norm {\psi (t)}_{L^\infty (\Ga )} \leq 1 - \delta \qquad \text {for all~}t\geq \tau .\end {align}


$(\mu _0,\theta _0)\in \mathcal {H}^1_L$


\begin {align*}\intO \mu _0\;\eta \dx + \intG \theta _0\;\vartheta \dG &= \intO \Grad \phi _0\cdot \Grad \eta + F^\prime (\phi _0)\dx + \intG \Gradg \psi _0\cdot \Gradg \vartheta + G^\prime (\psi _0)\dG \\ &\quad + \chi (K) \intG (\alpha \psi _0 - \phi _0)(\alpha \vartheta - \eta )\dG \end {align*}


$(\eta ,\vartheta )\in \mathcal {H}^1_K$


$(\phi ,\psi ,\mu ,\theta )$


$\tau = 0$


$\tau = 0$


$t\rightarrow \infty $


$m_\Om ,m_\Ga \in C^2([-1,1])$


$F_1, G_1$


$(-1,1)$


$F_2, G_2$


$\R $


$(\phi ,\psi ,\mu ,\theta )$


\begin {align*}\lim _{t\rightarrow \infty }\norm {(\phi (t) - \phi _\infty ,\psi (t) - \psi _\infty )}_{\mathcal {H}^2} = 0,\end {align*}


$(\phi _\infty ,\psi _\infty )\in \mathcal {H}^2$


\begin {alignat*}{2} -\Lap \phi _\infty + F^\prime (\phi _\infty ) &= \mu _\infty &&\qquad \text {in~}\Om , \\ -\Lapg \psi _\infty + G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty &= \theta _\infty && \qquad \text {on~}\Ga , \\ K\deln \phi _\infty &= \alpha \psi _\infty - \phi _\infty && \qquad \text {on~}\Ga ,\end {alignat*}


\begin {equation*}\begin {cases} \beta \intO \phi _\infty \dx + \intG \psi _\infty \dG = \beta \intO \phi _0 \dx + \intG \psi _0\dG , &\textnormal {if } L\in [0,\infty ), \\ \intO \phi _\infty \dx = \intO \phi _0\dx \quad \textnormal {and}\quad \intG \psi _\infty \dG = \intG \psi _0\dG , &\textnormal {if } L = \infty . \end {cases}\end {equation*}


$\mu _\infty $


$\theta _\infty $


\begin {align*}\mu _\infty = \beta \theta _\infty = \frac {\beta }{\alpha \beta \abs {\Om } + \abs {\Ga }}\Big (\alpha \intO F^\prime (\phi _\infty )\dx + \intG G^\prime (\psi _\infty )\dG \Big )\end {align*}


$L\in [0,\infty )$


$L = \infty $


\begin {align*}\mu _\infty &= \frac {1}{\abs {\Om }}\Big (\intO F^\prime (\phi _\infty )\dx - \intG \deln \phi _\infty \dG \Big ), \\ \theta _\infty &= \frac {1}{\abs {\Ga }}\Big (\intG G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty \dG \Big ).\end {align*}


$\Om \subset \R ^d$


$d=2,3$


$\Ga := \partial \Om $


\begin {alignat}{2} -\Div (m_\Om (\phi )\Grad u) &= f &&\qquad \text {in~}\Om , \\ -\Divg (m_\Ga (\psi )\Gradg v) + \beta m_\Om (\phi )\deln u &= g &&\qquad \text {on~}\Ga , \\ Lm_\Om (\phi )\deln u &= \beta v - u &&\qquad \text {on~}\Ga ,\end {alignat}


$m_\Om , m_\Ga $


$\phi :\Om \rightarrow \R $


$\psi :\Ga \rightarrow \R $


$\abs {\phi } \leq 1$


$\Om $


$\abs {\psi } \leq 1$


$\Ga $


$(u,v)\in \mathcal {H}^1_L$


\begin {equation}\label {WF:EBS} \begin {split} &\intO m_\Om (\phi )\Grad u \cdot \Grad \zeta \dx + \intG m_\Ga (\psi )\Gradg v \cdot \Gradg \xi \dG + \chi (L)\intG (\beta v - u)(\beta \xi - \zeta )\dG \\ &\quad = \bigang {(f,g)}{(\zeta ,\xi )}_{\mathcal {H}^1_L} \end {split}\end {equation}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


$\Om $


$(f,g)\in \mathcal {V}_{L}^{-1}$


$(u,v)\in \mathcal {H}^1_L$


$C > 0$


$\Om , L, \beta $


$m^\ast $


\begin {equation}\label {Est:EBS:Apriori} \norm {(u,v)}_{L} \leq C\norm {(f,g)}_{(\mathcal {H}^1_L)^\prime }.\end {equation}


\begin {align*}\mathcal {S}_{L}[\phi ,\psi ]:\mathcal {V}_{L}^{-1}\rightarrow \mathcal {V}_{L}^1, \quad (f,g)\mapsto \mathcal {S}_{L}[\phi ,\psi ](f,g) = \big (\mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g)\big ),\end {align*}


$\mathcal {S}_L[\phi ,\psi ](f,g)$


$\mathcal {V}^1_{L}$


\begin {align*}\big ((f,g),(\zeta ,\xi )\big )_{L,[\phi ,\psi ]} &:= \intO m_\Om (\phi )\Grad f\cdot \Grad \zeta \dx + \intG m_\Ga (\psi )\Gradg g\cdot \Gradg \xi \dG \\ &\quad + \chi (L)\intG (\beta g - f)(\beta \xi - \zeta )\dG , \\ \norm {(f,g)}_{L,[\phi ,\psi ]} &:= \big ((f,g),(f,g)\big )_{L,[\phi ,\psi ]}^{\frac 12}\end {align*}


$(f,g), (\zeta ,\xi )\in \mathcal {V}^1_{L}$


\begin {equation}\label {NormEquivalence:1} \min \{1,\sqrt {m^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ]} \leq \norm {(f,g)}_{L} \leq \max \{1,\sqrt {M^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ]}\end {equation}


$(f,g)\in \mathcal {H}^1_L$


$\norm {\cdot }_{L}$


$\norm {\cdot }_{L,[\phi ,\psi ]}$


$\mathcal {V}^1_{L}$


$\mathcal {V}^{-1}_{L}$


\begin {align*}&\big ((f,g),(\zeta ,\xi )\big )_{L,[\phi ,\psi ],\ast } := \big (\mathcal {S}_{L}[\phi ,\psi ](f,g),\mathcal {S}_{L}[\phi ,\psi ](\zeta ,\xi )\big )_{L,[\phi ,\psi ]}, \\ &\norm {(f,g)}_{L,[\phi ,\psi ],\ast } := \big ((f,g),(f,g)\big )_{L,[\phi ,\psi ],\ast }^{\frac 12}\end {align*}


$(f,g), (\zeta ,\xi )\in \mathcal {V}^{-1}_{L}$


$\mathcal {S}_{L}$


$\mathcal {S}_{L}[\phi ,\psi ]$


$\norm {\cdot }_{L,[\phi ,\psi ],\ast }$


$\norm {\cdot }_{L,\ast }$


$\mathcal {V}^{-1}_{L}$


\begin {equation}\label {NormEquivalence} \min \{1,\sqrt {m^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ],\ast } \leq \norm {(f,g)}_{L,\ast } \leq \max \{1,\sqrt {M^\ast }\}\norm {(f,g)}_{L,[\phi ,\psi ],\ast }\end {equation}


$(f,g)\in \mathcal {V}^{-1}_{L}$


$\norm {\cdot }_{L,[\phi ,\psi ],\ast }$


$\norm {\cdot }_{(\mathcal {H}^1_L)^\prime }$


$\mathcal {V}^{-1}_{L}$


\begin {equation}\label {Est:fg:L2:SolOp:1} \begin {split} \norm {(f,g)}_{\mathcal {L}^2} &= \sqrt {\big (\mathcal {S}_{L}[\phi ,\psi ](f,g),(f,g)\big )_{L,[\phi ,\psi ]}} \\ &\leq \max \{1,\sqrt {M^\ast }\}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{L}^{\frac 12} \end {split}\end {equation}


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {H}^1_L$


$\mathcal {S}_{L}[\phi ,\psi ](f,g)$


$\Omega $


$C^2$


$(\phi ,\psi )\in \mathcal {W}^{1,\infty }$


$m_\Om ,m_\Ga \in C^1([-1,1])$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^2$


$\mathcal {S}_{L}[\phi ,\psi ](f,g)\in \mathcal {H}^2$


$C > 0$


\begin {equation}\label {Est:Sol:G:H2:thm} \begin {split} &\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2} \\ &\quad \leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^2}\big ). \end {split}\end {equation}


$(u,v)$


$\mathcal {S}_{L}[\phi ,\psi ](f,g)$


$(u,v)\in \mathcal {H}^2$


$L\in [0,\infty ]$


$L = 0$


$\xi = 0$


\begin {align}\label {L=0:Test} \intO m_\Om (\phi )\Grad u\cdot \Grad \zeta \dx = \intO f\zeta \dx \end {align}


$\zeta \in H^1_0(\Om )$


$\phi \in W^{1,\infty }(\Om )$


$\zeta = \frac {\bar \zeta }{m_\Om (\phi )}\in H^1_0(\Om )$


$\bar \zeta \in C_c^\infty (\Om )$


\begin {align*}\intO \Grad u\cdot \Grad \bar \zeta \dx = \intO \frac {1}{m_\Om (\phi )}\big (f + \Grad m_\Om (\phi )\cdot \Grad u\big ) \bar \zeta \dx \end {align*}


$\bar \zeta \in C_c^\infty (\Om )$


$\bar \zeta $


$\Lap u$


$L^2(\Om )$


\begin {align*}-\Lap u = \frac {1}{m_\Om (\phi )}\big (f + \Grad m_\Om (\phi )\cdot \Grad u\big ) \qquad \text {a.e. in~}\Om .\end {align*}


$u\vert _\Ga = \beta v \in H^1(\Ga )$


$u\in H^{\frac 32}(\Om )$


\begin {align}\label {Est:BSE:H3/2} \norm {u}_{H^{\frac 32}(\Om )} \leq C\big (\norm {f}_{L^2(\Om )} + \norm {\Grad \phi \cdot \Grad u}_{L^2(\Om )} + \norm {v}_{H^1(\Ga )}\big ).\end {align}


$\Lap u\in L^2(\Om )$


$u\in H^{\frac 32}(\Om )$


$\deln u\in L^2(\Ga )$


\begin {align}\label {Est:BSE:deln} \norm {\deln u}_{L^2(\Ga )} \leq C\norm {u}_{H^{\frac 32}(\Om )}.\end {align}


\begin {align}\label {Id:BSE:deln} \intO m_\Om (\phi )\Grad u\cdot \Grad \zeta \dx = \intO f\zeta \dx + \intG m_\Om (\phi )\deln u\zeta \dG \qquad \text {for all~}\zeta \in H^1(\Om ).\end {align}


$\xi \in H^1(\Ga )$


$\bar \xi \in H^{\frac 32}(\Om )$


$\bar \xi \vert _\Ga = \xi $


$\Ga $


$\zeta = \beta \bar \xi $


$(\zeta ,\xi )\in \mathcal {H}^1_L$


\begin {align*}\intG m_\Ga (\psi )\Gradg v \cdot \Grad \xi \dG = \intG (g - \beta m_\Om (\phi )\deln u)\xi \dG .\end {align*}


$\xi \in H^1(\Ga )$


$v$


\begin {align*}-\Lapg v = \frac {1}{m_\Ga (\psi )}\left ( g - \beta m_\Om (\phi )\deln u + \Gradg m_\Ga (\psi )\cdot \Gradg v\right ) \qquad \text {on~}\Ga .\end {align*}


$\psi \in W^{1,\infty }(\Ga )$


$m_\Ga ^\prime $


$\Gradg m_\Ga (\psi )\in L^\infty (\Ga )$


$v\in H^1(\Ga )$


$\Gradg m_\Ga (\psi )\cdot \Gradg v\in L^2(\Ga )$


$m_\Om $


$\deln u\in L^2(\Ga )$


\begin {align*}-\Lapg v = \tilde {g}\in L^2(\Ga ).\end {align*}


$\Ga $


$C^2$


$v\in H^2(\Ga )$


\begin {equation}\label {Est:BSE:H2:v:0} \begin {split} \norm {v}_{H^2(\Ga )} &\leq C\left (\norm {g}_{L^2(\Ga )} + \norm {\deln u}_{L^2(\Ga )} + \norm {\Gradg m_\Ga (\psi ) \cdot \Gradg v}_{L^2(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {\Gradg \psi \cdot \Gradg v}_{L^2(\Ga )}\right ). \end {split}\end {equation}


$u\vert _\Ga = \beta v$


$\Ga $


$u\vert _\Ga \in H^2(\Ga )$


$-\Lap u\in L^2(\Om )$


$u\in H^2(\Om )$


\begin {equation}\label {Est:BSE:H2:u:0} \begin {split} \norm {u}_{H^2(\Om )} &\leq C\left (\norm {f}_{L^2(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^2(\Om )} + \norm {v}_{H^2(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\right ). \end {split}\end {equation}


\begin {align}\label {Est:BSE:H2:0} \norm {(u,v)}_{\mathcal {H}^2} \leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\right ).\end {align}


$L\in (0,\infty )$


$\zeta = 0$


\begin {align*}\intG m_\Ga (\psi )\Gradg v\cdot \Grad \xi \dG + \chi (L)\intG (\beta v - u)\beta \xi \dG = \intG g\xi \dG \end {align*}


$\xi \in H^1(\Ga )$


$v$


\begin {align*}-\Lapg v = \frac {1}{m_\Ga (\psi )}\big (g - \beta \chi (L)(\beta v - u) + \Gradg m_\Ga (\psi )\cdot \Gradg v\big ) \qquad \text {on~}\Ga .\end {align*}


$L = 0$


$u\in H^1(\Om )$


$\beta v - u\vert _\Ga \in H^{\frac 12}(\Ga )$


$\beta v - u\vert _\Ga \in L^2(\Ga )$


$v\in H^2(\Ga )$


\begin {equation}\label {Est:BSE:H2:v:L} \begin {split} \norm {v}_{H^2(\Ga )} &\leq C\big (\norm {g}_{L^2(\Ga )} + \norm {v}_{L^2(\Ga )} + \norm {u}_{L^2(\Ga )} + \norm {\Gradg m_\Ga (\psi )\cdot \Gradg v}_{L^2(\Ga )}\big ) \\ &\leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {\Gradg \psi \cdot \Gradg v}_{L^2(\Ga )}\big ) \end {split}\end {equation}


$C > 0$


$\xi = 0$


\begin {align*}\intO m_\Om (\phi )\Grad u\cdot \Grad \zeta \dx + \chi (L)\intG (\beta v - u)\zeta \dG = \intO f\zeta \dx \end {align*}


$\zeta \in H^1(\Om )$


$u$


\begin {alignat*}{2} -\Lap u &= \frac {1}{m_\Om (\phi )}\big ( f + \Grad m_\Om (\phi )\cdot \Grad u\big ) &&\qquad \text {in~}\Om , \\ \deln u &= \frac {1}{m_\Om (\phi )} \chi (L)(\beta v - u) &&\qquad \text {on~}\Ga .\end {alignat*}


$u\in H^2(\Om )$


$C > 0$


\begin {equation}\label {Est:BSE:H2:u:L} \begin {split} \norm {u}_{H^2(\Om )} &\leq C\big (\norm {f}_{L^2(\Om )} + \norm {v}_{H^{\frac 12}(\Ga )} + \norm {u}_{H^{\frac 12}(\Ga )} + \norm {u} _{L^2(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^2(\Om )} \big ) \\ &\leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {\Grad \phi \cdot \Grad u}_{L^2(\Om )}\big ). \end {split}\end {equation}


\begin {align}\label {Est:BSE:H2:L} \norm {(u,v)}_{\mathcal {H}^2} \leq C\big (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\big ).\end {align}


$L = \infty $


\begin {alignat}{2} -\Div (m_\Om (\phi )\Grad u) &= f &&\qquad \text {in~}\Om , \label {Dirichlet-Problem:Neumann}\\ m_\Om (\phi )\deln u &= 0 &&\qquad \text {on~}\Ga , \label {Dirichlet-Problem:NeumannBC}\end {alignat}


\begin {align}\label {LaplaceBeltrami:2} -\Divg (m_\Ga (\psi )\Gradg v) = g \qquad \text {on~}\Ga .\end {align}


$u\in H^2(\Om )$


$v\in H^2(\Ga )$


\begin {align*}\norm {u}_{H^2(\Om )} &\leq C\big (\norm {f}_{L^2(\Om )} + \norm {\Grad \phi \cdot \Grad u}_{L^2(\Om )}\big ), \\ \norm {v}_{H^2(\Ga )} &\leq C\big (\norm {g}_{L^2(\Ga )} + \norm {\Gradg \psi \cdot \Gradg v}_{L^2(\Ga )}\big ). \quad \qedhere \end {align*}


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {H}^1$


$f$


$g$


$f = \beta g$


$\Ga $


$L = 0$


$\mean {f}{g} = 0$


$K\in (0,\infty )$


\begin {align}\label {Est:fg:L2:SolOp:2} \norm {(f,g)}_{\mathcal {L}^2} \leq \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{K}^{\frac 12}.\end {align}


$K = \infty $


\begin {align*}\norm {(f,g)}_{L}^{\frac 12} \leq C\norm {(f,g)}_{\mathcal {H}^1}^{\frac 12} &\leq C\big (\norm {(f,g)}_{\mathcal {L}^2}^{\frac 12} + \norm {(\Grad f, \Gradg g)}_{\mathcal {L}^2}^{\frac 12}\big ) \\ &= C\big (\norm {(f,g)}_{\mathcal {L}^2}^{\frac 12} + \norm {(f,g)}_{K}^{\frac 12}\big ),\end {align*}


\begin {align*}\norm {(f,g)}_{\mathcal {L}^2} &\leq \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\big (\norm {(f,g)}_{\mathcal {L}^2}^{\frac 12} + \norm {(f,g)}_{K}^{\frac 12}\big ) \\ &\leq \frac 12\norm {(f,g)}_{\mathcal {L}^2} + \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L} + \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{K}^{\frac 12}.\end {align*}


\begin {equation}\label {Est:fg:L2:SolOp:2:K=infty} \norm {(f,g)}_{\mathcal {L}^2} \leq \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L} + \max \{1,\sqrt {M^\ast }\}C_PC\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {(f,g)}_{K}^{\frac 12}.\end {equation}


$\mathcal {H}^3$


$\Om $


$C^3$


$(\phi ,\psi )\in \mathcal {W}^{2,4}$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {H}^1$


$\mathcal {S}_L[\phi ,\psi ](f,g)\in \mathcal {H}^3$


$C > 0$


\begin {align}\label {Est:Sol:G:H3} &\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^3} \nonumber \\ &\quad \leq C\left (1 + \mathbf {1}_{\{0\}}(L)\norm {(\phi ,\psi )}_{\mathcal {H}^2}\right ) \\ &\qquad \times \Bigg ( \Bignorm {\bigg (\frac {f}{m_\Om (\phi )},\frac {g}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g)}{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g)}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1}\Bigg ), \nonumber \end {align}


$\mathbf {1}_{\{0\}}(\cdot )$


$\{0\}$


$(u,v) = \mathcal {S}_{L}[\phi ,\psi ](f,g)$


$(u,v)\in \mathcal {H}^3$


\begin {align*}&\norm {(u,v)}_{\mathcal {H}^3} \\ &\quad \leq C\Bigg ( \Bignorm {\bigg (\frac {f}{m_\Om (\phi )},\frac {g}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad u}{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg v}{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\frac {m_\Om (\phi )\deln u}{m_\Ga (\psi )}}_{H^1(\Ga )}\Bigg ).\end {align*}


$L = 0$


$L = \infty $


$L\in (0,\infty )$


$Lm_\Om (\phi )\deln u = \beta v - u$


$\Ga $


\begin {align*}\Bignorm {\frac {m_\Om (\phi )\deln u}{m_\Ga (\psi )}}_{H^1(\Ga )} = \frac {1}{L}\Bignorm {\frac {\beta v - u}{m_\Ga (\psi )}}_{H^1(\Ga )} &\leq C \norm {(u,v)}_{\mathcal {H}^2} \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^2} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^2}\right )\end {align*}


$L = 0$


\begin {align*}\Gradg \bigg (\frac {m_\Om (\phi )\deln u}{m_\Ga (\psi )}\bigg ) = \frac {m_\Om ^\prime (\phi )\deln u\Gradg \phi }{m_\Ga (\psi )^2} + \frac {m_\Om (\phi )\Gradg \deln u}{m_\Ga (\psi )^2} - \frac {m_\Om (\phi )m_\Ga ^\prime (\psi )\deln u\Gradg \psi }{m_\Ga (\psi )^2} \quad \text {a.e.~on~}\Ga .\end {align*}


\begin {align*}\norm {\deln u\Gradg \phi }_{L^2(\Ga )} \leq \norm {\deln u}_{L^4(\Ga )}\norm {\Gradg \phi }_{L^4(\Ga )} \leq C\norm {\phi }_{H^2(\Om )}\norm {u}_{H^2(\Om )}.\end {align*}


\begin {align*}\norm {\Gradg \deln u}_{L^2(\Ga )} \leq \norm {\deln u}_{H^1(\Ga )} &\leq C\norm {u}_{H^{\frac 52}(\Om )} \\ &\leq C\left (\Bignorm {\frac {f}{m_\Om (\phi )}}_{H^1(\Om )} + \Bignorm {\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad u}{m_\Om (\phi )}}_{H^1(\Om )} + \norm {v}_{H^2(\Ga )}\right ).\end {align*}


\begin {align*}\norm {\deln u\Gradg \psi }_{L^2(\Ga )} \leq \norm {\deln u}_{L^4(\Ga )}\norm {\Gradg \psi }_{L^4(\Ga )}\leq C\norm {\psi }_{H^2(\Ga )}\norm {u}_{H^2(\Om )}.\end {align*}


$L^p$


$\Om $


$C^2$


$p\in [2,\infty )$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^p$


$(\phi ,\psi )\in \mathcal {W}^{2,4}$


$\big (\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g)\big )\in \mathcal {L}^p$


$C > 0$


\begin {equation}\label {Est:BSE:W2p} \norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {W}^{2,p}} \leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^p}\right ).\end {equation}


$(u,v) := \mathcal {S}_{L}[\phi ,\psi ](f,g)\in \mathcal {H}^2$


\begin {alignat}{2}\label {Poisson-Problem} -\Lap u &= \frac {1}{m_\Om (\phi )}\left (f + \Grad m_\Om (\phi )\cdot \Grad u\right ) &&\qquad \text {a.e. in~}\Om , \\ L\deln u &= \frac {1}{m_\Om (\phi )}(\beta v - u) &&\qquad \text {a.e. on~}\Ga , \label {Poisson-Problem:BC}\end {alignat}


\begin {align}\label {LaplceBeltrami-Problem} -\Lapg v = \frac {1}{m_\Ga (\psi )}\left (g - \beta m_\Om (\phi )\deln u + \Gradg m_\Ga (\psi )\cdot \Gradg v\right ) \qquad \text {a.e. on~}\Ga .\end {align}


$L = 0$


$L\in (0,\infty )$


$L = \infty $


$L = 0$


$\Ga $


$(d-1)$


$\R ^d$


\begin {align*}u\vert _\Ga = \beta v \in W^{t,p} \qquad \text {with~} t = \frac 52 + \frac {d-1}{p} - \frac d2.\end {align*}


$f, \Grad \phi \cdot \Grad u \in L^p(\Om )$


\begin {align*}u\in W^{s,p}(\Om ) \quad \text {with}\quad s = \min \Big \{2,\frac 52 + \frac dp - \frac d2\Big \} \geq 1 + \frac 2p\end {align*}


\begin {align*}\norm {u}_{W^{s,p}(\Om )} &\leq C\left (\norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {v}_{W^{t,p}(\Ga )}\right ) \\ &\leq C\left (\norm {f}_{L^p(\Om )} + \norm {\Grad \phi \cdot \Grad u}_{L^p(\Om )} + \norm {v}_{H^2(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^p}\right ).\end {align*}


\begin {align*}\Grad u\in W^{s-1,p}(\Om ) \emb W^{\frac 2p,p}(\Om ).\end {align*}


$\frac 2p - \frac 1p = \frac 1p$


\begin {align*}\deln u\in W^{\frac 1p,p}(\Ga )\emb L^p(\Ga ).\end {align*}


$g, \Gradg \psi \cdot \Gradg v\in L^p(\Ga )$


$v\in W^{2,p}(\Ga )$


$C > 0$


\begin {equation}\label {Est:BSE:W2p:v:0} \begin {split} \norm {v}_{W^{2,p}(\Ga )} &\leq C\left (\norm {g}_{L^p(\Ga )} + \norm {\deln u}_{L^p(\Ga )} + \norm {\Gradg m_\Ga (\psi ) \cdot \Gradg v}_{L^p(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)} _{\mathcal {L}^p}\right ). \end {split}\end {equation}


\begin {align*}u\vert _\Ga = \beta v \in W^{2,p}(\Ga ).\end {align*}


$u\in W^{2,p}(\Om )$


\begin {equation}\label {Est:BSE:W2p:u:0} \begin {split} \norm {u}_{W^{2,p}(\Om )} &\leq C\left (\norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {v} _{W^{2,p}(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u, \Gradg \psi \cdot \Gradg v)} _{\mathcal {L}^p}\right ). \end {split}\end {equation}


$L = 0$


$L\in (0,\infty )$


$u\in H^2(\Om )$


\begin {align*}u\in H^{\frac 32}(\Ga )\emb W^{t,p}(\Ga ) \quad \text {with}\quad t = 2 + \frac {d-1}{p} - \frac d2.\end {align*}


$\phi \in W^{2,4}(\Om )$


\begin {align*}\Grad \phi \in W^{1,4}(\Om )\emb W^{\frac 34,4}(\Ga ) \emb L^\infty (\Ga ).\end {align*}


$m_\Om \in C^1([-1,1])$


$\frac {1}{m_\Om (\phi )} \in W^{1,\infty }(\Ga )$


$v\in H^2(\Ga )\emb W^{t,p}(\Ga )$


\begin {align*}\deln u = \frac {1}{Lm_\Om (\phi )}(\beta v - u)\in W^{t,p}(\Ga ).\end {align*}


$g,\Gradg \psi \cdot \Gradg v\in L^p(\Ga )$


\begin {equation}\label {Est:BSE:W2p:v:L} \begin {split} \norm {v}_{W^{2,p}(\Ga )} &\leq C\left (\norm {g}_{L^p(\Ga )} + \norm {\Gradg m_\Ga (\psi )\cdot \Gradg v}_{L^p(\Ga )} + \norm {\deln u}_{W^{t,p}(\Ga )}\right ) \\ &\leq C\left (\norm {g}_{L^p(\Ga )} + \norm {\Gradg \psi \cdot \Gradg v}_{L^p(\Ga )} + \norm {(u,v)}_{\mathcal {H}^2}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)} _{\mathcal {L}^p}\right ). \end {split}\end {equation}


$f,\Grad \phi \cdot \Grad u\in L^p(\Om )$


\begin {align*}u\in W^{s,p}(\Om ) \quad \text {with}\quad s = \min \Big \{2,3 + \frac dp - \frac d2\Big \} \geq 1 + \frac 2p\end {align*}


\begin {align*}\norm {u}_{W^{s,p}} &\leq C\left ( \norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {\deln u}_{W^{t,p}(\Ga )}\right ) \\ &\leq C\left (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^p}\right ).\end {align*}


$1+ \frac 2p - \frac 1p = 1 + \frac 1p$


\begin {align*}u\vert _\Ga \in W^{1+\frac 1p,p}(\Ga ),\end {align*}


\begin {align*}\deln u = \frac {1}{Lm_\Om (\phi )}(\beta v - u)\in W^{1+\frac 1p,p}(\Ga ).\end {align*}


$u\in W^{2,p}(\Om )$


\begin {equation}\label {Est:BSE:W2p:u:L} \begin {split} \norm {u}_{W^{2,p}(\Om )} &\leq C\big (\norm {f}_{L^p(\Om )} + \norm {\Grad m_\Om (\phi )\cdot \Grad u}_{L^p(\Om )} + \norm {\deln u}_{W^{1+\frac 1p,p}(\Ga )}\big ) \\ &\leq C\big (\norm {(f,g)}_{\mathcal {L}^p} + \norm {(\Grad \phi \cdot \Grad u,\Gradg \psi \cdot \Gradg v)}_{\mathcal {L}^p}\big ). \end {split}\end {equation}


$L = \infty $


$\mathcal {S}_{L}$


$\mathcal {S}_{L}[\phi ,\psi ]$


$\mathcal {S}_{L}[\phi ,\psi ]$


$d = 2$


$\Omega \subset \R ^2$


$C^2$


$(\phi ,\psi )\in \mathcal {W}^{2,4}$


$\abs {\phi }\leq 1$


$\Om $


$\abs {\psi }\leq 1$


$\Ga $


$m_\Om ,m_\Ga \in C^1([-1,1])$


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^2$


\begin {align}\label {Est:Sol:G:H2} \norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2} \leq C\left (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}\norm {(\phi ,\psi )}_{\mathcal {H}^2}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L} + \norm {(f,g)}_{\mathcal {L}^2}\right ).\end {align}


\begin {align*}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2} &\leq C\left (\norm {(\Grad \phi \cdot \Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \psi \cdot \Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^2} + \norm {(f,g)}_{\mathcal {L}^2}\right ) \\ &\leq C\left (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^4} + \norm {(f,g)}_{\mathcal {L}^2} \right ) \\ &\leq C\big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}^{\frac 12}\norm {(\phi ,\psi )}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 12}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2}^{\frac 12} + \norm {(f,g)}_{\mathcal {L}^2}\big ).\end {align*}


$(f,g)\in \mathcal {V}^{-1}_{L}\cap \mathcal {L}^4$


$p = 4$


\begin {align}\label {Est:Sol:G:W24} \begin {split} \norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {W}^{2,4}} &\leq C\big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^8}\norm {(\Grad \mathcal {S}_{L}^\Om [\phi ,\psi ](f,g),\Gradg \mathcal {S}_{L}^\Ga [\phi ,\psi ](f,g))}_{\mathcal {L}^8} + \norm {(f,g)}_{\mathcal {L}^4}\big ) \\ &\leq C\Big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}^{\frac 14}\norm {(\phi ,\psi )}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{L}^{\frac 14}\norm {\mathcal {S}_{L}[\phi ,\psi ](f,g)}_{\mathcal {H}^2}^{\frac 34} + \norm {(f,g)}_{\mathcal {L}^4}\Big ). \end {split}\end {align}


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}\label {Est:PP:H1:Linfty} \sup _{t\geq 0} \norm {(\phi (t),\psi (t))}_{\mathcal {H}^1} \leq C\end {align}


\begin {align}\label {Est:MT:LB:L2} \int _0^\infty \norm {(\mu (s),\theta (s))}_{L}^2 \ds \leq C,\end {align}


$E(\phi _0,\psi _0)$


$\abs {\Om }$


$\abs {\Ga }$


$\norm {(\mu ,\theta )}_{L}\in L^2(0,\infty )$


$\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )$


\begin {alignat}{2}\label {Id:M:SolOp:Mean} \mu &= -\mathcal {S}_{L}^\Om [\phi ,\psi ](\delt \phi ,\delt \psi ) + \beta \mean {\mu }{\theta } &&\qquad \text {a.e.~in~}\Om \times (0,\infty ), \\ \theta &= -\mathcal {S}_{L}^\Ga [\phi ,\psi ](\delt \phi ,\delt \psi ) + \mean {\mu }{\theta } &&\qquad \text {a.e.~on~} \label {Id:T:SolOp:Mean}\Ga \times (0,\infty ).\end {alignat}


\begin {align}\label {Est:Sol:Delt:pp:Lb} \norm {\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )}_{L} \leq C\norm {(\mu ,\theta )}_{L},\end {align}


$\mathcal {V}^{-1}_{L}$


\begin {align}\label {EST:DELT:PP:H1Lb':L2} \int _0^\infty \norm {(\delt \phi ,\delt \psi )}_{(\mathcal {H}^1_L)^\prime }^2\ds \leq C.\end {align}


$(\delt \phi ,\delt \psi )\in L^2(0,\infty ;(\mathcal {H}^1_L)^\prime )$


\begin {align}\label {Est:MEAN:MT:DELN} \abs {\mean {\mu }{\theta }} \leq C\left (1 + \norm {(\mu ,\theta )}_{L}\right ),\end {align}


\begin {align}\label {Est:MT:H1:a.e.} \norm {(\mu ,\theta )}_{\mathcal {H}^1} \leq C\left (1 + \norm {(\mu ,\theta )}_{L}\right ).\end {align}


$(\mu ,\theta )\in L^2_{\mathrm {uloc}}([0,\infty );\mathcal {H}^1)$


\begin {alignat*}{2} -\Lap \phi + F_1^\prime (\phi ) &= \mu ^\ast &&\qquad \text {a.e.~in~}\Om , \\ -\Lapg \psi + G_1^\prime (\psi ) + \alpha \deln \phi &= \theta ^\ast &&\qquad \text {a.e.~on~}\Ga , \\ K\deln \phi &= \alpha \psi - \phi &&\qquad \text {a.e.~on~}\Ga ,\end {alignat*}


$(0,\infty )$


$(\mu ^\ast ,\theta ^\ast ) = \big (\mu - F_2^\prime (\phi ),\theta - G_2^\prime (\psi )\big ) \in \mathcal {H}^1$


$F_2^\prime $


$G_2^\prime $


\begin {align}\label {Est:PP:Pot:Lp} \norm {(\phi ,\psi )}_{\mathcal {W}^{2,p}} + \norm {(F_1^\prime (\phi ),G_1^\prime (\psi ))}_{\mathcal {L}^p} \leq C\left (1 + \norm {(\mu ,\theta )}_{\mathcal {H}^1} \right )\end {align}


$(0,\infty )$


$2\leq p < \infty $


$K\in (0,\infty )$


\begin {align*}\norm {(-\Lap \phi ,-\Lapg \psi + \alpha \deln \phi )}_{\mathcal {L}^2}^2 \leq C\left (1 + \norm {(\mu + F_2^\prime (\phi ),\theta + G_2^\prime (\psi ))}_{\mathcal {H}^1}\right ) \leq C\left (1 + \norm {(\mu ,\theta )}_{L}\right ).\end {align*}


\begin {align*}\sup _{t\geq 0}\int _t^{t+1}\norm {(\phi (s),\psi (s))}_{\mathcal {H}^2}^4\ds \leq C,\end {align*}


$(\phi ,\psi )\in L^4_{\mathrm {uloc}}([0,\infty );\mathcal {H}^2)$


$L\in [0,\infty )$


$L\in [0,\infty )$


$L = \infty $


$L = \infty $


$(\phi _0^1,\psi _0^1)$


$(\phi _0^2,\psi _0^2)$


$(\phi _1,\psi _1,\mu _1,\theta _1)$


$(\phi _2,\psi _2,\mu _2,\theta _2)$


$(\phi _1^0,\psi _1^0)$


$(\phi _0^2,\psi _0^2)$


$(\Phi ,\Psi ) = (\phi _1 - \phi _2, \psi _1 - \psi _2)$


\begin {align}\label {EQ:DELT:PHIPSI} \bigang {(\delt \Phi ,\delt \Psi )}{(\zeta ,\xi )}_{\mathcal {H}^1_L} &= - \intO m_\Om (\phi _1)\Grad (\mu _1 - \mu _2)\cdot \Grad \zeta \dx - \intG m_\Ga (\psi _1)\Gradg (\theta _1 - \theta _2)\cdot \Gradg \xi \dG \nonumber \\ &- \chi (L) \intG (\beta (\theta _1 - \theta _2) - (\mu _1 - \mu _2))(\beta \xi - \zeta )\dG \\ &- \intO \left (m_\Om (\phi _1) - m_\Ga (\psi _1)\right )\Grad \mu _2\cdot \Grad \zeta \dx - \intG \left (m_\Ga (\psi _1) - m_\Ga (\psi _2)\right )\Gradg \theta _2\cdot \Gradg \xi \dG \nonumber \end {align}


$(0,\infty )$


$(\zeta ,\xi )\in \mathcal {H}^1_L$


\begin {alignat}{2} -\Lap \Phi + F^\prime (\phi _1) - F^\prime (\phi _2) &= \mu _1 - \mu _2 &&\qquad \text {a.e.~in~}\Om \times (0,\infty ), \label {EQ:PHI}\\ -\Lapg \Psi + G^\prime (\psi _1) - G^\prime (\psi _2) + \alpha \deln \Phi &= \theta _1 - \theta _2 &&\qquad \text {a.e.~in~}\Ga \times (0,\infty ), \label {EQ:PSI} \\ K\deln \Phi &= \alpha \Psi - \Phi &&\qquad \text {a.e.~in~}\Ga \times (0,\infty ). \label {EQ:BC:PHI}\end {alignat}


$\Phi $


$\Psi $


$\Om $


$\Ga $


\begin {equation}\label {pre:comp} \begin {split} &\norm {(\Phi ,\Psi )}_{K}^2 + \intO \big (F_1^\prime (\phi _1) - F_1^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_1^\prime (\psi _1) - G_1^\prime (\psi _2)\big )\Psi \dG - \intO \big (\mu _1 - \mu _2\big )\Phi \dx - \intG \big (\theta _1 - \theta _2\big )\Psi \dG \\ &\quad = \intO \big (F_2^\prime (\phi _1) - F_2^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_2^\prime (\psi _1) - G_2^\prime (\psi _2)\big )\Psi \dG \end {split}\end {equation}


$(0,\infty )$


$\mathcal {S}_{L}[\phi _1,\psi _1](\delt \Phi ,\delt \Psi )$


$\mathcal {S}_j(f,g) = \mathcal {S}_{L}[\phi _j,\psi _j](f,g)$


$j=1,2$


$(\cdot ,\cdot )_{L,j} = (\cdot ,\cdot )_{L,[\phi _j,\psi _j]}$


\begin {align}\label {comp:mt:1-2} &- \intO \big (\mu _1 - \mu _2\big )\Phi \dx - \intG \big (\theta _1 - \theta _2\big )\Psi \dG \nonumber \\ &\quad = -\big (\mathcal {S}_1(\Phi ,\Psi ),(\mu _1 - \mu _2,\theta _1 - \theta _2)\big )_{L,1} \nonumber \\ &\quad = \bigang {(\delt \Phi ,\delt \Psi )}{\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^1_L} - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \\ &\quad = \big (\mathcal {S}_1(\delt \Phi ,\delt \Psi ),\mathcal {S}_1(\Phi ,\Psi )\big )_{L,1} - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \nonumber \\ &\quad =\big ((\Phi ,\Psi ),\mathcal {S}_1(\delt \Phi ,\delt \Psi )\big )_{\mathcal {L}^2} - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \nonumber \end {align}


$(0,\infty )$


$\mathcal {S}_1(\Phi ,\Psi )$


$(\delt \Phi ,\delt \Psi )$


$\mathcal {S}_1(\delt \Phi ,\delt \Psi )$


$\mathcal {S}_1(\Phi ,\Psi )$


\begin {align*}&\norm {(\Phi ,\Psi )}_{K}^2 + \intO \big (F_1^\prime (\phi _1) - F_1^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_1^\prime (\psi _1) - G_1^\prime (\psi _2)\big )\Psi \dG + \intO \mathcal {S}_1(\delt \Phi ,\delt \Psi )\Phi \dx + \intG \mathcal {S}_1(\delt \Phi ,\delt \Psi )\Psi \dG \\ &\qquad - \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx - \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \\ &\quad = \intO \big (F_2^\prime (\phi _1) - F_2^\prime (\phi _2)\big )\Phi \dx + \intG \big (G_2^\prime (\psi _1) - G_2^\prime (\psi _2)\big )\Psi \dG .\end {align*}


\begin {equation}\label {ChainRuleFormula} \begin {split} &\intO \mathcal {S}_1^\Om (\delt \Phi ,\delt \Psi )\Phi \dx + \intG \mathcal {S}_1^\Ga (\delt \Phi ,\delt \Psi )\Psi \dG \\ &\quad = \ddt \frac 12 \norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \frac 12 \Big (\mathcal {S}_1(\delt \phi _1,\delt \psi _1),\big (m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L} \\ &\quad = \ddt \frac 12 \norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \frac 12\intO \Grad \mathcal {S}_1^\Om (\delt \phi _1,\delt \psi _1)\cdot m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2\dx \\ &\qquad + \frac 12 \intG \Gradg \mathcal {S}_1^\Ga (\delt \phi _1,\delt \psi _1)\cdot m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\dG + \intO \Grad \mathcal {S}_1^\Om (\delt \phi _1,\delt \psi _1)\cdot m_\Om ^\prime (\phi _1) D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\dx \\ &\qquad + \intG \Gradg \mathcal {S}_1^\Ga (\delt \phi _1,\delt \psi _1)\cdot m_\Ga ^\prime (\psi _1)D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\dG \\ &\qquad + \frac 12\chi (L)\intG \big (\beta \mathcal {S}_1^\Ga (\delt \phi _1,\delt \psi _1) - \mathcal {S}_1^\Om (\delt \phi _1,\delt \psi _1)\big )\big (\beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Gradg \mathcal {S}_1^\Om (\Phi ,\Psi )}^2\big )\dG . \end {split}\end {equation}


$D^2 f$


$D^2_\Ga g$


$f$


$g$


$F_1^\prime $


$G_1^\prime $


$F_2^\prime $


$G_2^\prime $


\begin {align}\label {DiffIneq} \ddt \frac 12\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \norm {(\Phi ,\Psi )}_{K}^2 \leq C\norm {(\Phi ,\Psi )}_{\mathcal {L}^2}^2 + I_1 + I_2,\end {align}


\begin {align*}I_1 &= -\frac 12 \Big (\mathcal {S}_1(\delt \phi _1,\delt \psi _1),\big (m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L},\end {align*}


\begin {align*}I_2 = \intO \big (m_\Om (\phi _1) - m_\Om (\phi _2)\big )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx + \intG \big (m_\Ga (\psi _1) - m_\Ga (\psi _2)\big )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG .\end {align*}


$I_1$


$I_2$


$\rho \in C_c^\infty (\R )$


$\mathrm {supp}\,\rho \subset (0,1)$


$\norm {\rho }_{L^1(\R )} = 1$


$k\in \N $


\begin {align*}\rho _k(s) := k\rho (ks), \qquad s\in \R .\end {align*}


$X$


$f\in L^p(-1,T;X)$


$2\leq p < \infty $


\begin {align}\label {Def:f_k} f_k(t) := (\rho _k\ast f)(t) = \int _{t-\frac 1k}^t \rho _k(t-s)f(s)\ds \end {align}


$t\in [0,T]$


$k\in \N $


$f_k\in C^\infty ([0,T];X)$


$f_k\rightarrow f$


$L^p(0,T;X)$


$k\rightarrow \infty $


$T > 0$


$k\in \N $


$p = 4$


$X = H^2(\Om )$


$\phi _1^k$


$X = H^2(\Ga )$


$\psi _1^k$


$\delt \phi _1^k = (\delt \phi _1)^k$


$\delt \Grad \phi _1^k = \Grad \delt \phi _1^k$


$Q$


$\delt \psi _1^k = (\delt \psi _1)^k$


$\delt \Gradg \psi _1^k = \Gradg \delt \psi _1^k$


$\Sigma $


$k\in \N $


$k\rightarrow \infty $


\begin {alignat}{2} \phi _1^k &\rightarrow \phi _1 &&\qquad \text {strongly in~}L^4(0,T;H^2(\Om )), \label {Conv:Phi:H2:k} \\ \psi _1^k &\rightarrow \psi _1 &&\qquad \text {strongly in~}L^4(0,T;H^2(\Ga )), \label {Conv:Psi:H2:k} \\ (\delt \phi _1^k,\delt \psi _1^k) &\rightarrow (\delt \phi _1,\delt \psi _1^k) &&\qquad \text {strongly in~}L^2(0,T;(\mathcal {H}^1_L)^\prime ). \label {Conv:delt:pp:H1:k}\end {alignat}


$k\rightarrow \infty $


\begin {alignat}{3} \phi _1^k &\rightarrow \phi _1, \quad \Grad \phi _1^k&&\rightarrow \Grad \phi _1 &&\qquad \text {a.e. in~} \Om \times (0,T), \label {Conv:Phi:a.e.} \\ \psi _1^k &\rightarrow \psi _1, \quad \Gradg \psi _1^k &&\rightarrow \Gradg \psi _1 &&\qquad \text {a.e. on~} \Ga \times (0,T). \label {Conv:Psi:a.e.}\end {alignat}


\begin {equation}\label {Est:PP:k:LinftyH1} \begin {split} \norm {\phi _1^k}_{L^\infty (0,T;H^1(\Om ))} &\leq \norm {\phi _1}_{L^\infty (0,T;H^1(\Om ))}, \\ \norm {\psi _1^k}_{L^\infty (0,T;H^1(\Ga ))} &\leq \norm {\psi _1}_{L^\infty (0,T;H^1(\Ga ))}, \end {split}\end {equation}


\begin {align}\label {Est:PP:k:infty} \abs {\phi _k} \leq 1 \quad \text {a.e.~in~}Q, \qquad \abs {\psi _k} \leq 1 \quad \text {a.e.~on~}\Sigma \end {align}


$k\in \N $


$k_\ast \in \N $


\begin {align}\label {Est:PP:k:L4H2} \norm {(\phi _1^k,\psi _1^k)}_{L^4(0,T;\mathcal {H}^2)} \leq 1 + \norm {(\phi _1,\psi _1)}_{L^4(0,T;\mathcal {H}^2)} \qquad \text {for all~}k\geq k_\ast .\end {align}


$k\in \N $


$k\geq k_\ast $


$C$


$k\in \N $


$k\in \N $


\begin {align*}\mathcal {S}_k(\Phi ,\Psi ) := \mathcal {S}_{L}[\phi _k,\psi _k](\Phi ,\Psi ).\end {align*}


\begin {align}\label {Est:G:k:LinftyH1} \norm {\mathcal {S}_k(\Phi ,\Psi )}_{L^\infty (0,T;\mathcal {H}^1)} \leq C.\end {align}


\begin {align*}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2} \leq C\left (1 + \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}\right ),\end {align*}


\begin {align}\label {Est:Gk:PP:L4H2} \int _0^T \norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^4\ds \leq CT + C\int _0^T \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^4\ds \leq C,\end {align}


\begin {align*}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {W}^{2,4}} &\leq C\big (\norm {(\Grad \phi _1^k,\Gradg \psi _1^k)}_{\mathcal {L}^2}^{\frac 14}\norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{L}^{\frac 14}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 34} + \norm {(\Phi ,\Psi )}_{\mathcal {L}^4}\big ) \\ &\leq C\big (1 + \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 34}\big ).\end {align*}


$(0,T)$


\begin {align}\label {Est:Gk:PP:L83W24} \int _0^T \norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {W}^{2,4}}^{\frac 83}\ds \leq CT + C\int _0^T \norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^4 + \norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^4\ds \leq C.\end {align}


$\mathcal {S}_k(\Phi ,\Psi )$


$k\rightarrow \infty $


$(f,g)\in L^2(0,T;\mathcal {V}^{-1}_{L})$


$\mathcal {S}_1$


$\mathcal {S}_k$


\begin {align*}&\intO m_\Om (\phi _1)\Grad \mathcal {S}_1^\Om (f,g)\cdot \Grad \zeta \dx + \intG m_\Ga (\psi _1)\Gradg \mathcal {S}_1^\Ga (f,g)\cdot \Gradg \xi \dG + \chi (L) \intG (\beta \mathcal {S}_1^\Ga (f,g) - \mathcal {S}_1^\Om (f,g))(\beta \xi -\zeta )\dG \\ &\quad = \intO m_\Om (\phi _1^k)\Grad \mathcal {S}_k^\Om (f,g)\cdot \Grad \zeta \dx + \intG m_\Ga (\psi _1^k)\Gradg \mathcal {S}_k^\Ga (f,g)\cdot \Gradg \xi \dG + \chi (L)\intG \big (\beta \mathcal {S}_k^\Ga (f,g) - \mathcal {S}_k^\Ga (f,g)\big )(\beta \xi -\zeta )\dG \end {align*}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


\begin {align}\label {WF:S1-Sk} &\intO m_\Om (\phi _1)\Grad \big (\mathcal {S}_1^\Om (f,g) - \mathcal {S}_k^\Om (f,g)\big )\cdot \Grad \zeta \dx + \intG m_\Ga (\psi _1)\Gradg \big (\mathcal {S}_1^\Ga (f,g) - \mathcal {S}_k^\Ga (f,g)\big )\cdot \Gradg \xi \dG \nonumber \\ &\qquad + \chi (L) \intG \big (\beta (\mathcal {S}_1^\Ga (f,g) - \mathcal {S}_k^\Ga (f,g))\big )(\beta \xi - \zeta )\dG \\ &\quad = \intO \big (m_\Om (\phi _1^k) - m_\Om (\phi _1)\big )\Grad \mathcal {S}_k^\Om (f,g)\cdot \Grad \zeta \dx + \intG \big (m_\Ga (\psi _1^k) - m_\Ga (\psi _1)\big )\Gradg \mathcal {S}_k^\Ga (f,g)\cdot \Gradg \xi \dG \nonumber \end {align}


$(\zeta ,\xi )\in \mathcal {H}^1_L$


$(\zeta ,\xi ) = \mathcal {S}_1(f,g) - \mathcal {S}_k(f,g)\in \mathcal {H}^1_L$


\begin {align}\label {Est:G1-Gk:Lb} \begin {split} &\int _0^T \norm {\mathcal {S}_1(f,g) - \mathcal {S}_k(f,g)}_{L}^2\ds \\ &\quad \leq \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T \norm {\big (m_\Om (\phi _1^k) - m_\Om (\phi _1)\big )\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2 \ds + \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T\norm {\big (m_\Ga (\psi _1^k) - m_\Ga (\psi _1)\big )\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2 \ds \\ &\quad \leq \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T \norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2\norm {\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2\ds \\ &\qquad + \frac {1}{\min \big \{1,m^\ast \big \}}\int _0^T \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2\norm {\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2\ds . \end {split}\end {align}


$k\rightarrow \infty $


\begin {align*}&\norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2\norm {\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2 + \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2\norm {\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2 \leq C\norm {\mathcal {S}(f,g)}_{L}^2\in L^1(0,T).\end {align*}


$m_\Om $


$m_\Ga $


$[-1,1]$


\begin {align*}\norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2 + \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2 &\leq C\norm {\phi _1^k - \phi _1}_{L^\infty (\Om )}^2 + C\norm {\psi _1^k - \psi _1}_{L^\infty (\Ga )}^2 \\ &\leq C\norm {\phi _1^k - \phi _1}_{H^2(\Om )}^2 + C\norm {\psi _1^k - \psi _1}_{H^2(\Ga )}^2\end {align*}


$(0,T)$


\begin {align*}&\norm {m_\Om (\phi _1^k) - m_\Om (\phi _1)}_{L^\infty (\Om )}^2\norm {\Grad \mathcal {S}_k^\Om (f,g)}_{L^2(\Om )}^2 + \norm {m_\Ga (\psi _1^k) - m_\Ga (\psi _1)}_{L^\infty (\Ga )}^2\norm {\Gradg \mathcal {S}_k^\Ga (f,g)}_{L^2(\Ga )}^2 \\ &\quad \leq C\norm {(\phi _1^k - \phi _1,\psi _1^k - \psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}(f,g)}_{L}^2 \rightarrow 0\end {align*}


$k\rightarrow \infty $


$(0,T)$


\begin {align*}\norm {\mathcal {S}_k(f,g) - \mathcal {S}_1(f,g)}_{L} \rightarrow 0 \qquad \text {strongly in~}L^2(0,T)\end {align*}


$k\rightarrow \infty $


$(f,g) = (\delt \Phi ,\delt \Psi )$


$(f,g) = (\Phi ,\Psi )$


\begin {align}\label {Conv:Gk:delt:PP:L2H1} \mathcal {S}_k(\delt \Phi ,\delt \Psi )\rightarrow \mathcal {S}_1(\delt \Phi ,\delt \Psi ) \qquad \text {strongly in~}L^2(0,T;\mathcal {H}^1),\end {align}


\begin {align}\label {Conv:Gk:PP:L2H1} \mathcal {S}_k(\Phi ,\Psi ) \rightarrow \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {strongly in~} L^2(0,T;\mathcal {H}^1),\end {align}


$k\rightarrow \infty $


\begin {align}\label {Conv:Gk:PP:L4H2} \mathcal {S}_k(\Phi ,\Psi ) \rightharpoonup \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {weakly in~} L^4(0,T;\mathcal {H}^2)\end {align}


\begin {align}\label {Conv:Gk:PP:L83W24} \mathcal {S}_k(\Phi ,\Psi )\rightharpoonup \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {weakly in~} L^{\frac 83}(0,T;\mathcal {W}^{2,4}),\end {align}


$k\rightarrow \infty $


$\varepsilon \in (0,\frac 12)$


$C = C(\varepsilon ) > 0$


\begin {alignat*}{2} \norm {f}_{H^{2-\varepsilon }(\Om )} &\leq C\norm {f}_{H^1(\Om )}^\varepsilon \norm {f}_{H^2(\Om )}^{1-\varepsilon } &&\qquad \text {for all~}f\in H^2(\Om ), \\ \norm {g}_{H^{2-\varepsilon }(\Ga )} &\leq C\norm {g}_{H^1(\Ga )}^\varepsilon \norm {g}_{H^2(\Ga )}^{1-\varepsilon } &&\qquad \text {for all~}g\in H^2(\Ga ),\end {alignat*}


\begin {equation}\label {Interpol:Appl} \begin {split} \norm {(f,g)}_{L^{\frac {4}{1+\varepsilon }}(0,T;\mathcal {H}^{2-\varepsilon })} \leq C\norm {(f,g)}_{L^2(0,T;\mathcal {H}^1)}\norm {(f,g)}_{L^4(0,T;\mathcal {H}^2)} \end {split}\end {equation}


$(f,g)\in L^4(0,T;\mathcal {H}^2)$


$(f,g) = \mathcal {S}_k(\Phi ,\Psi ) - \mathcal {S}_1(\Phi ,\Psi )\in L^4(0,T;\mathcal {H}^2)$


\begin {align}\label {Conv:Gk:PP:eps} \mathcal {S}_k(\Phi ,\Psi ) \rightarrow \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {strongly in~} L^{\frac {4}{1+\varepsilon }}(0,T;\mathcal {H}^{2-\varepsilon })\end {align}


$k\rightarrow \infty $


$\sigma \in C_c^\infty (0,T)$


\begin {equation}\label {ChainRuleFormula:k} \begin {split} &\int _0^T \big (\mathcal {S}_k(\delt \Phi ,\delt \Psi ),(\Phi ,\Psi )\big )_{\mathcal {L}^2}\sigma \ds \\ &\quad = -\frac 12 \int _0^T \norm {(\Phi ,\Psi )}_{L,[\phi _1^k,\psi _1^k],\ast }^2\delt \sigma \ds + \frac 12 \int _0^T\big (\delt \phi _1^k,m_\Om (\phi _1^k)\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\cdot \Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\big )_{\mathcal {L}^2}\sigma \ds \\ &\qquad + \frac 12\int _0^T \big (\delt \psi _1^k,m_\Ga (\psi _1^k)\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )\cdot \Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )\big )_{\mathcal {L}^2}\sigma \ds . \end {split}\end {equation}


$t\in (0,T)$


$c(\cdot ,t)$


$\Om $


$d(\cdot ,t)$


$\Ga $


$(f(\cdot ,t),g(\cdot ,t))\in \mathcal {V}_{L}^{-1}\cap \mathcal {L}^2$


$(\delt c(\cdot ,t),\delt d(\cdot ,t)), (\delt f(\cdot ,t),\delt g(\cdot ,t))\in \mathcal {L}^2$


$\mathcal {S}_{L}[c,d](f,g)$


$(\zeta ,\xi ) = \mathcal {S}_{L}[c,d](f,g)\in \mathcal {H}^1_L$


\begin {align*}&\intO \delt f\,\mathcal {S}_{L}^\Om [c,d](f,g)\dx + \intG \delt g\,\mathcal {S}_{L}^\Ga [c,d](f,g)\dG \\ &\quad = \intO m_\Om ^\prime (c)\delt c\,\vert \Grad \mathcal {S}_{L}^\Om [c,d](f,g)\vert ^2\dx + \intG m_\Ga ^\prime (d)\delt d\,\vert \Gradg \mathcal {S}_{L}^\Ga [c,d](f,g)\vert ^2\dG \\ &\qquad + \intO f\,\delt \mathcal {S}_{L}^\Om [c,d](f,g)\dx + \intG g\,\delt \mathcal {S}_{L}^\Ga [c,d](f,g)\dG .\end {align*}


\begin {align}\label {ChainRuleFormula:General} \ddt \norm {(f,g)}_{L,[c,d],\ast }^2 &= \ddt \norm {\mathcal {S}_{L}[c,d](f,g)}_{L,[c,d]}^2 \nonumber \\ &= \ddt \big (\mathcal {S}_{L}[c,d](f,g),(f,g)\big )_{\mathcal {L}^2} \nonumber \\ &= \big (\mathcal {S}_{L}[c,d](f,g),(f,g)\big )_{\mathcal {L}^2} + \big (\mathcal {S}_{L}[c,d](f,g),(\delt f,\delt g)\big )_{\mathcal {L}^2} \\ &= 2\big (\mathcal {S}_{L}[c,d](\delt f,\delt g),(f,g)\big )_{\mathcal {L}^2} - \intO m_\Om ^\prime (c)\delt c\,\vert \Grad \mathcal {S}_{L}^\Om [c,d](f,g)\vert ^2\dx - \intG m_\Ga ^\prime (d)\delt d\,\vert \Gradg \mathcal {S}_{L}^\Ga [c,d](f,g)\vert ^2\dG . \nonumber \end {align}


$(c,d)$


$(f,g)$


$(c,d) = (\phi _1^k,\psi _1^k)$


$(f,g) = (\Phi ,\Psi )$


$k\rightarrow \infty $


\begin {align}\label {Conv:CRF:1} \lim _{k\rightarrow \infty }\int _0^T \left (\mathcal {S}_k(\delt \Phi ,\delt \Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\sigma \ds = \int _0^T \left (\mathcal {S}_1(\delt \Phi ,\delt \Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\sigma \ds \end {align}


\begin {align}\label {Conv:CRF:2} \lim _{k\rightarrow \infty }\frac 12\int _0^T \norm {(\Phi ,\Psi )}_{L,[\phi _1^k,\psi _1^k],\ast }^2\delt \sigma \ds &= \lim _{k\rightarrow \infty }\frac 12\int _0^T \left (\mathcal {S}_k(\Phi ,\Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\delt \sigma \ds \nonumber \\ &= \frac 12\int _0^T \left (\mathcal {S}_1(\Phi ,\Psi ),(\Phi ,\Psi )\right )_{\mathcal {L}^2}\delt \sigma \ds \\ &= \frac 12\int _0^T\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2\delt \sigma \ds , \nonumber \end {align}


$C > 0$


$k\in \N $


\begin {align}\label {Claim} \int _0^T\norm {\left (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\right )}_{L}^2\ds \leq C.\end {align}


\begin {align*}\norm {\Grad \left (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2\right )}_{L^2(\Om )} &\leq \norm {m_\Om ^{\prime \prime }(\phi _1^k)\Grad \phi _1^k\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2}_{L^2(\Om )} + 2\norm {m_\Om ^\prime (\phi _1^k) D^2\mathcal {S}_k^\Om (\Phi ,\Psi )\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^2(\Om )} \\ &\leq C\norm {\Grad \phi _1^k}_{L^6(\Om )}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^6(\Om )}^2 + C\norm {D^2\mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )} \\ &\leq C\norm {\Grad \phi _1^k}_{L^2(\Om )}^{\frac 13}\norm {\phi _1^k}_{H^2(\Om )}^{\frac 23}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^2(\Om )}^{\frac 23}\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 43} \\ &\quad + C\norm {D^2\mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^2(\Om )}^{\frac 12}\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 12}.\end {align*}


\begin {equation}\label {Est:Claim:1} \begin {split} \norm {\Grad \big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2\big )}_{L^2(\Om )} &\leq C\norm {\phi _1^k}_{H^2(\Om )}^{\frac 23}\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 43} + C\norm {D^2\mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Om )}\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^{\frac 12} \\ &\leq C\norm {\phi _1^k}_{H^2(\Om )}^2 + C\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{H^2(\Om )}^2 + C\norm {\mathcal {S}_k^\Om (\Phi ,\Psi )}_{W^{2,4}(\Om )}^{\frac 43}. \end {split}\end {equation}


\begin {equation}\label {Est:Claim:2} \norm {\Gradg \big (m_\Ga (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )}_{L^2(\Ga )}\leq C\norm {\psi _1^k}_{H^2(\Ga )}^2 + C\norm {\mathcal {S}_k^\Ga (\Phi ,\Psi )}_{H^2(\Ga )}^2 + C\norm {\mathcal {S}_k^\Ga (\Phi ,\Psi )}_{W^{2,4}(\Ga )}^{\frac 43}.\end {equation}


\begin {equation}\label {Est:Claim:3} \begin {split} \norm {\beta m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2}_{L^2(\Ga )} &\leq C\norm {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}_{L^4(\Ga )}^2 + C\norm {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}_{L^4(\Ga )}^2 \\ &\leq C\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^2. \end {split}\end {equation}


\begin {equation}\label {Est:Claim:Final} \norm {\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )}_{L} \leq C\norm {(\phi _1^k,\psi _1^k)}_{\mathcal {H}^2}^2 + C\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {H}^2}^2 + C\norm {\mathcal {S}_k(\Phi ,\Psi )}_{\mathcal {W}^{2,4}}^{\frac 43},\end {equation}


\begin {align*}&\Big (\big (\delt \phi _1^k,\delt \psi _1^k\big ),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{\mathcal {L}^2}\\ &\quad = \Big (\mathcal {S}(\delt \phi _1^k,\delt \psi _1^k),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L} \\ &\qquad + \Big (\mathcal {S}(\delt \phi _1^k-\delt \phi _1,\delt \psi _1^k-\delt \psi _1),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L}\end {align*}


$(0,T)$


$\sigma \in C_c^\infty (0,T)$


$(0,T)$


$k\rightarrow \infty $


\begin {equation}\label {IDK} \begin {split} &\lim _{k\rightarrow \infty }\int _0^T \Big (\big (\delt \phi _1^k,\delt \psi _1^k\big ),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{\mathcal {L}^2}\sigma \ds \\ &\quad = \lim _{k\rightarrow \infty }\int _0^T \Big (\mathcal {S}(\delt \phi _1^k,\delt \psi _1^k),\big (m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2\big )\Big )_{L}\sigma \ds . \end {split}\end {equation}


$h_1,\ldots ,h_5$


$k\rightarrow \infty $


\begin {alignat}{2} m_\Om ^{\prime \prime }(\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 &\rightharpoonup h_1 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Om )), \label {Conv:h1} \\ 2m_\Om ^\prime (\phi _1^k)D^2\mathcal {S}_k^\Om (\Phi ,\Psi )\Grad \mathcal {S}_k^\Om (\Phi ,\Psi ) &\rightharpoonup h_2 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Om )), \label {Conv:h2} \\ m_\Ga ^{\prime \prime }(\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 &\rightharpoonup h_3 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Ga )), \label {Conv:h3} \\ 2m_\Ga ^\prime (\psi _1^k) D^2_\Ga \mathcal {S}_k^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi ) &\rightharpoonup h_4 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Ga )), \label {Conv:h4} \\ \beta m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 &\rightharpoonup h_5 &&\qquad \text {weakly in~} L^2(0,T;L^2(\Ga )). \label {Conv:h5}\end {alignat}


$h_1,\ldots ,h_5$


$\varepsilon = \frac 14$


\begin {align*}\mathcal {S}_k(\Phi ,\Psi ) \rightarrow \mathcal {S}_1(\Phi ,\Psi ) \qquad \text {strongly in~} L^{\frac {16}{5}}(0,T;\mathcal {H}^{\frac 74})\end {align*}


$k\rightarrow \infty $


\begin {align*}\big (\vert \Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\vert ^2,\vert \Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )\vert ^2\big ) \rightarrow \big (\vert \Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\vert ^2,\vert \Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\vert ^2\big ) \qquad \text {strongly in~} L^{\frac {16}{5}}(0,T;\mathcal {L}^3).\end {align*}


\begin {align*}\big (\Grad \phi _1^k,\Gradg \psi _1^k\big ) \rightarrow \big (\Grad \phi _1,\Gradg \psi _1\big ) \qquad \text {strongly in~} L^4(0,T;\mathcal {L}^3).\end {align*}


$m_\Om ^{\prime \prime },m_\Ga ^{\prime \prime }\in C([-1,1])$


\begin {align*}\big (m_\Om ^{\prime \prime }(\phi _1^k),m_\Ga ^{\prime \prime }(\psi _1^k)\big ) \rightarrow \big (m_\Om ^{\prime \prime }(\phi _1),m_\Ga ^{\prime \prime }(\psi _1)\big ) \qquad \text {strongly in~} L^8(0,T;\mathcal {L}^{12}).\end {align*}


\begin {alignat*}{2} m_\Om ^{\prime \prime }(\phi _1^k)\Grad \phi _1^k\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 &\rightharpoonup m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2 &&\qquad \text {weakly in~} L^1(0,T;L^1(\Om )), \\ m_\Ga ^{\prime \prime }(\psi _1^k)\Gradg \psi _1^k\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 &\rightharpoonup m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )} ^2&&\qquad \text {weakly in~} L^1(0,T;L^1(\Ga )),\end {alignat*}


\begin {align*}h_1 = m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,\end {align*}


\begin {align*}h_3 = m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2.\end {align*}


\begin {align*}\big (m_\Om ^\prime (\phi _1^k),m_\Ga ^\prime (\psi _1^k)\big ) \rightarrow \big (m_\Om ^\prime (\phi _1),m_\Ga ^\prime (\psi _1)\big ) \qquad \text {strongly in~} L^8(0,T;\mathcal {L}^4),\end {align*}


\begin {alignat*}{2} 2m_\Om ^\prime (\phi _1^k)D^2\mathcal {S}_k^\Om (\Phi ,\Psi )\Grad \mathcal {S}_k^\Om (\Phi ,\Psi ) &\rightharpoonup 2m_\Om ^\prime (\phi _1)D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ) &&\qquad \text {weakly in~} L^1(0,T;L^1(\Om )), \\ 2m_\Ga ^\prime (\psi _1^k)D_\Ga ^2\mathcal {S}_k^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi ) &\rightharpoonup 2m_\Ga ^\prime (\psi _1)D_\Ga ^2\mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ) &&\qquad \text {weakly in~} L^1(0,T;L^1(\Ga )).\end {alignat*}


\begin {align*}h_2 = 2m_\Om ^\prime (\phi _1)D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\end {align*}


\begin {align*}h_4 = 2m_\Ga ^\prime (\psi _1)D_\Ga ^2\mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ).\end {align*}


$h_5$


\begin {alignat*}{2} \abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )\vert _\Ga }^2 &\rightarrow \abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\vert _\Ga }^2 &&\qquad \text {strongly in~} L^{\frac {16}{3}}(0,T;L^{\frac 32}(\Ga )),\\ \abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\Psi )}^2 &\rightarrow \abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 &&\qquad \text {strongly in~} L^{\frac {16}{3}}(0,T;L^{\frac 32}(\Ga ))\end {alignat*}


$k\rightarrow \infty $


\begin {align*}\beta m_\Ga ^\prime (\psi _1^k)\abs {\Gradg \mathcal {S}_k^\Ga (\Phi ,\psi )}^2 - m_\Om ^\prime (\phi _1^k)\abs {\Grad \mathcal {S}_k^\Om (\Phi ,\Psi )}^2 \rightharpoonup \beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2 \qquad \text {weakly in~} L^1(0,T;L^1(\Ga )).\end {align*}


\begin {align*}h_5 = \beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2.\end {align*}


\begin {align*}&\int _0^T \left (\mathcal {S}_1(\delt \Phi ,\delt \Psi )(\Phi ,\Psi )\right )_{\mathcal {L}^2}\sigma \ds \\ &\quad = \frac 12 \int _0^T \norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }\delt \sigma \ds + \frac 12 \int _0^T \left (\mathcal {S}(\delt \phi _1,\delt \psi _1),\left (m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\right )\right )_{L}\sigma \ds \end {align*}


$\sigma \in C_c^\infty (0,T)$


$C$


$E(\phi _0,\psi _0)$


$I_1$


$I_2$


$I_1$


\begin {align*}\abs {I_1} &= \big \vert \left (\mathcal {S}_{L}(\delt \phi _1,\delt \psi _1)),(m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2)\right )_L\big \vert \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2)}_{L}.\end {align*}


\begin {align*}&\norm {(m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2)}_{L} \\ &\quad \leq \norm {\big (m_\Om ^{\prime \prime }(\phi _1)\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,m_\Ga ^{\prime \prime }(\psi _1)\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\big )}_{\mathcal {L}^2} \\ &\qquad + \norm {\big (m_\Om ^\prime (\phi _1)D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\psi ),m_\Ga ^\prime (\psi _1)D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\big )}_{\mathcal {L}^2} \\ &\qquad + \chi (L)\norm {\beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2}_{L^2(\Ga )},\end {align*}


\begin {align*}\abs {I_1} &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\left (\Grad \phi _1\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2,\Gradg \psi _1\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2\right )}_{\mathcal {L}^2} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\left (D^2\mathcal {S}_1^\Om (\Phi ,\Psi )\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi )\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\right )}_{\mathcal {L}^2} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\chi (L)\norm {\beta m_\Ga ^\prime (\psi _1)\abs {\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )}^2 - m_\Om ^\prime (\phi _1)\abs {\Grad \mathcal {S}_1^\Om (\Phi ,\Psi )}^2}_{L^2(\Ga )} \\ &=: J_1 + J_2 + J_3.\end {align*}


$K\in (0,\infty )$


\begin {equation}\label {Est:S_1:H2:PhiPsi} \begin {split} &\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2} \\ &\quad \leq C\big (\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^2}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 12}\norm {(\Phi ,\Psi )}_{K}^{\frac 12}\big ). \end {split}\end {equation}


$J_1$


\begin {align}\label {Est:J1} J_1 &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^6}\norm {\left (\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\right )}_{\mathcal {L}^6}^2 \nonumber \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^2}^{\frac 13}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 43} \nonumber \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 23}\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 12}\norm {(\Phi ,\Psi )}_{L}^{\frac 12}\Big )^{\frac 43} \\ &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 + C\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 23}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 43}\norm {(\Phi ,\Psi )}_{K}^{\frac 23}\Big ) \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2. \nonumber \end {align}


$K = \infty $


\begin {align*}J_1 \leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (1 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align*}


$K\in (0,\infty )$


$K = \infty $


$J_2$


\begin {equation}\label {Est:S_1:Grad:L4:PhiPsi} \begin {split} &\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4} \\ &\quad \leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 12} \\ &\quad \leq C\Big (\norm {(\Grad \phi _1,\Gradg \psi _1)}_{\mathcal {L}^2}^{\frac 12}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 34}\norm {(\Phi ,\Psi )}_{K}^{\frac 14}\Big ) \\ &\quad \leq C\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 34}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big ) \end {split}\end {equation}


\begin {equation}\label {Est:PhiPsi:L4:Interpol} \begin {split} \norm {(\Phi ,\Psi )}_{\mathcal {L}^4} &\leq C\norm {(\Phi ,\Psi )}_{\mathcal {L}^2}^{\frac 12}\norm {(\Phi ,\Psi )}_{\mathcal {H}^1}^{\frac 12} \leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 14}\norm {(\Phi ,\Psi )}_{\mathcal {H}^1}^{\frac 12} \\ &\leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}, \end {split}\end {equation}


$\mean {\Phi }{\Psi } = 0$


\begin {align}\label {Est:S_1:W24:PhiPsi} \begin {split} \norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {W}^{2,4}} &\leq C\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^{\frac 34} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big ) \\ &\leq C\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 32}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 58}\norm {(\Phi ,\Psi )}_{L}^{\frac 38} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big ). \end {split}\end {align}


\begin {align*}J_2 &\leq \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(D^2\mathcal {S}_1^\Om (\Phi ,\Psi ),D^2_\Ga \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4},\end {align*}


\begin {align*}J_2 &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 32}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 74}\norm {(\Phi ,\Psi )}_{K}^{\frac 14} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 54}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac {13}{8}}\norm {(\Phi ,\Psi )}_{K}^{\frac 38} + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 34}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac {11}{8}}\norm {(\Phi ,\Psi )}_{K}^{\frac 58} \\ &\quad + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 54}\norm {(\Phi ,\Psi )}_{K}^{\frac 34} + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K} \\ &\quad =: K_1 + \ldots K_6.\end {align*}


$K_1,\ldots ,K_6$


\begin {align*}K_1 &\leq C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_2 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac 87}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac {12}{7}}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_3 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac {16}{13}}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac {20}{13}}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_4 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac {16}{11}}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac {12}{11}}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_5 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^{\frac 85}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 45}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2, \\ K_6 &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align*}


\begin {align}\label {Est:J2} J_2 \leq \frac {5}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align}


$J_3$


\begin {align}\label {Est:J3} J_3 &\leq C\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\chi (L)\norm {\beta m_\Ga ^\prime (\psi _1)\vert \Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi )\vert ^2 - m_\Om ^\prime (\phi _1)\vert \Grad \mathcal {S}_1^\Om (\Phi ,\Psi )\vert ^2}_{L^2(\Ga )} \nonumber \\ &\leq C\chi (L)\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{L^4(\Ga )}^2 \nonumber \\ &\leq C\chi (L)\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {\mathcal {S}_1(\Phi ,\Psi )}_{\mathcal {H}^2}^2 \nonumber \\ &\leq C\chi (L)\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\left (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K}\right ) \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\chi (L)\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^2\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\chi (L)\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2. \nonumber \end {align}


$I_1$


\begin {align}\label {Est:I1} \abs {I_1} \leq \frac {7}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align}


$I_2$


\begin {align}\label {Est:I2} \abs {I_2} &= \Big \vert \intO \left (m_\Om (\phi _1) - m_\Om (\phi _2)\right )\Grad \mu _2\cdot \Grad \mathcal {S}^\Om _1(\Phi ,\Psi )\dx + \intG \left (m_\Ga (\psi _1) - m_\Ga (\psi _2)\right )\Gradg \theta _2\cdot \Gradg \mathcal {S}^\Ga _1(\Phi ,\Psi )\dG \Big \vert \nonumber \\ &\leq \norm {(\Grad \mu _2,\Gradg \theta _2)}_{\mathcal {L}^2}\norm {(m_\Om (\phi _1) - m_\Om (\phi _2),m_\Ga (\psi _1) - m_\Ga (\psi _2))}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4} \nonumber \\ &\leq C\norm {(\Grad \mu _2,\Gradg \theta _2)}_{\mathcal {L}^2}\norm {(\Phi ,\Psi )}_{\mathcal {L}^4}\norm {(\Grad \mathcal {S}_1^\Om (\Phi ,\Psi ),\Gradg \mathcal {S}_1^\Ga (\Phi ,\Psi ))}_{\mathcal {L}^4} \nonumber \\ &\leq C\norm {(\mu _2,\theta _2)}_{L}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 14}\norm {(\Phi ,\Psi )}_{K}^{\frac 34}\Big (\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L} + \norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 34}\norm {(\Phi ,\Psi )}_{K}^{\frac 14}\Big ) \\ &\leq C\norm {(\mu _2,\theta _2)}_{L}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 12}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^{\frac 54}\norm {(\Phi ,\Psi )}_{K}^{\frac 34} + C\norm {(\mu _2,\theta _2)}_{L}\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K} \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\mu _2,\theta _2)}_{L}^{\frac 85}\norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^{\frac 45} + \norm {(\mu _2,\theta _2)}_{L}^2\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2 \nonumber \\ &\leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\Big (\norm {(\mu _2,\theta _2)}_{L}^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big )\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2. \nonumber \end {align}


\begin {align}\label {Est:PhiPsi:L2} C\norm {(\Phi ,\Psi )}_{\mathcal {L}^2}\leq C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}\norm {(\Phi ,\Psi )}_{K} \leq \frac {1}{18}\norm {(\Phi ,\Psi )}_{K}^2 + C\norm {\mathcal {S}_1(\Phi ,\Psi )}_{L}^2.\end {align}


$\mathcal {V}^{-1}_{L}$


\begin {align}\label {Est:PreGronwall:Uniq} &\ddt \frac 12\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2 + \frac 12\norm {(\Phi ,\Psi )}_{K}^2 \leq Q(t)\norm {(\Phi ,\Psi )}_{L,[\phi _1,\psi _1],\ast }^2,\end {align}


\begin {align*}Q(\cdot ) = C\Big (1 + \norm {(\mu _2,\theta _2)}_{L}^2 + \norm {(\delt \phi _1,\delt \psi _1)}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi _1,\psi _1)}_{\mathcal {H}^2}^4\Big ) \in L^1(0,T) \qquad \text {for all~}T > 0.\end {align*}


$\mathcal {V}^{-1}_{L}$


\begin {align*}\norm {\left (\phi _1(t) - \phi _2(t), \psi _1(t) - \psi _2(t)\right )}_{(\mathcal {H}^1_L)^\prime }^2 \leq \norm {\left (\phi _1^0 - \phi _2^0,\psi _1^0 - \psi _2^0\right )}_{(\mathcal {H}^1_L)^\prime }^2\exp \left (\int _0^t Q(s)\ds \right )\end {align*}


$t\geq 0$


$\phi _1^0 = \phi _2^0$


$\Om $


$\psi _1^0 = \psi _2^0$


$\Ga $


$(\delth \phi ,\delth \psi )$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$m_\Om ,m_\Ga \in C^2([-1,1])$


$m_\Om ,m_\Ga \in C^1([-1,1])$


$C^2([-1,1])$


$m_\Om ,m_\Ga \in C^2([-1,1])$


\begin {align*}&\mathcal {S}_h(f,g) = \mathcal {S}_{L}[\phi (\cdot +h),\psi (\cdot +h)](f,g), \\ &\norm {\cdot }_{L,h,\ast } = \norm {\cdot }_{L,[\phi (\cdot +h),\psi (\cdot +h)],\ast }.\end {align*}


$h\in (0,1)$


$(\phi _1,\psi _1) = (\phi ,\psi )$


$(\phi _2,\psi _2) = (\phi (\cdot + h),\psi (\cdot + h))$


$h^2$


$f$


$\delth f(t) = \frac 1h\left (f(t + h) - f(t)\right )$


\begin {equation}\label {PreGronwall:G:Delth} \begin {split} &\ddt \frac 12\norm {(\delth \phi (t),\delth \psi (t))}_{L,h,\ast }^2 + \frac 12\norm {(\delth \phi (t),\delth \psi (t))}_{K}^2 \leq Q_h(t)\norm {(\delth \phi (t),\delth \psi (t))}_{L,h,\ast }^2 \end {split}\end {equation}


\begin {align*}Q_h(\cdot ) = C\Big (1 + \norm {(\mu (\cdot + h),\theta \cdot + h))}_{L}^2 + \norm {(\delt \phi ,\delt \psi )}_{(\mathcal {H}^1_L)^\prime }^2 + \norm {(\phi ,\psi )}_{\mathcal {H}^2}^4\Big )\in L^1(0,T)\end {align*}


$T > 0$


\begin {align}\label {Est:UniformGronwalL:Pre} \sup _{t\geq 0}\int _t^{t+1}\norm {(\delth \phi (s),\delth \psi (s))}_{L,h,\ast }^2\ds \leq C_0, \qquad \sup _{t\geq 0}\int _t^{t+1} Q_h(s)\ds \leq C_1,\end {align}


$C_0, C_1 > 0$


$E(\phi _0,\psi _0)$


$\mean {\phi _0}{\psi _0}$


$\tau > 0$


$t_0 = 0$


$r = \tau $


\begin {align}\label {Appl:GronwallUniform} &\norm {(\delth \phi (t), \delth \psi (t))}_{L,h,\ast }^2 \leq \frac {C_0}{\tau }\exp (C_1) \qquad \text {for all~}t \geq \tau .\end {align}


$\mathcal {V}^{-1}_{L}$


\begin {align}\label {Est:HighReg:Delth:pp:Prime} &\norm {(\delth \phi (t),\delth \psi (t))}_{(\mathcal {H}^1_L)^\prime }^2\leq \frac {CC_0}{\tau }\exp (C_1) \qquad \text {for all~}t\geq \tau ,\end {align}


$C > 0$


$h\rightarrow 0$


\begin {align}\label {Est:HighReg:Delt:pp:Prime} \sup _{t\geq \tau }\norm {(\delt \phi (t),\delt \psi (t))}_{(\mathcal {H}^1_L)^\prime }^2 \leq \frac {CC_0}{\tau }\exp (C_1).\end {align}


$[t,t+1]$


$h\rightarrow 0$


\begin {align}\label {Est:HighReg:pp:Ka} \sup _{t\geq \tau }\int _t^{t+1} \norm {(\delt \phi (s),\delt \psi (s))}_{K}^2\ds \leq \frac {(1+C_1)CC_0}{\tau }\exp (C_1).\end {align}


$\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )$


\begin {align*}\norm {(\mu ,\theta )}_{L} \leq C\norm {(\delt \phi ,\delt \psi )}_{(\mathcal {H}^1_L)^\prime },\end {align*}


\begin {align*}t\mapsto \norm {(\mu (t),\theta (t))}_{L} \in L^\infty (\tau ,\infty )\end {align*}


\begin {align}\label {Est:HighReg:MT:H1} \norm {(\mu ,\theta )}_{L^\infty (\tau ,\infty ;\mathcal {H}^1)}\leq C.\end {align}


\begin {align}\label {Est:HighReg:PP:Pot:p} \norm {(\phi ,\psi )}_{L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})} + \norm {(F_1^\prime (\phi ),G_1^\prime (\psi ))}_{L^\infty (\tau ,\infty ;\mathcal {L}^p)} \leq C\end {align}


$2 \leq p < \infty $


\begin {align*}&\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2} \\ &\quad = \norm {\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )}_{\mathcal {H}^2} \\ &\quad \leq C\Big (\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^2}\norm {(\phi ,\psi )}_{\mathcal {H}^2}\norm {\mathcal {S}_{L}[\phi ,\psi ](\delt \phi ,\delt \psi )}_{L} + \norm {(\mu ,\theta )}_{L}^{\frac 12}\norm {(\delt \phi ,\delt \psi )}_{K}^{\frac 12}\Big ).\end {align*}


\begin {align*}\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2} \leq C\big (1 + \norm {(\delt \phi ,\delt \psi )}_{K}^{\frac 12}\big )\end {align*}


$(\tau ,\infty )$


\begin {align}\label {Est:HighReg:MT:mean:H2} \sup _{t\geq \tau }\int _t^{t+1}\norm {(\mu - \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2}^4 \ds \leq C.\end {align}


$(\mu ,\theta )\in L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2)$


$m_\Om ,m_\Ga \in C^2([-1,1])$


\begin {equation}\label {Est:MT:H3:mean} \begin {split} &\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^3} \\ &\quad \leq C\Bigg ( \Bignorm {\bigg (\frac {\delt \phi }{m_\Om (\phi )},\frac {\delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1}\Bigg ). \end {split}\end {equation}


\begin {align*}&\Bignorm {\bigg (\frac {\delt \phi }{m_\Om (\phi )},\frac {\delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} \\ &\quad \leq \Bignorm {\bigg (\frac {\delt \phi }{m_\Om (\phi )},\frac {\delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\delt \phi \Grad \phi }{m_\Om (\phi )^2},\frac {m_\Ga ^\prime (\psi )\delt \psi \Gradg \psi }{m_\Ga (\psi )^2}\bigg )}_{\mathcal {L}^2} + \Bignorm {\bigg (\frac {\Grad \delt \phi }{m_\Om (\phi )},\frac {\Gradg \delt \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} \\ &\quad \leq C\norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^2} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^2} + C\norm {(\delt \phi ,\delt \psi )}_{K}\end {align*}


\begin {align*}&\Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {H}^1} \\ &\quad \leq \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} \\ &\qquad + \Bignorm {\bigg (\frac {\left (m_\Om ^{\prime \prime }(\phi )m_\Om (\phi ) - m_\Om ^\prime (\phi )^2\right )\left (\Grad \phi \cdot \Grad \mu \right )\Grad \phi }{m_\Om (\phi )^2},\frac {\left (m_\Ga ^{\prime \prime }(\psi )m_\Ga (\psi ) - m_\Ga ^\prime (\psi )^2\right )\left (\Gradg \psi \cdot \Gradg \theta \right )\Gradg \psi }{m_\Ga (\psi )^2}\bigg )}_{\mathcal {L}^2} \\ &\qquad + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )D^2\phi \Grad \mu }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )D_\Ga ^2\psi \Gradg \theta }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} + \Bignorm {\bigg (\frac {m_\Om ^\prime (\phi )D^2\mu \Grad \phi }{m_\Om (\phi )},\frac {m_\Ga ^\prime (\psi )D_\Ga ^2\theta \Gradg \psi }{m_\Ga (\psi )}\bigg )}_{\mathcal {L}^2} \\ &\quad \leq C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(\Grad \mu ,\Gradg \theta )}_{\mathcal {L}^2} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }^2\norm {(\Grad \mu ,\Gradg \theta )}_{\mathcal {L}^2} + C\norm {(\phi ,\psi )}_{\mathcal {W}^{2,4}}\norm {(\Grad \mu ,\Gradg \theta )}_{\mathcal {L}^4} \\ &\qquad + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2}.\end {align*}


$\mathcal {W}^{2,3}\emb \mathcal {W}^{1,\infty }$


\begin {align*}&\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^3} \\ &\quad \leq C\left (1 + \norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^2} + \norm {(\delt \phi ,\delt \psi )}_{K}\right ).\end {align*}


\begin {align*}\sup _{t\geq \tau }\int _t^{t+1}\norm {(\mu - \beta \mean {\mu }{\theta },\theta - \mean {\mu }{\theta })}_{\mathcal {H}^3}^2\ds \leq C.\end {align*}


$(\mu ,\theta )\in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^3)$


$m_\Om ,m_\Ga \in C^1([-1,1])$


$(m_{\Om ,k})_{k\in \N }\subset C^2([-1,1])$


$0 < \frac {m^\ast }{2} \leq m_{\Om ,k}(s) \leq 2M^\ast $


$s\in [-1,1]$


$k\in \N $


$m_{\Om ,k}\rightarrow m_\Om $


$C^1([-1,1])$


$k\rightarrow \infty $


$\vert m_{\Om ,k}^\prime (s)\vert \leq C_{\mathrm {mob}}\norm {m_\Om ^\prime }_{L^\infty ([-1,1])}$


$s\in [-1,1]$


$k\in \N $


$m_\ast $


$M_\ast $


$C_{\mathrm {mob}} > 0$


$k\in \N $


$(m_{\Ga ,k})_{k\in \N }\subset C^2([-1,1])$


$(\phi _k,\psi _k,\mu _k,\theta _k)$


$\tau > 0$


\begin {align*}(\phi _k,\psi _k)&\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p}), \quad (\delt \phi _k,\delt \psi _k)\in L^\infty (\tau ,\infty ;(\mathcal {H}^1_L)^\prime )\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1), \\ (\mu _k,\theta _k)&\in L^\infty (\tau ,\infty ;\mathcal {H}^1_L)\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^3), \quad (F^\prime (\phi _k),G^\prime (\psi _k))\in L^\infty (\tau ,\infty ;\mathcal {L}^p),\end {align*}


$2 \leq p < \infty $


$k\in \N $


\begin {align*}(F^{\prime \prime }(\phi _k),G^{\prime \prime }(\psi _k))\in L^\infty (\tau ,\infty ;\mathcal {L}^p)\end {align*}


$2 \leq p < \infty $


$(\delt \mu _k,\delt \theta _k)$


$k\in \N $


$(\delt \mu _k,\delt \theta _k)\in L^2_{\mathrm {uloc}}([\tau ,\infty );(\mathcal {H}^1)^\prime )$


\begin {equation}\label {WF:DELT:MT} \begin {split} \bigang {(\delt \mu _k,\delt \theta _k)}{(\eta ,\vartheta )}_{\mathcal {H}^1} &= \intO \Grad \delt \phi _k\cdot \Grad \eta + F^{\prime \prime }(\phi _k)\delt \phi _k\eta \dx + \intG \Gradg \delt \psi _k\cdot \Gradg \vartheta + G^{\prime \prime }(\psi _k)\delt \psi _k\vartheta \dG \\ &\quad + \chi (K) \intG (\alpha \delt \psi _k - \delt \phi _k)(\alpha \psi _k - \phi _k)\dG \end {split}\end {equation}


$(\tau ,\infty )$


$(\eta ,\vartheta )\in \mathcal {H}^1$


$C$


$k$


\begin {align}&\sup _{t\geq 0}\norm {(\phi _k(t),\psi _k(t))}_{\mathcal {H}^1} \leq C, \\ &\int _0^\infty \norm {(\mu _k,\theta _k)}_{L}^2 + \norm {(\delt \phi _k,\delt \psi _k)}_{(\mathcal {H}^1_L)^\prime }^2\ds \leq C, \label {Est:Low:MT:DELT:PP:k}\\ &\sup _{t\geq 0} \int _t^{t+1}\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^4\ds \leq C \label {Est:Low:PP:L4H2:k}\end {align}


\begin {align*}\norm {(\phi _k,\psi _k)}_{\mathcal {W}^{2,p}} + \norm {(F_1^\prime (\phi _k),G_1^\prime (\psi _k))}_{\mathcal {L}^p} \leq C\left (1 + \norm {(\mu _k,\theta _k)}_{L}\right )\end {align*}


$(0,\infty )$


\begin {align*}\big (\Div (m_{\Om ,k}(\phi _k)\Grad \mu _k),\Divg (m_{\Ga ,k}(\psi _k)\Gradg \theta _k) - \beta m_{\Om ,k}(\phi _k)\deln \mu _k\big ) = (\delt \phi _k,\delt \psi _k) \in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1),\end {align*}


\begin {align*}&\ddt \frac 12\left (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \right ) \\ &\quad = \bigang {(\delt \mu _k,\delt \theta _k)}{(-\Div (m_{\Om ,k}(\phi _k)\Grad \mu _k),-\Divg (m_{\Ga ,k}(\psi _k)\Gradg \theta _k) + \beta m_{\Om ,k}(\phi _k)\deln \mu _k)}_{\mathcal {H}^1} \\ &\qquad + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG \\ &\quad = -\bigang {(\delt \mu _k,\delt \theta _k)}{(\delt \phi _k,\delt \psi _k)}_{\mathcal {H}^1} + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG \\ &\quad = - \norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 - \intO F^{\prime \prime }(\phi _k)\abs {\delt \phi _k}^2\dx - \intG G^{\prime \prime }(\psi _k)\abs {\delt \psi _k}^2\dG + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG \end {align*}


$(\tau ,\infty )$


$F_1$


$G_1$


$F_2^\prime $


$G_2^\prime $


\begin {equation}\label {Est:PreGronwall:HighReg:k:1} \begin {split} &\ddt \frac 12\left (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \right ) + \norm {(\delt \phi _k,\delt \psi _k)}_{K}^2\\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 + \intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG . \end {split}\end {equation}


$K\in [0,\infty )$


\begin {align}\label {Est:delt:pp:k:Ehrling} C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 \leq \frac 14\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C\norm {(\mu _k,\theta _k)}_{L}^2.\end {align}


$K = \infty $


$\varepsilon > 0$


\begin {align*}C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 &\leq \varepsilon \norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {H}^1}^2 + C_\varepsilon \norm {(\mu _k,\theta _k)}_{L}^2 \\ &\leq \varepsilon \norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}^2 + \varepsilon \norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C_\varepsilon \norm {(\mu _k,\theta _k)}_{L}^2.\end {align*}


$\varepsilon = \frac {C}{5}$


$K = \infty $


$(\textbf {M3})$


\begin {equation}\label {Est:jonas:1} \begin {split} &\bigabs {\intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG } \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\norm {(\Grad \mu _k,\Gradg \theta _k)}_{\mathcal {L}^4}^2 \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\norm {(\mu _k,\theta _k)}_{L}\norm {(\mu _k - \beta \mean {\mu _k}{\theta _k},\theta _k - \mean {\mu _k}{\theta _k})}_{\mathcal {H}^2}. \end {split}\end {equation}


\begin {align*}&\norm {(\mu _k - \beta \mean {\mu _k}{\theta _k},\theta _k - \mean {\mu _k}{\theta _k})}_{\mathcal {H}^2} \\ &\quad = \norm {\mathcal {S}_{L}[\phi _k,\psi _k](\delt \phi _k,\delt \psi _k)}_{\mathcal {H}^2} \\ &\quad \leq C\left (\norm {(\Grad \phi _k,\Gradg \psi _k)}_{\mathcal {L}^2}\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {\mathcal {S}_{L}[\phi _k,\psi _k](\delt \phi _k,\delt \psi _k)}_{L} + \norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\right ) \\ &\quad \leq C\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{L} + \norm {(\mu _k,\theta _k)}_{L}^{\frac 12}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big ).\end {align*}


\begin {align}\label {Est:jonas:2} &\bigabs {\intO m_{\Om ,k}^\prime (\phi _k)\delt \phi _k\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}^\prime (\psi _k)\delt \psi _k\abs {\Gradg \theta _k}^2\dG } \nonumber \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{\mathcal {L}^2}\norm {(\mu _k,\theta _k)}_{L}\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{L} + \norm {(\mu _k,\theta _k)}_{L}^{\frac 12}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big ) \nonumber \\ &\quad \leq C\norm {(\mu _k,\theta _k)}_{L}^{\frac 32}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{L} + \norm {(\mu _k,\theta _k)}_{L}^{\frac 12}\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\Big ) \nonumber \\ &\quad \leq C\norm {(\delt \phi _k,\delt \psi _k)}_{K}^{\frac 12}\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}\norm {(\mu _k,\theta _k)}_{\mathcal {H}^2}^{\frac 52} + C\norm {(\delt \phi _k,\delt \psi _k)}_{K}\norm {(\mu _k,\theta _k)}_{L}^2 \\ &\quad \leq \frac 14\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^{\frac 43}\norm {(\mu _k,\theta _k)}_{L}^{\frac {10}{3}} + C\norm {(\mu _k,\theta _k)}_{L}^4 \nonumber \\ &\quad \leq \frac 14\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 + C\Big (\norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^4 + \norm {(\mu _k,\theta _k)}_{L}^2\Big )\norm {(\mu _k,\theta _k)}_{L}^2. \nonumber \end {align}


\begin {equation}\label {Est:PreGronwall:HighReg:k:2} \begin {split} &\ddt \frac 12\Big (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \Big ) + \frac 12\norm {(\delt \phi _k,\delt \psi _k)}_{K}^2 \\ &\leq C\Big (1 + \norm {(\phi _k,\psi _k)}_{\mathcal {H}^2}^4 + \norm {(\mu _k,\theta _k)}_{L}^2\Big )\Big (\intO m_{\Om ,k}(\phi _k)\abs {\Grad \mu _k}^2\dx + \intG m_{\Ga ,k}(\psi _k)\abs {\Gradg \theta _k}^2\dG + \chi (L)\intG (\beta \theta _k - \mu _k)^2\dG \Big ) \end {split}\end {equation}


$(\tau ,\infty )$


$(\textbf {M3})$


\begin {align*}\sup _{t\geq \tau } \norm {(\mu _k(t),\theta _k(t))}_{L}^2 \leq \frac {C}{\tau }.\end {align*}


$[t,t+1]$


$t\geq \tau $


\begin {align*}\sup _{t\geq \tau }\int _t^{t+1}\norm {(\delt \phi _k(s),\delt \psi _k(s))}_{K}^2\ds \leq \frac {C}{\tau }.\end {align*}


\begin {align*}&\norm {(\mu _k,\theta _k)}_{L^\infty (\tau ,\infty ;\mathcal {H}^1_L)} + \norm {(\phi _k,\psi _k)}_{L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})} + \norm {(F_1^\prime (\phi _k),G_1^\prime (\psi _k))}_{L^\infty (\tau ,\infty ;\mathcal {L}^p)} + \norm {(\mu _k,\theta _k)}_{L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2)} \leq C\end {align*}


$2 \leq p < \infty $


$(\phi ,\psi ,\mu ,\theta )$


\begin {align*}&(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p}), \\ &(\delt \phi ,\delt \psi )\in L^\infty (\tau ,\infty ;(\mathcal {H}^1_L)^\prime )\cap L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1), \\ &(\mu ,\theta )\in L^\infty (\tau ,\infty ;\mathcal {H}^1_L)\cap L^4_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^2), \\ &(F^\prime (\phi ),G^\prime (\psi ))\in L^\infty (\tau ,\infty ;\mathcal {L}^p)\end {align*}


$2 \leq p < \infty $


$(\phi ,\psi ,\mu ,\theta )$


\begin {align}\label {Id:ddt:Energy} \ddt E(\phi (t),\psi (t)) + \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx + \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG + \chi (L) \intG (\beta \theta - \mu )^2\dG = 0\end {align}


$t > 0$


\begin {equation}\label {Id:Energy:Strong} \begin {split} &E(\phi (t),\psi (t)) + \int _0^t\intO m_\Om (\phi )\abs {\Grad \mu }^2\dx \ds + \int _0^t\intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG \ds + \chi (L)\int _0^t\intG (\beta \theta - \mu )^2\dG \ds = E(\phi _0,\psi _0) \end {split}\end {equation}


$t\geq 0$


$E_0:\mathcal {L} ^2\rightarrow (-\infty ,\infty ]$


\begin {align*}E_0(\zeta ,\xi ) := \frac 12\norm {(\zeta ,\xi )}_K^2 + \intO F_1(\zeta )\dx + \intG G_1(\xi )\dG ,\end {align*}


$F_1$


$G_1$


$F$


$G$


$E_0$


$[0,\infty )\ni t\mapsto E_0(\phi (t),\psi (t))$


\begin {align*}\ddt E_0(\phi ,\psi ) &= \bigang {(\delt \phi ,\delt \psi )}{(-\Lap \phi + F_1^\prime (\phi ), -\Lapg \psi + G_1^\prime (\psi ) + \alpha \deln \phi )}_{\mathcal {H}^1_L} \\ &= \bigang {(\delt \phi ,\delt \psi )}{(\mu - F_2^\prime (\phi ), \theta - G_2^\prime (\psi ))}_{\mathcal {H}^1_L} \\ &= \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx + \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG + \chi (L)\intG (\beta \theta - \mu )^2\dG - \intO F_2^\prime (\phi )\delt \phi \dx - \intG G_2^\prime (\psi )\delt \psi \dG \end {align*}


$(\tau ,\infty )$


$\tau > 0$


\begin {equation}\label {Id:Energy:tau} \ddt E(\phi ,\psi ) = \intO m_\Om (\phi )\abs {\Grad \mu }^2\dx + \intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dG + \chi (L)\intG (\beta \theta - \mu )^2\dG \end {equation}


$(\tau ,\infty )$


$\tau > 0$


$(s,t)$


$s,t > \tau $


$s \leq t$


\begin {equation}\label {EnergyID:t-s} \begin {split} &E(\phi (t),\psi (t)) - E(\phi (s),\psi (s)) = \int _s^t \intO m_\Om (\phi )\abs {\Grad \mu }^2\dxs + \int _s^t\intG m_\Ga (\psi )\abs {\Gradg \theta }^2\dGs + \chi (L)\int _s^t\intG (\beta \theta - \mu )^2\dGs . \end {split}\end {equation}


$\limsup _{s\rightarrow 0}E(\phi (s),\psi (s)) \leq E(\phi (0),\psi (0))$


$\liminf _{s\rightarrow 0}E(\phi (s),\psi (s)) \geq E(\phi (0),\psi (0))$


$\lim _{s\rightarrow 0} E(\phi (s),\psi (s)) = E(\phi (0),\psi (0))$


$s\rightarrow 0$


$(\phi ,\psi ,\mu ,\theta )$


\begin {align*}F_1^{\prime \prime }(\phi )\in L^\infty (\tau ,\infty ;L^p(\Om ))\end {align*}


$2 \leq p < \infty $


\begin {align*}F_1^{\prime \prime }(\psi )\in L^\infty (\tau ,\infty ;L^p(\Ga ))\end {align*}


$2 \leq p < \infty $


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})$


$(F_1^\prime (\phi ),F_1^\prime (\psi ))\in L^\infty (\tau ,\infty ;\mathcal {L}^p)$


$2 \leq p < \infty $


\begin {align*}\sup _{t\geq \tau } \norm {F_1^\prime (\phi (t))}_{W^{1,3}(\Om )} + \sup _{t\geq \tau }\norm {F_1^\prime (\psi (t))}_{W^{1,3}(\Ga )} \leq C.\end {align*}


$d = 2$


$W^{1,3}(\Om )\emb C(\overline \Om )$


$W^{1,3}(\Ga )\emb C(\Ga )$


\begin {align*}\sup _{t\geq \tau } \norm {F_1^\prime (\phi (t))}_{L^\infty (\Om )} + \sup _{t\geq \tau }\norm {F_1^\prime (\psi (t))}_{L^\infty (\Ga )} \leq C =: C_\ast .\end {align*}


\begin {align*}\delta = 1 - (F_1^\prime )^{-1}(C_\ast ),\end {align*}


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {H}^3)$


\begin {alignat*}{2} -\Lap \phi (t) &= \mu (t) - F^\prime (\phi (t)) &&\qquad \text {a.e.~in~}\Om , \\ -\Lapg \psi (t) + \alpha \deln \phi (t) &= \theta (t) - G^\prime (\psi (t)) &&\qquad \text {a.e.~on~}\Ga , \\ K\deln \phi (t) &= \alpha \psi (t) - \phi (t) &&\qquad \text {a.e.~on~}\Ga \end {alignat*}


$t\geq \tau > 0$


$F_2^\prime $


$G_2^\prime $


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {W}^{2,p})$


$\tau > 0$


\begin {align*}\sup _{t\geq \tau }\norm {(F^\prime (\phi (t)),G^\prime (\psi (t)))}_{\mathcal {H}^1} \leq C\end {align*}


$\tau > 0$


$(\mu ,\theta )\in L^\infty (\tau ,\infty ;\mathcal {H}^1)$


\begin {align}\label {Assumption:mean:L} m\in \R \quad \text {with}\quad \beta m,m\in (-1,1)\quad \text {if~} L\in [0,\infty ),\end {align}


\begin {align}\label {Assumption:mean:infty} m = (m_1,m_2)\in \R ^2\quad \text {with}\quad m_1,m_2\in (-1,1)\quad \text {if~} L = \infty .\end {align}


\begin {align*}\mathcal {Z}_m^{K,L} = \{(\phi ,\psi )\in \mathcal {W}^1_{K,L,m} : E(\phi ,\psi ) < \infty \},\end {align*}


\begin {align*}\mathrm {d}_{\mathcal {Z}_m^{K,L}}\big ((\phi ,\psi ),(\zeta ,\xi )\big ) &:= \norm {(\phi -\zeta ,\psi -\xi )}_{K} + \Big \vert \intO F_1(\phi ) \dx - \intO F_1(\zeta )\dx \Big \vert ^{\frac 12} \\ &\quad + \Big \vert \intG G_1(\psi )\dG - \intG G_1(\xi )\dG \Big \vert ^{\frac 12} \qquad \text {for all~}(\phi ,\psi ), (\zeta ,\xi )\in \mathcal {Z}_m^{K,L}.\end {align*}


$\big (\mathcal {Z}_m^{K,L},\mathrm {d}_{\mathcal {Z}_m^{K,L}}\big )$


$\mathcal {S}^{K,L}:\mathcal {Z}_m^{K,L}\rightarrow \mathcal {Z}_m^{K,L}$


\begin {align*}\mathcal {S}^{K,L}(t)(\phi _0,\psi _0) = (\phi (t),\psi (t)) \qquad \text {for all~}t\geq 0,\end {align*}


$(\phi ,\psi )$


$(\phi _0,\psi _0)\in \mathcal {Z}_m^{K,L}$


$\mathcal {S}^{K,L}\in C(\mathcal {Z}_m^{K,L},\mathcal {Z}_m^{K,L})$


$\omega $


\begin {align*}\omega ^{K,L}(\phi _0, \psi _0) := \Bigg \{(\phi _\infty , \psi _\infty )\in \mathcal {H}^2\cap \mathcal {Z}_m^{K,L} \Bigg \vert \begin {aligned} &\exists (t_n)_{n\in \N }\subset \R _{\geq 0} \text {~with~} t_n\rightarrow \infty \text {~such that~} \\ &\mathcal {S}^{K,L}_m(t_n)(\phi _0,\psi _0)\rightarrow (\phi _\infty , \psi _\infty ) \text {~in~}\mathcal {H}^2 \ \text {as~}n\rightarrow \infty \end {aligned} \Bigg \}.\end {align*}


$(\phi _0,\psi _0)\in \mathcal {Z}_m^{K,L}$


$(\phi _0,\psi _0)$


$\tau > 0$


$(\phi ,\psi )\in L^\infty (\tau ,\infty ;\mathcal {H}^3)$


$(\delt \phi ,\delt \psi )\in L^2_{\mathrm {uloc}}([\tau ,\infty );\mathcal {H}^1)$


$(\phi ,\psi )\in C([t,t+1];\mathcal {H}^2)$


$t\geq \tau > 0$


\begin {align*}(\phi ,\psi )\in BC([\tau ,\infty );\mathcal {H}^s)\end {align*}


$s\in (2,3)$


$\tau > 0$


$\omega $


$\omega ^{K,L}(\phi _0,\psi _0)$


$\mathcal {H}^2$


\begin {align}\label {CompactnessOrbit} \lim _{t\rightarrow \infty } \mathrm {dist}_{\mathcal {H}^2}\big (\mathcal {S}^{K,L}(t)(\phi _0,\psi _0),\omega ^{K,L}(\phi _0,\psi _0)\big ) = 0.\end {align}


$E:\mathcal {Z}_m^{K,L}\rightarrow \R $


$\mathcal {S}^{K,L}$


$(\phi _\infty ,\psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0)$


$\{\mathcal {S}^{K,L}(t)\}_{t\geq 0}$


$\mathcal {S}^{K,L}(t)(\phi _\infty ,\psi _\infty ) = (\phi _\infty ,\psi _\infty )$


$t\geq 0$


$\mu _\infty $


$\theta _\infty $


$(\phi _\infty ,\psi _\infty ,\mu _\infty ,\theta _\infty )$


\begin {alignat*}{2} &\delt \phi _\infty = \Div (m_\Om (\phi _\infty )\Grad \mu _\infty ) &&\qquad \text {in~} \Om \times (0,\infty ), \\ &\mu = -\Lap \phi _\infty + F'(\phi _\infty ) &&\qquad \text {in~} \Om \times (0,\infty ), \\ &\delt \psi _\infty = \Divg (m_\Ga (\psi _\infty )\Gradg \theta _\infty ) - \beta m_\Om (\phi _\infty )\deln \mu _\infty &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\theta _\infty = - \Lapg \psi _\infty + G'(\psi _\infty ) + \alpha \deln \phi _\infty &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\begin {cases} K\deln \phi _\infty = \alpha \psi _\infty - \phi _\infty &\text {if~} K\in (0,\infty ), \\ \deln \phi _\infty = 0 &\text {if~} K = \infty \end {cases} &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\begin {cases} L m_\Om (\phi _\infty )\deln \mu _\infty = \beta \theta _\infty - \mu _\infty &\text {if~} L\in [0,\infty ), \\ m_\Om (\phi _\infty )\deln \mu _\infty = 0 &\text {if~} L=\infty \end {cases} &&\qquad \text {on~} \Ga \times (0,\infty ), \\ &\phi _\infty \vert _{t=0} = \phi _0 &&\qquad \text {in~} \Om , \\ &\psi _\infty \vert _{t=0} = \psi _0 &&\qquad \text {on~} \Ga .\end {alignat*}


$(\phi _\infty ,\psi _\infty ,\mu _\infty ,\theta _\infty )$


\begin {alignat}{2} \label {EQ:SYSTEM:STATIONARY:1} &\Div (m_\Om (\phi _\infty )\Grad \mu _\infty ) = 0 &&\qquad \text {in~}\Om , \\ \label {EQ:SYSTEM:STATIONARY:2} &\mu _\infty = -\Lap \phi _\infty + F^\prime (\phi _\infty ) &&\qquad \text {in~}\Om , \\ \label {EQ:SYSTEM:STATIONARY:3} &\Divg (m_\Ga (\psi _\infty )\Gradg \theta _\infty ) - \beta m_\Om (\phi _\infty )\deln \mu _\infty = 0 &&\qquad \text {on~}\Ga , \\ \label {EQ:SYSTEM:STATIONARY:4} &\theta _\infty = -\Lapg \psi _\infty + G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty &&\qquad \text {on~}\Ga , \\ \label {EQ:SYSTEM:STATIONARY:5} &\begin {cases} K\deln \phi _\infty = \alpha \psi _\infty - \phi _\infty &\text {if} \ K\in (0,\infty ), \\ \deln \phi _\infty = 0 &\text {if} \ K = \infty \end {cases} &&\qquad \text {on~} \Ga , \\ \label {EQ:SYSTEM:STATIONARY:6} &\begin {cases} L m_\Om (\phi _\infty )\deln \mu _\infty = \beta \theta _\infty - \mu _\infty &\text {if~} L\in [0,\infty ), \\ m_\Om (\phi _\infty )\deln \mu _\infty = 0 &\text {if~} L=\infty \end {cases} &&\qquad \text {on~} \Ga .\end {alignat}


$\mu _\infty $


$\theta _\infty $


$\Om $


$\Ga $


\begin {align*}\intO m_\Om (\phi _\infty )\abs {\Grad \mu _\infty }^2\dx + \intG m_\Ga (\psi _\infty )\abs {\Gradg \theta _\infty }^2\dG + \chi (L)\intG (\beta \theta _\infty - \mu _\infty )^2\dG = 0.\end {align*}


$L\in [0,\infty ]$


$\mu _\infty $


$\theta _\infty $


$L\in [0,\infty )$


$\beta \theta _\infty = \mu _\infty $


$\alpha $


$\Om $


$\Ga $


\begin {align}\label {STAT:MT:L} \mu _\infty = \beta \theta _\infty = \frac {\alpha }{\alpha \beta \abs {\Om } + \abs {\Ga }}\Big (\alpha \intO F^\prime (\phi _\infty )\dx + \intG G^\prime (\psi _\infty )\dG \Big )\end {align}


$L\in [0,\infty )$


$L = \infty $


\begin {equation}\label {STAT:MT:infty} \begin {split} \mu _\infty &= \frac {1}{\abs {\Om }} \Big (\intO F^\prime (\phi _\infty )\dx - \intG \deln \phi _\infty \dG \Big ), \\ \theta _\infty &= \frac {1}{\abs {\Ga }}\Big (\intG G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty \dG \Big ). \end {split}\end {equation}


\begin {alignat*}{2} &\mu _\infty = -\Lap \phi _\infty + F^\prime (\phi _\infty ) &&\qquad \text {in~}\Om , \\ &\theta _\infty = -\Lapg \psi _\infty + G^\prime (\psi _\infty ) + \alpha \deln \phi _\infty &&\qquad \text {on~}\Ga , \\ &\begin {cases} K\deln \phi _\infty = \alpha \psi _\infty - \phi _\infty &\text {if} \ K\in (0,\infty ), \\ \deln \phi _\infty = 0 &\text {if} \ K = \infty \end {cases} &&\qquad \text {on~} \Ga ,\end {alignat*}


$\mu _\infty $


$\theta _\infty $


$L\in [0,\infty ]$


\begin {align}\label {E_infty} E_\infty = \lim _{t\rightarrow \infty } E(\phi (t),\psi (t)) \quad \text {exists, and~}\quad E(\phi _\infty ,\psi _\infty ) = E_\infty \quad \text {for all~}(\phi _\infty ,\psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0).\end {align}


$\omega $


$\omega ^{K,L}(\phi _0,\psi _0)$


$F_1, G_1$


$(-1,1)$


$F_2, G_2$


$\R $


$(\phi _\infty , \psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0)$


$\varpi \in (0,\frac 12)$


$b > 0$


$C>0$


\begin {align}C \left \|\mathbf {P}_{L}\begin {pmatrix} -\Lap \zeta + F^\prime (\zeta ) \\ -\Lapg \xi + G^\prime (\xi ) + \alpha \deln \zeta \end {pmatrix}\right \|_{\mathcal {L}^2} \geq \abs {E(\zeta , \xi ) - E(\phi _\infty , \psi _\infty )}^{1 - \varpi }\end {align}


$(\zeta ,\xi )\in \mathcal {H}^2\cap \mathcal {W}^1_{K,L,m}$


$\norm {(\zeta - \phi _\infty , \xi - \psi _\infty )}_{\mathcal {H}^2}\leq b$


$\mathbf {P}_{L}$


$\mathcal {L}^2$


\begin {equation*}\begin {cases} \{\scp {\phi }{\psi }\in \mathcal {L}^2 : \mean {\phi }{\psi } = 0 \}, &\text {if~} L\in [0,\infty ), \\ \{\scp {\phi }{\psi }\in \mathcal {L}^2: \meano {\phi } = \meang {\psi } = 0 \}, &\text {if~}L=\infty . \end {cases}\end {equation*}


$L = \infty $


$(\phi _0,\psi _0)\in \mathcal {Z}_m^{K,L}$


$m$


$\omega ^{K,L}(\phi _0,\psi _0)$


$\mathcal {H}^2\cap \mathcal {W}^1_{K,L,m}$


$\omega ^{K,L}(\phi _0,\psi _0)$


$\{B_j\}_{j=1,\ldots ,N}$


$\mathcal {H}^2\cap \mathcal {W}^1_{K,L,m}$


$(\phi _\infty ^j,\psi _\infty ^j)\in \omega ^{K,L}(\phi _0,\psi _0)$


$b_j$


$b_j > 0$


$(\phi _\infty ^j,\psi _\infty ^j)$


$E\vert _{\omega ^{K,L}(\phi _0,\psi _0)} = E_\infty $


$U := \bigcup _{j=1}^N B_j$


$\widetilde \varpi \in (0,\frac 12)$


$\widetilde {C} > 0$


\begin {align*}\widetilde {C} \left \|\mathbf {P}_{L}\begin {pmatrix} -\Lap \zeta + F^\prime (\zeta ) \\ -\Lapg \xi + G^\prime (\xi ) + \alpha \deln \zeta \end {pmatrix}\right \|_{\mathcal {L}^2} \geq \abs {E(\zeta , \xi ) - E_\infty }^{1 - \widetilde \varpi } \qquad \text {for all~}(\zeta ,\xi )\in U.\end {align*}


$t^\ast > 0$


$(\phi (t),\psi (t))\in U$


$t\geq t^\ast $


$H(t) := (E(\phi (t),\psi (t)) - E_\infty )^{\widetilde \varpi }$


\begin {align*}-\ddt H(t) &= -\widetilde \varpi \left (E(\phi (t),\psi (t)) - E_\infty \right )^{\widetilde \varpi - 1}\ddt E(\phi (t),\psi (t)) \\ &\geq \frac {\widetilde \varpi }{\widetilde C}\frac {\norm {(\mu (t),\theta (t))}_{L,[\phi ,\psi ]}^2}{\Bignorm {\mathbf {P}_{L}\begin {pmatrix} -\Lap \phi (t) + F^\prime (\phi (t)) \\ -\Lapg \psi (t) + G^\prime (\psi (t)) + \alpha \deln \phi (t) \end {pmatrix}}_{\mathcal {L}^2}} \\ &\geq \frac {\widetilde \varpi \min \{1,m^\ast \}}{\widetilde C}\frac {\norm {(\mu (t),\theta (t))}_{L}^2}{\Bignorm {\mathbf {P}_{L}\begin {pmatrix} -\Lap \phi (t) + F^\prime (\phi (t)) \\ -\Lapg \psi (t) + G^\prime (\psi (t)) + \alpha \deln \phi (t) \end {pmatrix}}_{\mathcal {L}^2}}\end {align*}


$t\geq t^\ast $


\begin {align*}&\Bignorm {\mathbf {P}_{L}\begin {pmatrix} -\Lap \phi (t) + F^\prime (\phi (t)) \\ -\Lapg \psi (t) + G^\prime (\psi (t)) + \alpha \deln \phi (t) \end {pmatrix}}_{\mathcal {L}^2} \\ &\quad = \norm {(\mu (t) - \beta \mean {\mu (t)}{\theta (t)},\theta (t) - \mean {\mu (t)}{\theta (t)})}_{\mathcal {L}^2} \\ &\quad \leq C_P\norm {(\mu (t),\theta (t))}_{L}.\end {align*}


\begin {align*}-\ddt H(t) \geq \frac {\widetilde \varpi \min \{1,m^\ast \}}{C_p\widetilde C}\norm {(\mu (t),\theta (t))}_{L} \qquad \text {for~a.e.~}t\geq t^\ast .\end {align*}


$t^\ast $


$\infty $


\begin {align*}\int _{t^\ast }^\infty \norm {(\mu (t),\theta (t))}_{L}\dt \leq \frac {C_p\widetilde C}{\widetilde \varpi \min \{1,m^\ast \}}H(t^\ast ),\end {align*}


$t\mapsto \norm {(\mu (t),\theta (t))}_{L}\in L^1(t^\ast ,\infty )$


$(\delt \phi ,\delt \psi )\in L^1(t^\ast ,\infty ;(\mathcal {H}^1_L)^\prime )$


$(\phi _\infty ,\psi _\infty )\in \omega ^{K,L}(\phi _0,\psi _0)$


\begin {align*}(\phi (t),\psi (t)) = (\phi (t^\ast ),\psi (t^\ast )) + \int _{t^\ast }^t (\delt \phi (s),\delt \psi (s))\ds \longrightarrow (\phi _\infty ,\psi _\infty ) \quad \text {in~}(\mathcal {H}^1_L)^\prime \quad \text {as~}t\rightarrow \infty ,\end {align*}


$\omega ^{K,L}(\phi _0,\psi _0) = \{(\phi _\infty ,\psi _\infty )\}$


$\Om \subset \R ^d$


$d=2,3$


$C^3$


$I = (a,b) \subset \R $


$(\phi ,\psi )\in H^1(I;\mathcal {L}^3)\cap L^\infty (I;\mathcal {W}^{2,4})$


$\abs {\phi }\leq 1$


$\Om $


$\abs {\psi }\leq 1$


$\Ga $


$m_\Om , m_\Ga \in C^2([-1,1])$


$(u,v)\in C(\overline {I};\mathcal {L}^2)\cap L^\infty (I;\mathcal {H}^1_L)\cap L^2(I;\mathcal {H}^3)$


$Lm_\Om (\phi )\deln u = \beta v - u$


$\Ga $


$(\delt u, \delt v)\in L^2(I;(\mathcal {H}^1_K)^\prime )$


\begin {align*}\big (\Div (m_\Om (\phi )\Grad u), \Divg (m_\Ga (\psi )\Gradg v) - \beta m_\Om (\phi )\deln u\big )\in L^2(I;\mathcal {H}^1_K).\end {align*}


$(u,v)\in C(\overline {I};\mathcal {H}^1_L)$


\begin {align*}I\ni t \mapsto \intO m_\Om (\phi (t))\abs {\Grad u(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v(t)}^2\dG + \chi (L)\intG (\beta v(t) - u(t))^2\dG \end {align*}


\begin {equation}\begin {split} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad u}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg v}^2\dG + \chi (L)\intG (\beta v - u)^2\dG \Big ) \\ &\quad = \bigang {(\delt u, \delt v)}{(-\Div (m_\Om (\phi )\Grad u), -\Divg (m_\Ga (\psi )\Gradg v) + \beta m_\Om (\phi )\deln u)}_{\mathcal {H}^1_K} + \intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v}^2\dG \end {split}\label {App:ChainRule123}\end {equation}


$I$


$u$


$v$


$(u,v)\in C([a,b];\mathcal {L}^2)$


$u$


$v$


$[2a-b,a]$


$t < a$


$\rho \in C_c^\infty (\R )$


$\mathrm {supp}\,\rho \subset (0,1)$


$\norm {\rho }_{L^1(\R )} = 1$


$k\in \N $


\begin {align*}\rho _k(s) := k\rho (ks) \qquad \text {for all~}s\in \R .\end {align*}


$X$


$f\in L^2(a-1,b;X)$


\begin {align*}f_k(t) := (\rho _k\ast f)(t) = \int _{t-\tfrac {1}{k}}^t \rho _k(t-s)f(s)\ds \qquad \text {for all~}t\in [a,b] \quad \text {and}\quad k\in \N .\end {align*}


$f_k\in C^\infty ([a,b];X)$


$f_k\rightarrow f$


$L^2(a,b;X)$


$k\rightarrow \infty $


$k\in \N $


$X = H^3(\Om )$


$u_k$


$X = H^3(\Ga )$


$v_k$


$\delt u_k = (\delt u)_k$


$\delt \Grad u_k = \Grad \delt u_k$


$\Om \times (a,b)$


$\delt v_k = (\delt v)_k$


$\delt \Gradg v_k = \Gradg \delt v_k$


$\Ga \times (a,b)$


$k\in \N $


\begin {alignat}{2} u_k &\rightarrow u &&\qquad \text {strongly in~} L^2(a,b;H^3(\Om )), \label {App:Conv:u:H3} \\ v_k &\rightarrow v &&\qquad \text {strongly in~} L^2(a,b;H^3(\Ga )), \label {App:Conv:v:H3} \\ (u_k,v_k) &\rightarrow (u,v) &&\qquad \text {strongly in~} L^2(a,b;\mathcal {H}^1_L), \label {App:Conv:uv:H1}\\ (\delt u_k,\delt v_k) &\rightarrow (\delt u, \delt v) &&\qquad \text {strongly in~} L^2(a,b;(\mathcal {H}^1_K)^\prime ) \label {App:Conv:delt:uv:H1}\end {alignat}


$k\rightarrow \infty $


\begin {equation}\label {App:Est:uv:k:LinftyH1} \begin {split} \norm {u_k}_{L^\infty (a,b;H^1(\Om ))} &\leq \norm {u}_{L^\infty (a,b;H^1(\Om ))}, \\ \norm {v_k}_{L^\infty (a,b;H^1(\Ga ))} &\leq \norm {v}_{L^\infty (a,b;H^1(\Ga ))} \end {split}\end {equation}


$k\in \N $


$C$


$k\in \N $


$k\in \N $


\begin {align}\label {App:ChainRule:Approx} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad u_k}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg v_k}^2\dG + \chi (L)\intG (\beta v_k - u_k)^2\dG \Big ) \\ &\quad = \bigang {(\delt u_k, \delt v_k)}{(-\Div (m_\Om (\phi )\Grad u_k), -\Divg (m_\Ga (\psi )\Gradg v_k) + \beta m_\Om (\phi )\deln u_k)}_{\mathcal {H}^1_K} + \intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u_k}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v_k}^2\dG \nonumber \end {align}


$[a,b]$


$j,k\in \N $


\begin {align}\label {App:ChainRule:Approx:Difference} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad (u_j - u_k)}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg (v_j - v_k)}^2\dG + \chi (L)\intG \big (\beta (v_j - v_k) - (u_j - u_k)\big )^2\dG \Big ) \nonumber \\ &\quad = \big \langle (\delt (u_j - u_k), \delt (v_j - v_k)),(-\Div (m_\Om (\phi )\Grad (u_j - u_k)), - \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) + \beta m_\Om (\phi )\deln (u_j - u_k))\big \rangle _{\mathcal {H}^1_K} \nonumber \\ &\qquad + \intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad (u_j - u_k)}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg (v_j - v_k)}^2\dG \\ &\quad \leq \norm {(\delt (u_j - u_k),\delt (v_j - v_k))}_{(\mathcal {H}^1_K)^\prime }\norm {(\Div (m_\Om (\phi )\Grad (u_j - u_k)), \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k))}_{\mathcal {H}^1} \nonumber \\ &\qquad + C\norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^3}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^6}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^2}. \nonumber \end {align}


\begin {align*}&\norm {(\Div (m_\Om (\phi )\Grad (u_j - u_k)), \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k))}_{\mathcal {H}^1} \\ &\quad \leq \norm {(\Div (m_\Om (\phi )\Grad (u_j - u_k)), \Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {\big (\Grad \big (\Div (m_\Om (\phi )\Grad (u_j - u_k))\big ), \Gradg \big (\Divg (m_\Ga (\psi )\Gradg (v_j - v_k)) - \beta m_\Om (\phi )\deln (u_j - u_k)\big )\big )}_{\mathcal {H}^1} \\ &\quad \leq \norm {(m_\Om (\phi )\Lap (u_j - u_k),m_\Ga (\psi )\Lapg (v_j - v_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )\Grad \phi \cdot \Grad (u_j - u_k),m_\Ga ^\prime (\psi )\Gradg \psi \cdot \Gradg (v_j - v_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om (\phi )\Grad \Lap (u_j - u_k), m_\Ga (\psi )\Gradg \Lapg (v_j - v_j))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )\Lap (u_j - u_k)\Grad \phi ,m_\Ga ^\prime (\psi )\Lapg (v_j - v_k)\Gradg \psi )}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^{\prime \prime }(\phi )(\Grad \phi \cdot \Grad (u_j - u_k))\Grad \phi , m_\Ga ^{\prime \prime }(\psi )(\Gradg \psi \cdot \Gradg (v_j - v_k))\Gradg \psi )}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )D^2\phi \Grad (u_j - u_k), m_\Ga ^\prime (\psi )D^2_\Ga \psi \Gradg (v_j - v_k))}_{\mathcal {L}^2} \\ &\qquad + \norm {(m_\Om ^\prime (\phi )D^2(u_j - u_k)\Grad \phi , m_\Ga ^\prime (\psi )D^2_\Ga (v_j - v_j)\Gradg \psi )}_{\mathcal {L}^2} \\ &\qquad + \norm {\beta m_\Om (\phi )\deln (u_j - u_k)}_{L^2(\Ga )} + \norm {\beta m_\Om ^\prime (\phi )\Gradg \phi \deln (u_j - u_k)}_{L^2(\Ga )} \\ &\qquad + \norm {\beta m_\Om (\phi )\Gradg \deln (u_j - u_k)}_{L^2(\Ga )} \\ &\quad \leq C\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^1} \\ &\qquad + C\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3} + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} \\ &\qquad + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }^2\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^1} + \norm {(\phi ,\psi )}_{\mathcal {W}^{2,6}}\norm {(\Grad (u_j - u_k), \Gradg (v_j - v_k))}_{\mathcal {L}^3} \\ &\qquad + C\norm {(\Grad \phi ,\Gradg \psi )}_{\mathcal {L}^\infty }\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} + C\norm {u_j - u_k}_{H^2(\Om )} \\ &\qquad + C\norm {\phi }_{W^{2,4}(\Om )}\norm {(u_j - u_k)}_{\mathcal {H}^2} + C\norm {u_j - u_k}_{H^3(\Om )} \\ &\quad \leq C\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}.\end {align*}


$H^3(\Om )\emb H^2(\Ga )$


\begin {align*}\norm {\deln (u_j - u_k)}_{H^1(\Ga )} \leq \norm {u_j - u_k}_{H^2(\Ga )} \leq C\norm {u_j - u_k}_{H^3(\Om )},\end {align*}


$W^{2,4}(\Om )\emb W^{1,\infty }(\Ga )$


\begin {align*}\norm {\Gradg \phi }_{L^\infty (\Ga )} \leq \norm {\phi }_{W^{1,\infty }(\Ga )} \leq C\norm {\phi }_{W^{2,4}(\Om )}.\end {align*}


\begin {align*}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^6}\norm {(\Grad (u_j - u_k),\Gradg (v_j - v_k))}_{\mathcal {L}^2} \leq C\norm {(u,v)}_{L^\infty (I;\mathcal {H}^1)}\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}.\end {align*}


\begin {equation}\label {App:ChainRule:Approx:Diff:Est} \begin {split} &\ddt \frac 12 \Big (\intO m_\Om (\phi )\abs {\Grad (u_j - u_k)}^2\dx + \intG m_\Ga (\psi )\abs {\Gradg (v_j - v_k)}^2\dG + \chi (L)\intG \big (\beta (v_j - v_k) - (u_j - u_k)\big )^2\dG \Big ) \\ &\quad \leq C\Big (\norm {(\delt (u_j - u_k),\delt (v_j - v_k))}_{(\mathcal {H}^1_K)^\prime } + \norm {(\delt \phi ,\delt \psi )}_{\mathcal {L}^3}\Big )\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}. \end {split}\end {equation}


$s,t\in [a,b]$


$s \leq t$


$[s,t]$


\begin {align}\label {App:ChainRule:Diff:Approx:Est:Int} &\intO m_\Om (\phi (t))\abs {\Grad (u_j - u_k)(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg (v_j - v_k)(t)}^2\dG \nonumber + \chi (L)\intG \big (\beta (v_j - v_k)(t) - (u_j - u_k)(t)\big )^2\dG \nonumber \\ &\quad \leq \intO m_\Om (\phi (s))\abs {\Grad (u_j - u_k)(s)}^2\dx + \intG m_\Ga (\psi (s))\abs {\Gradg (v_j - v_k)(s)}^2\dG + \chi (L)\intG \big (\beta (v_j - v_k)(s) - (u_j - u_k)(s)\big )^2\dG \\ &\qquad + C\int _s^t \norm {(\delt (u_j - u_k), \delt (v_j - v_k))}_{(\mathcal {H}^1_K)^\prime }^2 + \norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^3}^2 \dtau + C\int _s^t \norm {(\delt \phi ,\delt \psi )}_{\mathcal {H}^1}\norm {(u_j - u_k, v_j - v_k)}_{\mathcal {H}^2} \dtau . \nonumber \end {align}


$s\in [a,t]$


$(u_k(s),v_k(s)) \rightarrow (u(s),v(s))$


$\mathcal {H}^3$


$k\rightarrow \infty $


$j,k\rightarrow \infty $


$m_\Om $


$m_\Ga $


$(\Grad u_k)_{k\in \N }$


$C([a,b];L^2(\Om ))$


$(\Gradg v_k)_{k\in \N }$


$C([a,b];L^2(\Ga ))$


\begin {alignat}{2} \Grad u_k &\rightarrow \Grad u &&\qquad \text {strongly in~} C([a,b];L^2(\Om )), \label {App:Conv:Grad:u}\\ \Gradg v_k &\rightarrow \Gradg v &&\qquad \text {strongly in~} C([a,b];L^2(\Ga )) \label {App:Conv:Grad:v}\end {alignat}


$k\rightarrow \infty $


$(u,v)\in C([a,b];\mathcal {L}^2)$


$(u,v)\in C([a,b];\mathcal {H}^1)$


$s,t\in [a,b]$


$s \leq t$


$s$


$t$


\begin {align}\label {App:ChainRule:Approx:Id} \begin {split} &\intO m_\Om (\phi (t))\abs {\Grad u_k(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v_k(t)}^2\dG + \chi (L)\intG (\beta v_k(t) - u_k(t))^2\dG \\ &\quad = \intO m_\Om (\phi (s))\abs {\Grad u_k(s)}^2\dx + \intG m_\Ga (\psi (s))\abs {\Gradg v_k(s)}^2\dG + \chi (L)\intG (\beta v_k(s) - u_k(s))^2\dG \\ &\qquad + 2\int _s^t \bigang {(\delt u_k, \delt v_k)}{(-\Div (m_\Om (\phi )\Grad u_k), -\Divg (m_\Ga (\psi )\Gradg v_k) + \beta m_\Om (\phi )\deln u_k)}_{\mathcal {H}^1_K}\dtau \\ &\qquad + 2\int _s^t \Big (\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u_k}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v_k}^2\dG \Big )\dtau . \end {split}\end {align}


\begin {equation*}\begin {split} &\Big \vert \int _s^t\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u_k}^2\dx \dtau - \int _s^t\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u}^2\dx \dtau \Big \vert \\ &\quad = \Big \vert \int _s^t\intO m_\Om ^\prime (\phi )\delt \phi (\Grad u_k + \Grad u)\cdot (\Grad u_k - \Grad u)\dx \dtau \Big \vert \\ &\quad \leq \norm {m_\Om ^\prime }_{L^\infty (-1,1)}\norm {\delt \phi }_{L^2(a,b;L^3(\Om ))} \norm {\Grad u_k + \Grad u}_{L^2(a,b;L^6(\Om ))}\norm {\Grad u_k - \Grad u}_{C([a,b];L^2(\Om ))} \\ &\quad \leq 2\norm {m_\Om ^\prime }_{L^\infty (-1,1)}\norm {\delt \phi }_{L^2(a,b;L^3(\Om ))}\norm {u}_{L^2(a,b;H^3(\Om ))}\norm {\Grad u_k - \Grad u}_{C([a,b];L^2(\Om ))} \\ &\quad \longrightarrow 0 \end {split}\end {equation*}


$k\rightarrow \infty $


$k\rightarrow \infty $


\begin {align*}&\intO m_\Om (\phi (t))\abs {\Grad u(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v(t)}^2\dG + \chi (L)\intG (\beta v(t) - u(t))^2\dG \\ &\quad = \intO m_\Om (\phi (s))\abs {\Grad u(s)}^2\dx + \intG m_\Ga (\psi (s))\abs {\Gradg v(s)}^2\dG + \chi (L)\intG (\beta v(s) - u(s))^2\dG \\ &\qquad + 2\int _s^t \bigang {(\delt u, \delt v)}{(-\Div (m_\Om (\phi )\Grad u), -\Divg (m_\Ga (\psi )\Gradg v) + \beta m_\Om (\phi )\deln u_k)}_{\mathcal {H}^1_K}\dtau \\ &\qquad + 2\int _s^t \Big (\intO m_\Om ^\prime (\phi )\delt \phi \abs {\Grad u}^2\dx + \intG m_\Ga ^\prime (\psi )\delt \psi \abs {\Gradg v}^2\dG \Big )\dtau .\end {align*}


$L^1(a,b)$


\begin {align*}[a,b]\ni t \mapsto \intO m_\Om (\phi (t))\abs {\Grad u(t)}^2\dx + \intG m_\Ga (\psi (t))\abs {\Gradg v(t)}^2\dG + \chi (L)\intG (\beta v(t) - u(t))^2\dG \end {align*}


$[a,b]$
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for non-degenerate mobility functions in two dimensions, and thus improved the state of the art dating back to the work [2]. We 
further would like to mention the recent work [9], where the authors established a weak-strong uniqueness principle for the Cahn–
Hilliard equation on an evolving surface. Building on the approach developed in [8], we extend the uniqueness theory to the Cahn–
Hilliard equation with dynamic boundary conditions (1.1). To the best of our knowledge, this is the first result addressing uniqueness 
and propagation of regularity in the setting of dynamic boundary conditions with non-constant mobilities. Our proof relies on two 
main ingredients: a novel well-posedness and regularity theory for a bulk-surface elliptic system with non-constant coefficients (see 
Section 4), as well as a recently established result on higher time-regularity for the phase-fields (see [15, Theorem 3.3]). Then, using 
our proof, particularly the key differential inequality established therein, we are able to demonstrate the propagation of regularity 
for weak solutions. To this end, we introduce an additional regularization procedure for the mobility functions, which allows us to 
work under minimal assumptions on their regularity. As a consequence, we also obtain the instantaneous separation property. This 
separation property, in turn, enables us to prove convergence to a single stationary state by means of the standard Łojasiewicz–
Simon approach. It is worth mentioning that our results can be readily adapted to the case of the convective model proposed in 
[22] for sufficiently regular prescribed velocity fields. This might be useful in further analysis of related models for two-phase flows 
with bulk-surface interaction, see, e.g., [11,14] for a bulk-surface Navier–Stokes–Cahn–Hilliard model or [21] for a bulk-surface 
Navier–Stokes–Cahn–Hilliard model in an evolving domain.

Structure of this paper. The rest of this contribution is structured as follows. In Section 2, we collect some notation, assumptions, 
preliminaries, and important tools. After introducing the notation of a weak solution of (1.1), we state our main results in Section 3. In 
Section 4, we establish a new well-posedness and regularity theory for a bulk-surface elliptic system with non-constant coefficients. 
Then, Section 5 is devoted to the proof of the well-posedness of weak solutions to (1.1). Afterwards, in Section 6, we show that 
there exists a weak solution that admits the propagation of regularity and satisfies the instantaneous separation property. Lastly, in 
Section 7, we study the long-time behavior of the unique weak solution of (1.1) and show its convergence to a single stationary state 
as 𝑡→ ∞.

2.  Functional framework, assumptions and preliminaries

2.1.  Notation and function spaces.

For any Banach space 𝑋, we denote its norm by ‖ ⋅ ‖𝑋 , its dual space by 𝑋′, and the associated duality pairing of elements 𝜙 ∈ 𝑋′

and 𝜁 ∈ 𝑋 by ⟨𝜙, 𝜁⟩𝑋 . The space 𝐿𝑝(𝐼 ;𝑋), 1 ≤ 𝑝 ≤ +∞, denotes the set of all strongly measurable 𝑝-integrable functions mapping 
from any interval 𝐼 ⊂ ℝ into 𝑋, or, if 𝑝 = +∞, essentially bounded functions. Moreover, the space 𝑊 1,𝑝(𝐼 ;𝑋) consists of all functions 
𝑓 ∈ 𝐿𝑝(𝐼 ;𝑋) such that 𝜕𝑡𝑓 ∈ 𝐿𝑝(𝐼 ;𝑋), where 𝜕𝑡𝑓 denotes the vector-valued distributional derivative of 𝑓 . Furthermore, 𝐿𝑝uloc(𝐼 ;𝑋)
denotes the space of functions 𝑓 ∈ 𝐿𝑝(𝐼 ;𝑋) such that 

‖𝑓‖𝐿𝑝uloc(𝐼 ;𝑋) ∶= sup
𝑡≥0

(

∫𝐼∩[𝑡,𝑡+1)
‖𝑓 (𝑠)‖𝑝𝑋 d𝑠

)
1
𝑝 <∞.

If 𝐼 ⊂ ℝ is a finite interval, we find that 𝐿𝑝uloc(𝐼 ;𝑋) = 𝐿𝑝(𝐼 ;𝑋). Further, we denote the space of continuous functions mapping from 
𝐼 to 𝑋 by 𝐶(𝐼 ;𝑋).

Let Ω ⊂ ℝ𝑑 , 𝑑 ∈ {2, 3}, be a bounded domain with sufficiently smooth boundary Γ ∶= 𝜕Ω. For any 1 ≤ 𝑝 ≤ ∞ and 𝑘 ∈ ℕ0, the 
Lebesgue and Sobolev spaces for functions mapping from Ω to ℝ are denoted as 𝐿𝑝(Ω) and 𝑊 𝑘,𝑝(Ω), respectively. Here, we use 
ℕ for the set of natural numbers excluding zero and ℕ0 ∶= ℕ ∪ {0}. For 1 ≤ 𝑝 ≤ ∞ and 𝑠 ≥ 0, we denote by 𝑊 𝑠,𝑝(Ω) the Sobolev-
Slobodeckij spaces. If 𝑝 = 2, we write 𝐻𝑠(Ω) = 𝑊 𝑠,2(Ω). In particular, 𝐻0(Ω) can be identified with 𝐿2(Ω). The Lebesgue, Sobolev, 
and Sobolev-Slobodeckij spaces on the boundary can be defined similarly, provided that Γ is sufficiently regular. As before, we write 
𝐻𝑠(Γ) = 𝑊 𝑠,2(Γ) and identify 𝐻0(Γ) with 𝐿2(Γ).

Next, we introduce the product spaces 
𝑝 ∶= 𝐿𝑝(Ω) × 𝐿𝑝(Γ), and 𝑠,𝑝 ∶= 𝑊 𝑠,𝑝(Ω) ×𝑊 𝑠,𝑝(Γ),

for any real numbers 𝑠 ≥ 0 and 𝑝 ∈ [1,∞], provided that the boundary Γ is sufficiently regular. We abbreviate 𝑠 ∶= 𝑠,2 and identify 
2 with 0. Note that 𝑠 is a Hilbert space with respect to the inner product 

(

(𝜙,𝜓), (𝜁, 𝜉)
)

𝑠 ∶= (𝜙, 𝜁 )𝐻𝑠(Ω) + (𝜓, 𝜉)𝐻𝑠(Γ) for all (𝜙,𝜓), (𝜁, 𝜉) ∈ 𝑠

and its induced norm ‖ ⋅ ‖𝑠 ∶= (⋅, ⋅)
1
2
𝑠 . We recall that the duality pairing can be expressed as 

⟨(𝜙,𝜓), (𝜁, 𝜉)⟩𝑠 ∶= (𝜙, 𝜁 )𝐿2(Ω) + (𝜓, 𝜉)𝐿2(Γ)

for all (𝜁, 𝜉) ∈ 𝑠 if (𝜙,𝜓) ∈ 2. For 𝐿 ∈ [0,∞] and 𝛽 ∈ ℝ, we introduce the linear subspace 

1
𝐿 ∶=

{

1, if 𝐿 ∈ (0,∞],
{(𝜙,𝜓) ∈ 1 ∶ 𝜙 = 𝛽𝜓 a.e. on Γ}, if 𝐿 = 0.

The space 1
𝐿 is a Hilbert space endowed with the inner product (⋅, ⋅)1

𝐿
∶= (⋅, ⋅)1  and its induced norm. Moreover, we define the 

product 
⟨(𝜙,𝜓), (𝜁, 𝜉)⟩1

𝐿
∶= (𝜙, 𝜁 )𝐿2(Ω) + (𝜓, 𝜉)𝐿2(Γ)
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for all (𝜙,𝜓), (𝜁, 𝜉) ∈ 2. By means of the Riesz representation theorem, this product can be extended to a duality pairing on (1
𝐿)

′ ×1
𝐿, 

which will also be denoted as ⟨⋅, ⋅⟩1
𝐿
.

For (𝜙,𝜓) ∈ (1
𝐿)

′, we define the generalized bulk-surface mean 

mean(𝜙,𝜓) ∶=
⟨(𝜙,𝜓), (𝛽, 1)⟩1

𝐿

𝛽2|Ω| + |Γ|
,

which reduces to 
mean(𝜙,𝜓) =

𝛽|Ω|⟨𝜙⟩Ω + |Γ|⟨𝜓⟩Γ
𝛽2|Ω| + |Γ|

if (𝜙,𝜓) ∈ 2, where 

⟨𝜙⟩Ω = 1
|Ω| ∫Ω

𝜙 d𝑥, ⟨𝜓⟩Γ = 1
|Γ| ∫Γ

𝜓 dΓ.

We then define the closed linear subspace 

1
𝐿 ∶=

{

{(𝜙,𝜓) ∈ 1
𝐿 ∶ mean(𝜙,𝜓) = 0}, if 𝐿 ∈ [0,∞),

{(𝜙,𝜓) ∈ 1 ∶ ⟨𝜙⟩Ω = ⟨𝜓⟩Γ = 0}, if 𝐿 = ∞.

Note that this space is a Hilbert space with respect to the inner product (⋅, ⋅)1 .
Now, we set 

𝜒(𝐿) ∶=

{

𝐿−1, if 𝐿 ∈ (0,∞),
0, if 𝐿 ∈ {0,∞},

and we introduce a bilinear form on 1 ×1 by defining 
(

(𝜙,𝜓), (𝜁, 𝜉)
)

𝐿 ∶=∫Ω
∇𝜙 ⋅ ∇𝜁 d𝑥 + ∫Γ

∇Γ𝜓 ⋅ ∇Γ𝜉 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝜓 − 𝜙)(𝛽𝜉 − 𝜁 ) dΓ

for all (𝜙,𝜓), (𝜁, 𝜉) ∈ 1. Moreover, we set 

‖(𝜙,𝜓)‖𝐿 ∶=
(

(𝜙,𝜓), (𝜙,𝜓)
)

1
2
𝐿

for all (𝜙,𝜓) ∈ 1. The bilinear form (⋅, ⋅)𝐿 defines an inner product on 1
𝐿, and ‖ ⋅ ‖𝐿 defines a norm on 1

𝐿, that is equivalent to the 
norm ‖ ⋅ ‖1  (see [20, Corollary A.2]). Hence, the space 1

𝐿 endowed with (⋅, ⋅)𝐿 is a Hilbert space.
Next, we define the space 

−1
𝐿 ∶=

{

{(𝜙,𝜓) ∈ (1
𝐿)

′ ∶ mean(𝜙,𝜓) = 0}, if 𝐿 ∈ [0,∞),
{(𝜙,𝜓) ∈ (1)′ ∶ ⟨𝜙⟩Ω = ⟨𝜓⟩Γ = 0}, if 𝐿 = ∞.

Using the Lax–Milgram theorem, one can show that for any (𝜙,𝜓) ∈ −1
𝐿 , there exists a unique weak solution 𝐿(𝜙,𝜓) =

(

Ω
𝐿 (𝜙,𝜓),

Γ
𝐿(𝜙,𝜓)

)

∈ 1
𝐿 to the following elliptic problem with bulk-surface coupling 

−ΔΩ
𝐿 (𝜙,𝜓) = 𝜙 in Ω, (2.1a)

−ΔΓΓ
𝐿(𝜙,𝜓) + 𝛽𝜕𝐧

Ω
𝐿 (𝜙,𝜓) = 𝜓 on Γ, (2.1b)

𝐿𝜕𝐧Ω
𝐿 (𝜙,𝜓) = 𝛽Γ

𝐿(𝜙,𝜓) − Ω
𝐿 (𝜙,𝜓) on Γ, (2.1c)

in the sense that it satisfies the weak formulation 
(

𝐿(𝜙,𝜓), (𝜁, 𝜉)
)

𝐿 =
⟨

(𝜙,𝜓), (𝜁, 𝜉)
⟩

1
𝐿

for all test functions (𝜁, 𝜉) ∈ 1
𝐿. Consequently, there exists a constant 𝐶 > 0, depending only on Ω, 𝐿 and 𝛽 such that 

‖𝐿(𝜙,𝜓)‖𝐿 ≤ 𝐶‖(𝜙,𝜓)‖(1
𝐿)

′

for all (𝜙,𝜓) ∈ −1
𝐿 . This allows us to define a solution operator 

𝐿 ∶ −1
𝐿 → 1

𝐿, (𝜙,𝜓) ↦ 𝐿(𝜙,𝜓) =
(

Ω
𝐿 (𝜙,𝜓),

Γ
𝐿(𝜙,𝜓)

)

as well as an inner product and its induced norm on −1
𝐿  via

(

(𝜙,𝜓), (𝜁, 𝜉)
)

𝐿,∗ ∶=
(

𝐿(𝜙,𝜓),𝐿(𝜁, 𝜉)
)

𝐿,

‖(𝜙,𝜓)‖𝐿,∗ ∶=
(

(𝜙,𝜓), (𝜙,𝜓)
)

1
2
𝐿,∗

for all (𝜙,𝜓), (𝜁, 𝜉) ∈ −1
𝐿 . This norm is equivalent to the norm ‖ ⋅ ‖(1

𝐿)
′  on −1

𝐿 , see, e.g., [20, Theorem 3.3 and Corollary 3.5] for a 
proof if 𝐿 ∈ (0,∞). In the other cases, the proof can be carried out similarly.

Lastly, let 𝑚 ∈ ℝ if 𝐿 ∈ [0,∞) or 𝑚 = (𝑚1, 𝑚2) ∈ ℝ2 if 𝐿 = ∞. Then we define 

𝐾,𝐿,𝑚 ∶=

{

{(𝜙,𝜓) ∈ 1 ∶ mean(𝜙,𝜓) = 𝑚}, if 𝐿 ∈ [0,∞),
{(𝜙,𝜓) ∈ 1 ∶ ⟨𝜙⟩Ω = 𝑚1, ⟨𝜓⟩Γ = 𝑚2}, if 𝐿 = ∞.
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2.2.  Important tools

Throughout this paper, we will frequently use the bulk-surface Poincaré inequality, which has been established in [20, Lemma 
A.1]:

Lemma 2.1. Let 𝐾 ∈ [0,∞) and 𝛼, 𝛽 ∈ ℝ such that 𝛼𝛽|Ω| + |Γ| ≠ 0. Then, there exists a constant 𝐶𝑃 > 0, depending only on 𝐾, 𝛼, 𝛽 and 
Ω such that 

‖(𝜁, 𝜉)‖2 ≤ 𝐶𝑃 ‖(𝜁, 𝜉)‖𝐾
for all pairs (𝜁, 𝜉) ∈ 1

𝐾 satisfying mean(𝜁, 𝜉) = 0. 
Furthermore, we recall the following interpolation inequality:

Lemma 2.2.  There exists a constant 𝐶 > 0, such that for all 2 ≤ 𝑟 < ∞ it holds that

‖(𝜁, 𝜉)‖𝑟 ≤ 𝐶
√

𝑟‖(𝜁, 𝜉)‖
2
𝑟
2‖(𝜁, 𝜉)‖

𝑟−2
𝑟

1 for all (𝜁, 𝜉) ∈ 1. (2.2)

Since Γ is a 1-dimensional submanifold of ℝ, we can readily obtain (2.2) as an extension of the following Gagliardo–
Nirenberg–Sobolev inequality (see [29, Proposition and Remark 1]): there exists a constant 𝐶 > 0, such that for all 2 ≤ 𝑟 < ∞ it 
holds that 

‖𝜁‖𝐿𝑟(Ω) ≤ 𝐶
√

𝑟‖𝜁‖
2
𝑟
𝐿2(Ω)

‖𝜁‖
𝑟−2
𝑟

𝐻1(Ω)
for all 𝜁 ∈ 𝐻1(Ω).

Lastly, we present the following uniform variant of the Gronwall lemma. A proof can be found, e.g., in [32, Chapter III, Lemma 1.1].
Lemma 2.3. Let 𝑔, ℎ, 𝑦 be three positive locally integrable functions on (𝑡0,∞) such that 𝑦′ is locally integrable on (𝑡0,∞) and which satisfy

d
d𝑡
𝑦 ≤ 𝑔𝑦 + ℎ,

∫

𝑡+𝑟

𝑡
𝑔(𝑠) d𝑠 ≤ 𝑎1, ∫

𝑡+𝑟

𝑡
ℎ(𝑠) d𝑠 ≤ 𝑎2, ∫

𝑡+𝑟

𝑡
𝑦(𝑠) d𝑠 ≤ 𝑎3 for all 𝑡 ≥ 𝑡0,

where 𝑟, 𝑎1, 𝑎2, 𝑎3 are positive constants. Then it holds 
𝑦(𝑡) ≤

(𝑎3
𝑟

+ 𝑎2
)

𝐞𝑎1 for all 𝑡 ≥ 𝑡0 + 𝑟.

2.3.  Main assumptions.

(A1) The constants 𝛼, 𝛽 ∈ ℝ appearing in system (1.1) are supposed to satisfy 𝛼 ∈ [−1, 1] as well as 𝛼𝛽|Ω| + |Γ| ≠ 0.
(A2) For the mobility functions we require 𝑚Ω, 𝑚Γ ∈ 𝐶([−1, 1]). Furthermore, we assume the existence of constants 𝑚∗,𝑀∗ > 0 such 

that

0 < 𝑚∗ ≤ 𝑚Ω(𝑠), 𝑚Γ(𝑠) ≤𝑀∗ for all 𝑠 ∈ [−1, 1]. (2.3)

(A3) For the potentials, we assume that 𝐹 ,𝐺 ∶ ℝ → ℝ are of the form 
𝐹 (𝑠) = 𝐹1(𝑠) + 𝐹2(𝑠), 𝐺(𝑠) = 𝐺1(𝑠) + 𝐺2(𝑠),

where 𝐹1, 𝐺1 ∈ 𝐶([−1, 1]) ∩ 𝐶2(−1, 1) such that 𝐹1(0) = 𝐹 ′
1(0) = 𝐺1(0) = 𝐺′

1(0) = 0, 
lim
𝑠↘−1

𝐹 ′
1(𝑠) = lim

𝑠↘−1
𝐺′
1(𝑠) = −∞ and lim

𝑠↗1
𝐹 ′
1(𝑠) = lim

𝑠↗1
𝐺′
1(𝑠) = +∞,

and there exist constants ΘΩ,ΘΓ > 0 such that
𝐹 ′′
1 (𝑠) ≥ ΘΩ and 𝐺′′

1 (𝑠) ≥ ΘΓ for all 𝑠 ∈ (−1, 1). (2.4)

We extend 𝐹1 and 𝐺1 on ℝ by defining 𝐹1(𝑠) = 𝐺1(𝑠) = +∞ for 𝑠 ∉ [−1, 1]. For 𝐹2 and 𝐺2, we assume 𝐹2, 𝐺2 ∈ 𝐶1(ℝ) such that 
their derivatives are globally Lipschitz continuous. Lastly, we require that the singular part of the boundary potential dominates 
the singular part of the bulk potential in the sense that there exist constants 𝜅1, 𝜅2 > 0 such that

|𝐹 ′
1(𝛼𝑠)| ≤ 𝜅1|𝐺

′
1(𝑠)| + 𝜅2 for all 𝑠 ∈ (−1, 1). (2.5)

For certain results established in this work, we require additional growth conditions on the singular components 𝐹1 and 𝐺1 of 
the potentials.

(A4) We assume that one of the following conditions hold:
(A4.1) There exist constants 𝐶♯ > 0 and 𝛾♯ ∈ [1, 2) such that

𝐹 ′′
1 (𝑠) ≤ 𝐶♯𝐞

𝐶♯|𝐹 ′
1(𝑠)|

𝛾♯
for all 𝑠 ∈ (−1, 1). (2.6)

(A4.2) As 𝛿 ↘ 0, for some 𝜅 > 1
2 , it holds that

1
𝐹 ′
1(1 − 2𝛿)

= 𝑂
( 1
| ln 𝛿|𝜅

)

, 1
|𝐹 ′

1(−1 + 2𝛿)|
= 𝑂

( 1
| ln 𝛿|𝜅

)

. (2.7)
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3.  Main results

3.1.  Well-posedness of weak solutions

We start by introducing the notion of a weak solution.
Definition 3.1. Let 𝐾,𝐿 ∈ [0,∞], and let (𝜙0, 𝜓0

)

∈ 1
𝐾 be an initial datum satisfying 

‖𝜙0‖𝐿∞(Ω) ≤ 1, ‖𝜓0‖𝐿∞(Γ) ≤ 1. (3.1a)

In addition, we assume that 
𝛽mean(𝜙0, 𝜓0) ∈ (−1, 1), mean(𝜙0, 𝜓0) ∈ (−1, 1), if 𝐿 ∈ [0,∞), (3.1b)

and 
⟨𝜙0⟩Ω ∈ (−1, 1), ⟨𝜓0⟩Γ ∈ (−1, 1), if 𝐿 = ∞. (3.1c)

The quadruplet (𝜙,𝜓, 𝜇, 𝜃) is a called a weak solution of the system (1.1) on [0, 𝑇 ] for 𝑇 > 0 if the following properties hold:
(i) The functions 𝜙,𝜓, 𝜇 and 𝜃 satisfy 

(𝜙,𝜓) ∈ 𝐶([0, 𝑇 ];2) ∩𝐻1(0, 𝑇 ; (1
𝐿)

′) ∩ 𝐿∞(0, 𝑇 ;1
𝐾 ), (3.2a)

(𝜇, 𝜃) ∈ 𝐿2(0, 𝑇 ;1
𝐿), (3.2b)

(

𝐹 ′(𝜙), 𝐺′(𝜓)
)

∈ 𝐿2(0, 𝑇 ;2), (3.2c)

and it holds
|𝜙| < 1 a.e. in 𝑄 and |𝜓| < 1 a.e. on Σ. (3.3)

(ii) The initial conditions are satisfied in the following sense: 
𝜙|𝑡=0 = 𝜙0 a.e. in Ω, and 𝜓|𝑡=0 = 𝜓0 a.e. on Γ.

(iii) The variational formulation 
⟨

(𝜕𝑡𝜙, 𝜕𝑡𝜓), (𝜁, 𝜉)
⟩

1
𝐿
= −∫Ω

𝑚Ω(𝜙)∇𝜇 ⋅ ∇𝜁 d𝑥 − ∫Γ
𝑚Γ(𝜓)∇Γ𝜃 ⋅ ∇Γ𝜉 dΓ

− 𝜒(𝐿)∫Γ
(𝛽𝜃 − 𝜇)(𝛽𝜉 − 𝜁 ) dΓ,

(3.4a)

∫Ω
𝜇 𝜂 d𝑥 + ∫Γ

𝜃 𝜗 dΓ = ∫Ω
∇𝜙 ⋅ ∇𝜂 + 𝐹 ′(𝜙)𝜂 d𝑥 + ∫Γ

∇Γ𝜓 ⋅ ∇Γ𝜗 + 𝐺′(𝜓)𝜗 dΓ

+ 𝜒(𝐾)∫Γ
(𝛼𝜓 − 𝜙)(𝛼𝜗 − 𝜂) dΓ,

(3.4b)

holds a.e. on [0, 𝑇 ] for all (𝜁, 𝜉) ∈ 1
𝐿, (𝜂, 𝜗) ∈ 1

𝐾 .
(iv) The functions 𝜙 and 𝜓 satisfy the mass conservation law 

{

𝛽 ∫Ω 𝜙(𝑡) d𝑥 + ∫Γ 𝜓(𝑡) dΓ = 𝛽 ∫Ω 𝜙0 d𝑥 + ∫Γ 𝜓0 dΓ, if 𝐿 ∈ [0,∞),
∫Ω 𝜙(𝑡) d𝑥 = ∫Ω 𝜙0 d𝑥 and ∫Γ 𝜓(𝑡) dΓ = ∫Γ 𝜓0 dΓ, if 𝐿 = ∞

(3.5)

for all 𝑡 ∈ [0, 𝑇 ].
(v) The energy inequality

𝐸(𝜙(𝑡), 𝜓(𝑡)) + ∫

𝑡

0 ∫Ω
𝑚Ω(𝜙)|∇𝜇|2 d𝑥 d𝑠 + ∫

𝑡

0 ∫Γ
𝑚Γ(𝜓)|∇Γ𝜃|

2 dΓ d𝑠

+ 𝜒(𝐿)∫

𝑡

0 ∫Γ
(𝛽𝜃 − 𝜇)2 dΓ d𝑠 ≤ 𝐸(𝜙0, 𝜓0)

(3.6)

holds for all 𝑡 ∈ [0, 𝑇 ].

Our first main result is devoted to the well-posedness of weak solutions to (1.1) in the sense of Definition 3.1.
Theorem 3.2. Assume that the Assumptions (A1)–(A3) hold, and let 𝐾 ∈ (0,∞] and 𝐿 ∈ [0,∞]. Then, the following results hold:
I Existence of weak solutions. Let (𝜙0, 𝜓0) ∈ 1 satisfy (3.1). Then there exists a weak solution (𝜙,𝜓, 𝜇, 𝜃) of (1.1) such that 

(𝜙,𝜓) ∈ 𝐿∞([0,∞);1) ∩ 𝐿4
uloc([0,∞);2) ∩ 𝐿2

uloc([0,∞);2,𝑝), (3.7a)

(𝜕𝑡𝜙, 𝜕𝑡𝜓) ∈ 𝐿2([0,∞); (1
𝐿)

′), (3.7b)

(𝐹 ′(𝜙), 𝐺′(𝜓)) ∈ 𝐿2
uloc([0,∞);𝑝), (3.7c)

(𝜇, 𝜃) ∈ 𝐿2
uloc([0,∞);1), (3.7d)

for any 2 ≤ 𝑝 < ∞.
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II Uniqueness of weak solutions. Suppose additionally that 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]). Let (𝜙1, 𝜓1), (𝜙2, 𝜓2) be two weak solutions originating 
from initial conditions (𝜙0

1, 𝜓
0
1 ), (𝜙0

2, 𝜓
0
2 ) satisfying (3.1) as well as

{

mean(𝜙0
1, 𝜓

0
1 ) = mean(𝜙

0
2, 𝜓

0
2 ), if 𝐿 ∈ [0,∞),

⟨𝜙0
1⟩Ω = ⟨𝜙0

2⟩Ω and ⟨𝜓0
1 ⟩Γ = ⟨𝜓0

2 ⟩Γ, if 𝐿 = ∞.
(3.8)

Then, for any 𝑇 > 0, there exists a positive constant 𝐶 such that 
‖(𝜙1(𝑡) − 𝜙2(𝑡), 𝜓1(𝑡) − 𝜓2(𝑡))‖(1

𝐿)
′ ≤ 𝐶‖(𝜙0

1 − 𝜙
0
2, 𝜓

0
1 − 𝜓0

2 )‖(1
𝐿)

′

for all 𝑡 ∈ [0, 𝑇 ]. The constant 𝐶 only depends on the parameters of the system, the final time 𝑇 , and the initial free energies 𝐸(𝜙0
1, 𝜓

0
1 )

and 𝐸(𝜙0
2, 𝜓

0
2 ). In particular, the weak solution is unique.

Remark 3.3.  The restriction 𝐾 ∈ (0,∞] in Theorem 3.2 is necessary, as only in this case we are able to prove that 
(𝜙,𝜓) ∈ 𝐿4

uloc([0,∞);2),

which is an essential ingredient in the proof of the uniqueness of weak solutions. If 𝐾 = 0, one only has 
(𝜙,𝜓) ∈ 𝐿3

uloc([0,∞);2),

see [15, Theorem 3.3], which appears insufficient to establish the uniqueness of weak solutions to (1.1). 

3.2.  Propagation of regularity and instantaneous separation property.

Our next result is concerned with the propagation of regularity. We show that under certain regularity assumptions on the mobility 
functions, there exists a weak solution to (1.1) that enjoys higher regularity properties on the time interval (𝜏,∞) for any 𝜏 > 0.

Theorem 3.4. Suppose that the Assumptions (A1)–(A4) hold. Let 𝐾 ∈ (0,∞], 𝐿 ∈ [0,∞], let (𝜙0, 𝜓0) ∈ 1 be an initial datum satisfying
(3.1), and let 𝜏 > 0. Then there exists a weak solution (𝜙,𝜓, 𝜇, 𝜃) to (1.1) in the sense of Definition 3.1 satisfying

(𝜙,𝜓) ∈ 𝐿∞(𝜏,∞;2,𝑝), (𝜕𝑡𝜙, 𝜕𝑡𝜓) ∈ 𝐿∞(𝜏,∞; (1
𝐿)

′) ∩ 𝐿2
uloc([𝜏,∞);1), (3.9)

(𝜇, 𝜃) ∈ 𝐿∞(𝜏,∞;1
𝐿) ∩ 𝐿

4
uloc([𝜏,∞);2), (𝐹 ′(𝜙), 𝐺′(𝜓)) ∈ 𝐿∞(𝜏,∞;𝑝) (3.10)

for any 2 ≤ 𝑝 < ∞. Moreover, the equations (1.1a)-(1.1b) are satisfied almost everywhere in Ω × (𝜏,∞), while (1.1c)-(1.1d) and the boundary 
conditions (1.1e)-(1.1f) are satisfied almost everywhere on Γ × (𝜏,∞). In addition, if 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]), then (𝜇, 𝜃) ∈ 𝐿2

uloc([𝜏,∞);3).

Remark 3.5.  In addition to the regularities stated in (3.9)-(3.10), we have for any 𝜏 > 0 that 
𝐹 ′(𝜓) ∈ 𝐿∞(𝜏,∞;𝐿𝑝(Γ)), (3.11)

see [25,26]. 

Remark 3.6.  In Theorem 3.4 we assume that the mobilities satisfy 𝑚Ω, 𝑚Γ ∈ 𝐶1([−1, 1]), which guarantees the existence of at least one 
weak solution enjoying the regularity properties (3.9)-(3.10). If, in addition, we assume 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]), then this weak solution 
is the unique weak solution provided by Theorem 3.2. In this case, the Assumption (A4) on the potential 𝐹  can also be dropped.

Nevertheless, for certain choices of the parameters 𝐾 and 𝐿, a weak-strong uniqueness result can be established under the weaker 
assumption 𝑚Ω, 𝑚Γ ∈ 𝐶1([−1, 1]). In particular, for such parameters and for any 𝜏 > 0, every weak solution (𝜙,𝜓, 𝜇, 𝜃) satisfying the 
regularity properties (3.9)-(3.10) coincides on [𝜏,∞) with the unique strong solution having initial data (𝜙(𝜏), 𝜓(𝜏)). 

As a consequence, we can prove that the weak solution from Theorem 3.4 satisfies the instantaneous separation property.

Theorem 3.7. Suppose that the assumptions from Theorem 3.4 hold, and consider the corresponding weak solution (𝜙,𝜓, 𝜇, 𝜃) that satisfies 
the propagation of regularity. Then, for all 𝜏 > 0, there exists 𝛿 > 0, additionally depending on the norms of the initial data, such that 

‖𝜙(𝑡)‖𝐿∞(Ω) ≤ 1 − 𝛿, ‖𝜓(𝑡)‖𝐿∞(Γ) ≤ 1 − 𝛿 for all 𝑡 ≥ 𝜏. (3.12)

Remark 3.8.  If there exists (𝜇0, 𝜃0) ∈ 1
𝐿 such that

∫Ω
𝜇0 𝜂 d𝑥 + ∫Γ

𝜃0 𝜗 dΓ = ∫Ω
∇𝜙0 ⋅ ∇𝜂 + 𝐹 ′(𝜙0) d𝑥 + ∫Γ

∇Γ𝜓0 ⋅ ∇Γ𝜗 + 𝐺′(𝜓0) dΓ

+ 𝜒(𝐾)∫Γ
(𝛼𝜓0 − 𝜙0)(𝛼𝜗 − 𝜂) dΓ

for all (𝜂, 𝜗) ∈ 1
𝐾 , then the weak solution (𝜙,𝜓, 𝜇, 𝜃) from Theorem 3.4 is a strong solution, namely, (3.9)-(3.10) hold for 𝜏 = 0. 

Furthermore, the separation property (3.12) holds also for 𝜏 = 0. 
The proofs of Theorems 3.4 and 3.7 are presented in Section 6.
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3.3.  Long-time behavior.

Thanks to the separation property proven in Theorem 3.7, we can show that the unique weak solution converges to a single 
equilibrium as 𝑡 → ∞.

Theorem 3.9. Suppose that the assumptions from Theorem 3.4 hold. In addition, assume that 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]) satisfy Assumption (A2), 
and that 𝐹1, 𝐺1 are real analytic on (−1, 1) and 𝐹2, 𝐺2 are real analytic on ℝ. Let (𝜙,𝜓, 𝜇, 𝜃) be the unique global weak solution obtained in 
Theorem 3.2. Then it holds 

lim
𝑡→∞

‖(𝜙(𝑡) − 𝜙∞, 𝜓(𝑡) − 𝜓∞)‖2 = 0,

where (𝜙∞, 𝜓∞) ∈ 2 is a solution to the stationary bulk-surface Cahn–Hilliard equation 
−Δ𝜙∞ + 𝐹 ′(𝜙∞) = 𝜇∞ in Ω,

−ΔΓ𝜓∞ + 𝐺′(𝜓∞) + 𝛼𝜕𝐧𝜙∞ = 𝜃∞ on Γ,
𝐾𝜕𝐧𝜙∞ = 𝛼𝜓∞ − 𝜙∞ on Γ,

with
{

𝛽 ∫Ω 𝜙∞ d𝑥 + ∫Γ 𝜓∞ dΓ = 𝛽 ∫Ω 𝜙0 d𝑥 + ∫Γ 𝜓0 dΓ, if 𝐿 ∈ [0,∞),
∫Ω 𝜙∞ d𝑥 = ∫Ω 𝜙0 d𝑥 and ∫Γ 𝜓∞ dΓ = ∫Γ 𝜓0 dΓ, if 𝐿 = ∞.

The constants 𝜇∞ and 𝜃∞ appearing in (3.13) satisfy 

𝜇∞ = 𝛽𝜃∞ =
𝛽

𝛼𝛽|Ω| + |Γ|

(

𝛼 ∫Ω
𝐹 ′(𝜙∞) d𝑥 + ∫Γ

𝐺′(𝜓∞) dΓ
)

if 𝐿 ∈ [0,∞), while in the case 𝐿 = ∞, they are given by

𝜇∞ = 1
|Ω|

(

∫Ω
𝐹 ′(𝜙∞) d𝑥 − ∫Γ

𝜕𝐧𝜙∞ dΓ
)

,

𝜃∞ = 1
|Γ|

(

∫Γ
𝐺′(𝜓∞) + 𝛼𝜕𝐧𝜙∞ dΓ

)

.

4.  Elliptic bulk-surface system with non-constant coefficients

In this section, we establish well-posedness and regularity results for an elliptic system with bulk-surface coupling and non-
constant coefficients. These regularity results will be of crucial importance in the proof of the uniqueness of weak solutions to the 
system (1.1). Let Ω ⊂ ℝ𝑑 , 𝑑 = 2, 3, be a bounded domain with boundary Γ ∶= 𝜕Ω. The precise system under investigation in this 
section is the following 

−div(𝑚Ω(𝜙)∇𝑢) = 𝑓 in Ω, (4.1a)

−divΓ(𝑚Γ(𝜓)∇Γ𝑣) + 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢 = 𝑔 on Γ, (4.1b)

𝐿𝑚Ω(𝜙)𝜕𝐧𝑢 = 𝛽𝑣 − 𝑢 on Γ, (4.1c)

where the mobility functions 𝑚Ω, 𝑚Γ are supposed to satisfy Assumption (A2). Moreover, 𝜙 ∶ Ω → ℝ and 𝜓 ∶ Γ → ℝ are given mea-
surable functions with |𝜙| ≤ 1 a.e. in Ω and |𝜓| ≤ 1 a.e. on Γ. System (4.1) can be seen as an extension of (2.1) and the corresponding 
results proven in [20].

We call (𝑢, 𝑣) ∈ 1
𝐿 a weak solution to (4.1) if it satisfies the following weak formulation

∫Ω
𝑚Ω(𝜙)∇𝑢 ⋅ ∇𝜁 d𝑥 + ∫Γ

𝑚Γ(𝜓)∇Γ𝑣 ⋅ ∇Γ𝜉 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣 − 𝑢)(𝛽𝜉 − 𝜁 ) dΓ

=
⟨

(𝑓, 𝑔), (𝜁, 𝜉)
⟩

1
𝐿

(4.2)

for all (𝜁, 𝜉) ∈ 1
𝐿.

In our first result, we establish the existence of a unique weak solution to (4.1).
Theorem 4.1. Assume that Ω is a Lipschitz domain, and let (𝑓, 𝑔) ∈ −1

𝐿 . Then there exists a unique weak solution (𝑢, 𝑣) ∈ 1
𝐿 to (4.1). 

Additionally, there exists a constant 𝐶 > 0, depending only on Ω, 𝐿, 𝛽 and 𝑚∗ such that
‖(𝑢, 𝑣)‖𝐿 ≤ 𝐶‖(𝑓, 𝑔)‖(1

𝐿)
′ . (4.3)

We omit the proof here, as it follows by analogous arguments to those used in the case of constant coefficients, see [20, Theo-
rem 3.3] for details.

In view of Theorem 4.1, we can define a solution operator 
𝐿[𝜙,𝜓] ∶ −1

𝐿 → 1
𝐿, (𝑓, 𝑔) ↦ 𝐿[𝜙,𝜓](𝑓, 𝑔) =

(

Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),

Γ
𝐿[𝜙,𝜓](𝑓, 𝑔)

)

,
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where 𝐿[𝜙,𝜓](𝑓, 𝑔) is the unique weak solution to (4.1). Moreover, we can define an inner product and its induced norm on 1
𝐿 by

(

(𝑓, 𝑔), (𝜁, 𝜉)
)

𝐿,[𝜙,𝜓] ∶= ∫Ω
𝑚Ω(𝜙)∇𝑓 ⋅ ∇𝜁 d𝑥 + ∫Γ

𝑚Γ(𝜓)∇Γ𝑔 ⋅ ∇Γ𝜉 dΓ

+ 𝜒(𝐿)∫Γ
(𝛽𝑔 − 𝑓 )(𝛽𝜉 − 𝜁 ) dΓ,

‖(𝑓, 𝑔)‖𝐿,[𝜙,𝜓] ∶=
(

(𝑓, 𝑔), (𝑓, 𝑔)
)

1
2
𝐿,[𝜙,𝜓]

for all (𝑓, 𝑔), (𝜁, 𝜉) ∈ 1
𝐿. One readily sees that

min{1,
√

𝑚∗}‖(𝑓, 𝑔)‖𝐿,[𝜙,𝜓] ≤ ‖(𝑓, 𝑔)‖𝐿 ≤ max{1,
√

𝑀∗}‖(𝑓, 𝑔)‖𝐿,[𝜙,𝜓] (4.4)

for all (𝑓, 𝑔) ∈ 1
𝐿. In particular, the norms ‖ ⋅ ‖𝐿 and ‖ ⋅ ‖𝐿,[𝜙,𝜓] are equivalent on 1

𝐿.
Next, we define an inner product and its induced norm on −1

𝐿  by
(

(𝑓, 𝑔), (𝜁, 𝜉)
)

𝐿,[𝜙,𝜓],∗ ∶=
(

𝐿[𝜙,𝜓](𝑓, 𝑔),𝐿[𝜙,𝜓](𝜁, 𝜉)
)

𝐿,[𝜙,𝜓],

‖(𝑓, 𝑔)‖𝐿,[𝜙,𝜓],∗ ∶=
(

(𝑓, 𝑔), (𝑓, 𝑔)
)

1
2
𝐿,[𝜙,𝜓],∗

for all (𝑓, 𝑔), (𝜁, 𝜉) ∈ −1
𝐿 . Using the respective weak formulation satisfied by the solution operators 𝐿 and 𝐿[𝜙,𝜓], one can readily 

check that the norms ‖ ⋅ ‖𝐿,[𝜙,𝜓],∗ and ‖ ⋅ ‖𝐿,∗ are equivalent on −1
𝐿  with

min{1,
√

𝑚∗}‖(𝑓, 𝑔)‖𝐿,[𝜙,𝜓],∗ ≤ ‖(𝑓, 𝑔)‖𝐿,∗ ≤ max{1,
√

𝑀∗}‖(𝑓, 𝑔)‖𝐿,[𝜙,𝜓],∗ (4.5)

for all (𝑓, 𝑔) ∈ −1
𝐿 . In particular, we also obtain that ‖ ⋅ ‖𝐿,[𝜙,𝜓],∗ and ‖ ⋅ ‖(1

𝐿)
′  are equivalent on −1

𝐿 .
Besides, we have

‖(𝑓, 𝑔)‖2 =
√

(

𝐿[𝜙,𝜓](𝑓, 𝑔), (𝑓, 𝑔)
)

𝐿,[𝜙,𝜓]

≤ max{1,
√

𝑀∗}‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖
1
2
𝐿‖(𝑓, 𝑔)‖

1
2
𝐿

(4.6)

for all (𝑓, 𝑔) ∈ −1
𝐿 ∩1

𝐿.
Our next result establishes higher regularity results for 𝐿[𝜙,𝜓](𝑓, 𝑔).

Proposition 4.2. Let Ω be a domain of class 𝐶2, let (𝜙,𝜓) ∈ 1,∞, 𝑚Ω, 𝑚Γ ∈ 𝐶1([−1, 1]), and consider a pair (𝑓, 𝑔) ∈ −1
𝐿 ∩ 2. Then 

𝐿[𝜙,𝜓](𝑓, 𝑔) ∈ 2. Additionally, there exists a constant 𝐶 > 0 such that
‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖2

≤ 𝐶
(

‖(𝑓, 𝑔)‖2 + ‖(∇𝜙 ⋅ ∇Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),∇Γ𝜓 ⋅ ∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔))‖2
)

.
(4.7)

Proof.  For the sake of brevity, we use again (𝑢, 𝑣) to denote the unique solution 𝐿[𝜙,𝜓](𝑓, 𝑔) of (4.1). We start by showing that 
(𝑢, 𝑣) ∈ 2. To this end, we make a case distinction according to the parameter 𝐿 ∈ [0,∞].

Case 𝐿 = 0. Choosing 𝜉 = 0 in the weak formulation (4.2), we obtain 

∫Ω
𝑚Ω(𝜙)∇𝑢 ⋅ ∇𝜁 d𝑥 = ∫Ω

𝑓𝜁 d𝑥 (4.8)

for all 𝜁 ∈ 𝐻1
0 (Ω). Noting on 𝜙 ∈ 𝑊 1,∞(Ω), we can use 𝜁 = 𝜁

𝑚Ω(𝜙)
∈ 𝐻1

0 (Ω) as a test function in (4.8) for some 𝜁 ∈ 𝐶∞
𝑐 (Ω). Consequently, 

it holds that 

∫Ω
∇𝑢 ⋅ ∇𝜁 d𝑥 = ∫Ω

1
𝑚Ω(𝜙)

(

𝑓 + ∇𝑚Ω(𝜙) ⋅ ∇𝑢
)

𝜁 d𝑥

for all 𝜁 ∈ 𝐶∞
𝑐 (Ω). In particular, as 𝜁 was arbitrary, this implies that the distributional derivative Δ𝑢 belongs to 𝐿2(Ω) and satisfies 

−Δ𝑢 = 1
𝑚Ω(𝜙)

(

𝑓 + ∇𝑚Ω(𝜙) ⋅ ∇𝑢
)

a.e. in Ω.

As we further know that 𝑢|Γ = 𝛽𝑣 ∈ 𝐻1(Γ), we may apply elliptic regularity theory for the Poisson–Dirichlet problem (see, e.g., [3, 
Theorem 3.2] or [5, Theorem A.2]) to conclude that 𝑢 ∈ 𝐻

3
2 (Ω) with 

‖𝑢‖
𝐻

3
2 (Ω)

≤ 𝐶
(

‖𝑓‖𝐿2(Ω) + ‖∇𝜙 ⋅ ∇𝑢‖𝐿2(Ω) + ‖𝑣‖𝐻1(Γ)
)

. (4.9)

Now, since Δ𝑢 ∈ 𝐿2(Ω) and 𝑢 ∈ 𝐻
3
2 (Ω), we can use a variant of the elliptic trace theorem (see, e.g., [3, Theorem 2.27] or [5, Theo-

rem A.1]) to deduce that 𝜕𝐧𝑢 ∈ 𝐿2(Γ) with 
‖𝜕𝐧𝑢‖𝐿2(Γ) ≤ 𝐶‖𝑢‖

𝐻
3
2 (Ω)

. (4.10)
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Consequently, we find that 

∫Ω
𝑚Ω(𝜙)∇𝑢 ⋅ ∇𝜁 d𝑥 = ∫Ω

𝑓𝜁 d𝑥 + ∫Γ
𝑚Ω(𝜙)𝜕𝐧𝑢𝜁 dΓ for all 𝜁 ∈ 𝐻1(Ω). (4.11)

Consider now an arbitrary function 𝜉 ∈ 𝐻1(Γ). According to the inverse trace theorem (see, e.g., [17, Theorem 4.2.3]), there exists a 
function 𝜉 ∈ 𝐻

3
2 (Ω) such that 𝜉|Γ = 𝜉 a.e. on Γ. Choosing 𝜁 = 𝛽𝜉, we see that (𝜁, 𝜉) ∈ 1

𝐿 is an admissible test function in (4.2). Using 
the identity (4.11), we obtain 

∫Γ
𝑚Γ(𝜓)∇Γ𝑣 ⋅ ∇𝜉 dΓ = ∫Γ

(𝑔 − 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢)𝜉 dΓ.

As 𝜉 ∈ 𝐻1(Γ) was arbitrarily chosen, we infer similarly to above that 𝑣 is a weak solution of the surface elliptic equation 

−ΔΓ𝑣 =
1

𝑚Γ(𝜓)
(

𝑔 − 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢 + ∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣
)

on Γ.

Since 𝜓 ∈ 𝑊 1,∞(Γ) and 𝑚′
Γ is bounded, we infer form the Sobolev inequality that ∇Γ𝑚Γ(𝜓) ∈ 𝐿∞(Γ), which, in combination with 

𝑣 ∈ 𝐻1(Γ) implies that ∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣 ∈ 𝐿2(Γ). Thus, since 𝑚Ω is bounded, and 𝜕𝐧𝑢 ∈ 𝐿2(Γ) according to (4.10), we find that 
−ΔΓ𝑣 = 𝑔̃ ∈ 𝐿2(Γ).

Recalling that Γ is a compact submanifold of class 𝐶2 without boundary, we can apply regularity theory for elliptic equations on 
submanifolds (see, e.g., [31, s.5, Theorem 1.3]) to infer 𝑣 ∈ 𝐻2(Γ), together with the estimate

‖𝑣‖𝐻2(Γ) ≤ 𝐶
(

‖𝑔‖𝐿2(Γ) + ‖𝜕𝐧𝑢‖𝐿2(Γ) + ‖∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣‖𝐿2(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖2 + ‖∇Γ𝜓 ⋅ ∇Γ𝑣‖𝐿2(Γ)
)

.
(4.12)

Here, we have additionally used (4.3), (4.9), and (4.10) in the last inequality. Since 𝑢|Γ = 𝛽𝑣 a.e. on Γ, we further deduce that 
𝑢|Γ ∈ 𝐻2(Γ). Recalling that −Δ𝑢 ∈ 𝐿2(Ω), we eventually conclude from elliptic regularity theory for the Poisson–Dirichlet problem 
(see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) that 𝑢 ∈ 𝐻2(Ω) with

‖𝑢‖𝐻2(Ω) ≤ 𝐶
(

‖𝑓‖𝐿2(Ω) + ‖∇𝑚Ω(𝜙) ⋅ ∇𝑢‖𝐿2(Ω) + ‖𝑣‖𝐻2(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖2 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖2
)

.
(4.13)

Finally, combining (4.12)-(4.13) leads to 
‖(𝑢, 𝑣)‖2 ≤ 𝐶

(

‖(𝑓, 𝑔)‖2 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖2
)

. (4.14)

Case 𝐿 ∈ (0,∞). Here, we fix 𝜁 = 0. Then, the weak formulation (4.2) reduces to 

∫Γ
𝑚Γ(𝜓)∇Γ𝑣 ⋅ ∇𝜉 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝑣 − 𝑢)𝛽𝜉 dΓ = ∫Γ
𝑔𝜉 dΓ

for all 𝜉 ∈ 𝐻1(Γ). This means that 𝑣 is a weak solution of the surface elliptic problem 

−ΔΓ𝑣 =
1

𝑚Γ(𝜓)
(

𝑔 − 𝛽𝜒(𝐿)(𝛽𝑣 − 𝑢) + ∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣
)

on Γ.

Here, we can argue similarly to the case 𝐿 = 0. Indeed, since 𝑢 ∈ 𝐻1(Ω), we have by the trace theorem 𝛽𝑣 − 𝑢|Γ ∈ 𝐻
1
2 (Γ), and thus, 

in particular, 𝛽𝑣 − 𝑢|Γ ∈ 𝐿2(Γ). Therefore, we deduce with elliptic regularity theory on submanifolds that 𝑣 ∈ 𝐻2(Γ) together with the 
estimate

‖𝑣‖𝐻2(Γ) ≤ 𝐶
(

‖𝑔‖𝐿2(Γ) + ‖𝑣‖𝐿2(Γ) + ‖𝑢‖𝐿2(Γ) + ‖∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣‖𝐿2(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖2 + ‖∇Γ𝜓 ⋅ ∇Γ𝑣‖𝐿2(Γ)
)

(4.15)

for some constant 𝐶 > 0. Next, we choose 𝜉 = 0 in the weak formulation (4.2), which yields 

∫Ω
𝑚Ω(𝜙)∇𝑢 ⋅ ∇𝜁 d𝑥 + 𝜒(𝐿)∫Γ

(𝛽𝑣 − 𝑢)𝜁 dΓ = ∫Ω
𝑓𝜁 d𝑥

for all 𝜁 ∈ 𝐻1(Ω). This means that 𝑢 is a weak solution to the Poisson–Neumann problem

−Δ𝑢 = 1
𝑚Ω(𝜙)

(

𝑓 + ∇𝑚Ω(𝜙) ⋅ ∇𝑢
)

in Ω,

𝜕𝐧𝑢 =
1

𝑚Ω(𝜙)
𝜒(𝐿)(𝛽𝑣 − 𝑢) on Γ.

Applying elliptic regularity theory for Poisson’s equation with inhomogeneous Neumann boundary condition (see, e.g., [31, s.5, 
Proposition 7.7]), we deduce 𝑢 ∈ 𝐻2(Ω) together with the existence of a constant 𝐶 > 0 such that

‖𝑢‖𝐻2(Ω) ≤ 𝐶
(

‖𝑓‖𝐿2(Ω) + ‖𝑣‖
𝐻

1
2 (Γ)

+ ‖𝑢‖
𝐻

1
2 (Γ)

+ ‖𝑢‖𝐿2(Ω) + ‖∇𝑚Ω(𝜙) ⋅ ∇𝑢‖𝐿2(Ω)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖2 + ‖∇𝜙 ⋅ ∇𝑢‖𝐿2(Ω)
)

.
(4.16)
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Combining estimates (4.15) and (4.16) yields 
‖(𝑢, 𝑣)‖2 ≤ 𝐶

(

‖(𝑓, 𝑔)‖2 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖2
)

. (4.17)

Case 𝐿 = ∞. In this case, the system (4.1) decouples to the non-homogeneous Poisson problem with a homogeneous Neumann 
boundary condition

−div(𝑚Ω(𝜙)∇𝑢) = 𝑓 in Ω, (4.18)

𝑚Ω(𝜙)𝜕𝐧𝑢 = 0 on Γ, (4.19)

and the non-homogeneous surface elliptic problem 
−divΓ(𝑚Γ(𝜓)∇Γ𝑣) = 𝑔 on Γ. (4.20)

Applying elliptic regularity theory for Poisson’s problem with homogeneous Neumman boundary condition (4.18)-(4.19) and regu-
larity theory for the Laplace–Beltrami Eq. (4.20), respectively, we directly conclude the desired regularity 𝑢 ∈ 𝐻2(Ω) and 𝑣 ∈ 𝐻2(Γ)
along with the estimates

‖𝑢‖𝐻2(Ω) ≤ 𝐶
(

‖𝑓‖𝐿2(Ω) + ‖∇𝜙 ⋅ ∇𝑢‖𝐿2(Ω)
)

,

‖𝑣‖𝐻2(Γ) ≤ 𝐶
(

‖𝑔‖𝐿2(Γ) + ‖∇Γ𝜓 ⋅ ∇Γ𝑣‖𝐿2(Γ)
)

. ∎
Remark 4.3.  Under the assumptions of Proposition 4.2, the estimate (4.6) even holds for all (𝑓, 𝑔) ∈ −1

𝐿 ∩1, i.e., the functions 𝑓
and 𝑔 do not need to satisfy the trace relation 𝑓 = 𝛽𝑔 on Γ if 𝐿 = 0. This will be essential in the proof of Theorem 3.2. Moreover, since 
mean(𝑓, 𝑔) = 0, the bulk-surface Poincaré inequality yields, for 𝐾 ∈ (0,∞), 

‖(𝑓, 𝑔)‖2 ≤ max{1,
√

𝑀∗}𝐶𝑃𝐶‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖
1
2
𝐿‖(𝑓, 𝑔)‖

1
2
𝐾 . (4.21)

In the case 𝐾 = ∞, the bulk-surface Poincaré inequality is in general not available. Instead, we use

‖(𝑓, 𝑔)‖
1
2
𝐿 ≤ 𝐶‖(𝑓, 𝑔)‖

1
2
1 ≤ 𝐶

(

‖(𝑓, 𝑔)‖
1
2
2 + ‖(∇𝑓,∇Γ𝑔)‖

1
2
2

)

= 𝐶
(

‖(𝑓, 𝑔)‖
1
2
2 + ‖(𝑓, 𝑔)‖

1
2
𝐾
)

,

which leads to

‖(𝑓, 𝑔)‖2 ≤ max{1,
√

𝑀∗}𝐶𝑃𝐶‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖
1
2
𝐿
(

‖(𝑓, 𝑔)‖
1
2
2 + ‖(𝑓, 𝑔)‖

1
2
𝐾
)

≤ 1
2
‖(𝑓, 𝑔)‖2 + max{1,

√

𝑀∗}𝐶𝑃𝐶‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖𝐿 + max{1,
√

𝑀∗}𝐶𝑃𝐶‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖
1
2
𝐿‖(𝑓, 𝑔)‖

1
2
𝐾 .

Consequently, we obtain

‖(𝑓, 𝑔)‖2 ≤ max{1,
√

𝑀∗}𝐶𝑃𝐶‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖𝐿 + max{1,
√

𝑀∗}𝐶𝑃𝐶‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖
1
2
𝐿‖(𝑓, 𝑔)‖

1
2
𝐾 . (4.22)

Similarly to the proof of Proposition 4.2, we can prove 3-regularity of the unique solution to (4.1) provided that the mobility 
functions are more regular.
Corollary 4.4. Let Ω be of class 𝐶3, let (𝜙,𝜓) ∈ 2,4, and assume that 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]) and (𝑓, 𝑔) ∈ −1

𝐿 ∩1. Then 𝐿[𝜙,𝜓](𝑓, 𝑔) ∈
3, and there exists a constant 𝐶 > 0 such that

‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖3

≤ 𝐶
(

1 + 𝟏{0}(𝐿)‖(𝜙,𝜓)‖2
)

(4.23)

×

(

‖

‖

‖

(

𝑓
𝑚Ω(𝜙)

,
𝑔

𝑚Γ(𝜓)

)

‖

‖

‖1 +
‖

‖

‖

(𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇Ω

𝐿 [𝜙,𝜓](𝑓, 𝑔)
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)∇Γ𝜓 ⋅ ∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔)
𝑚Γ(𝜓)

)

‖

‖

‖1

)

,

where 𝟏{0}(⋅) denotes the indicator function of the set {0}.
Proof.  Abbreviating again (𝑢, 𝑣) = 𝐿[𝜙,𝜓](𝑓, 𝑔), we can move along the lines from the proof of Proposition 4.2 and show that 
(𝑢, 𝑣) ∈ 3 in combination with the estimate

‖(𝑢, 𝑣)‖3

≤ 𝐶

(

‖

‖

‖

(

𝑓
𝑚Ω(𝜙)

,
𝑔

𝑚Γ(𝜓)

)

‖

‖

‖1 +
‖

‖

‖

(𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇𝑢
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)∇Γ𝜓 ⋅ ∇Γ𝑣

𝑚Γ(𝜓)

)

‖

‖

‖1 +
‖

‖

‖

𝑚Ω(𝜙)𝜕𝐧𝑢
𝑚Γ(𝜓)

‖

‖

‖𝐻1(Γ)

)

.

In the following, we will show that the last summand on the right-hand side can be bounded in terms of the first two. To do so, we 
only have to take a closer look at the case 𝐿 = 0. Indeed, if 𝐿 = ∞, this term clearly vanishes, and for 𝐿 ∈ (0,∞), we make use of the 
boundary condition 𝐿𝑚Ω(𝜙)𝜕𝐧𝑢 = 𝛽𝑣 − 𝑢 a.e. on Γ to find that

‖

‖

‖

𝑚Ω(𝜙)𝜕𝐧𝑢
𝑚Γ(𝜓)

‖

‖

‖𝐻1(Γ)
= 1
𝐿
‖

‖

‖

𝛽𝑣 − 𝑢
𝑚Γ(𝜓)

‖

‖

‖𝐻1(Γ)
≤ 𝐶‖(𝑢, 𝑣)‖2
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≤ 𝐶
(

‖(𝑓, 𝑔)‖2 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖2
)

in view of (4.7). Lastly, if 𝐿 = 0, it holds that 

∇Γ

(

𝑚Ω(𝜙)𝜕𝐧𝑢
𝑚Γ(𝜓)

)

=
𝑚′
Ω(𝜙)𝜕𝐧𝑢∇Γ𝜙

𝑚Γ(𝜓)2
+
𝑚Ω(𝜙)∇Γ𝜕𝐧𝑢
𝑚Γ(𝜓)2

−
𝑚Ω(𝜙)𝑚′

Γ(𝜓)𝜕𝐧𝑢∇Γ𝜓

𝑚Γ(𝜓)2
a.e. on Γ.

For the first term, we use the trace theorem together with the Sobolev inequality and find 
‖𝜕𝐧𝑢∇Γ𝜙‖𝐿2(Γ) ≤ ‖𝜕𝐧𝑢‖𝐿4(Γ)‖∇Γ𝜙‖𝐿4(Γ) ≤ 𝐶‖𝜙‖𝐻2(Ω)‖𝑢‖𝐻2(Ω).

Next, for the second term, we argue as in the beginning of the proof of Theorem 4.2, in particular as for (4.9) and (4.10). To be 
precise, we obtain

‖∇Γ𝜕𝐧𝑢‖𝐿2(Γ) ≤ ‖𝜕𝐧𝑢‖𝐻1(Γ) ≤ 𝐶‖𝑢‖
𝐻

5
2 (Ω)

≤ 𝐶

(

‖

‖

‖

𝑓
𝑚Ω(𝜙)

‖

‖

‖𝐻1(Ω)
+ ‖

‖

‖

𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇𝑢
𝑚Ω(𝜙)

‖

‖

‖𝐻1(Ω)
+ ‖𝑣‖𝐻2(Γ)

)

.

Finally, for the last term, we combine the trace theorem again with the Sobolev inequality to deduce that 
‖𝜕𝐧𝑢∇Γ𝜓‖𝐿2(Γ) ≤ ‖𝜕𝐧𝑢‖𝐿4(Γ)‖∇Γ𝜓‖𝐿4(Γ) ≤ 𝐶‖𝜓‖𝐻2(Γ)‖𝑢‖𝐻2(Ω).

Thus, from the estimates above and (4.7) we conclude (4.23), which finishes the proof. ∎
Next, we aim to generalize the result from Proposition 4.2 to the case of 𝐿𝑝-regularity theory.

Proposition 4.5. Let Ω be of class 𝐶2, let 𝑝 ∈ [2,∞) and consider a pair (𝑓, 𝑔) ∈ −1
𝐿 ∩ 𝑝. Further, assume that (𝜙,𝜓) ∈ 2,4 such that 

(

∇𝜙 ⋅ ∇Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),∇Γ𝜓 ⋅ ∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔)
)

∈ 𝑝. Then there exists a constant 𝐶 > 0 such that
‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖2,𝑝 ≤ 𝐶

(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),∇Γ𝜓 ⋅ ∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔))‖𝑝
)

. (4.24)

Proof.  We adapt the proof of [23, Proposition A.1] for the case of constant mobility functions. As we already know from Proposi-
tion 4.2 that (𝑢, 𝑣) ∶= 𝐿[𝜙,𝜓](𝑓, 𝑔) ∈ 2, it holds that

−Δ𝑢 = 1
𝑚Ω(𝜙)

(

𝑓 + ∇𝑚Ω(𝜙) ⋅ ∇𝑢
)

a.e. in Ω, (4.25)

𝐿𝜕𝐧𝑢 =
1

𝑚Ω(𝜙)
(𝛽𝑣 − 𝑢) a.e. on Γ, (4.26)

as well as 
−ΔΓ𝑣 =

1
𝑚Γ(𝜓)

(

𝑔 − 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢 + ∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣
)

a.e. on Γ. (4.27)

As in the proof of Proposition 4.2, we consider the cases 𝐿 = 0, 𝐿 ∈ (0,∞) and 𝐿 = ∞ separately.
Case 𝐿 = 0. Since the boundary Γ is a (𝑑 − 1)-dimensional submanifold of ℝ𝑑 , Sobolev’s embedding theorem implies that 

𝑢|Γ = 𝛽𝑣 ∈ 𝑊 𝑡,𝑝 with 𝑡 = 5
2
+ 𝑑 − 1

𝑝
− 𝑑

2
.

By assumption 𝑓,∇𝜙 ⋅ ∇𝑢 ∈ 𝐿𝑝(Ω), we may apply elliptic regularity theory for Poisson’s equation with an inhomogeneous Dirichlet 
boundary condition (see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) to deduce 

𝑢 ∈ 𝑊 𝑠,𝑝(Ω) with 𝑠 = min
{

2, 5
2
+ 𝑑
𝑝
− 𝑑

2

}

≥ 1 + 2
𝑝

together with the estimate
‖𝑢‖𝑊 𝑠,𝑝(Ω) ≤ 𝐶

(

‖𝑓‖𝐿𝑝(Ω) + ‖∇𝑚Ω(𝜙) ⋅ ∇𝑢‖𝐿𝑝(Ω) + ‖𝑣‖𝑊 𝑡,𝑝(Γ)
)

≤ 𝐶
(

‖𝑓‖𝐿𝑝(Ω) + ‖∇𝜙 ⋅ ∇𝑢‖𝐿𝑝(Ω) + ‖𝑣‖𝐻2(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖𝑝
)

.

This readily yields 

∇𝑢 ∈ 𝑊 𝑠−1,𝑝(Ω) ↪ 𝑊
2
𝑝 ,𝑝(Ω).

Then, since 2𝑝 −
1
𝑝 = 1

𝑝  is positive and not an integer, the trace theorem implies that 

𝜕𝐧𝑢 ∈ 𝑊
1
𝑝 ,𝑝(Γ) ↪ 𝐿𝑝(Γ).

Consequently, the assumptions 𝑔,∇Γ𝜓 ⋅ ∇Γ𝑣 ∈ 𝐿𝑝(Γ) allow us to apply regularity theory for the Laplace–Beltrami equation (see, e.g., 
[33, Lemma B.1]) which yields that 𝑣 ∈ 𝑊 2,𝑝(Γ) and the existence of a constant 𝐶 > 0 such that

‖𝑣‖𝑊 2,𝑝(Γ) ≤ 𝐶
(

‖𝑔‖𝐿𝑝(Γ) + ‖𝜕𝐧𝑢‖𝐿𝑝(Γ) + ‖∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣‖𝐿𝑝(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖𝑝
)

.
(4.28)
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This, in turn, entails 
𝑢|Γ = 𝛽𝑣 ∈ 𝑊 2,𝑝(Γ).

Therefore, by means of elliptic regularity theory for Poisson’s equation with an inhomogeneous Dirichlet boundary condition (see, 
e.g., [3, Theorem 3.2] or [5, Theorem A.2]), we find that 𝑢 ∈ 𝑊 2,𝑝(Ω) with

‖𝑢‖𝑊 2,𝑝(Ω) ≤ 𝐶
(

‖𝑓‖𝐿𝑝(Ω) + ‖∇𝑚Ω(𝜙) ⋅ ∇𝑢‖𝐿𝑝(Ω) + ‖𝑣‖𝑊 2,𝑝(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖𝑝
)

.
(4.29)

Combining (4.28) and (4.29), we eventually obtain (4.24), which finishes the proof in the case 𝐿 = 0.
Case 𝐿 ∈ (0,∞). Since 𝑢 ∈ 𝐻2(Ω), the trace theorem as well as Sobolev’s embedding theorem yield that 

𝑢 ∈ 𝐻
3
2 (Γ) ↪ 𝑊 𝑡,𝑝(Γ) with 𝑡 = 2 + 𝑑 − 1

𝑝
− 𝑑

2
.

Then, since 𝜙 ∈ 𝑊 2,4(Ω), the trace theorem and the Sobolev embedding theorem further imply that 

∇𝜙 ∈ 𝑊 1,4(Ω) ↪ 𝑊
3
4 ,4(Γ) ↪ 𝐿∞(Γ).

Consequently, recalling that the mobility function 𝑚Ω ∈ 𝐶1([−1, 1]) satisfies (2.3), we readily deduce that 1
𝑚Ω(𝜙)

∈ 𝑊 1,∞(Γ). As 𝑣 ∈
𝐻2(Γ) ↪ 𝑊 𝑡,𝑝(Γ), we find that 

𝜕𝐧𝑢 =
1

𝐿𝑚Ω(𝜙)
(𝛽𝑣 − 𝑢) ∈ 𝑊 𝑡,𝑝(Γ).

Then, since 𝑔,∇Γ𝜓 ⋅ ∇Γ𝑣 ∈ 𝐿𝑝(Γ), we infer from regularity theory for the Laplace–Beltrami equation (see, e.g., [33, Lemma B.1]) that
‖𝑣‖𝑊 2,𝑝(Γ) ≤ 𝐶

(

‖𝑔‖𝐿𝑝(Γ) + ‖∇Γ𝑚Γ(𝜓) ⋅ ∇Γ𝑣‖𝐿𝑝(Γ) + ‖𝜕𝐧𝑢‖𝑊 𝑡,𝑝(Γ)
)

≤ 𝐶
(

‖𝑔‖𝐿𝑝(Γ) + ‖∇Γ𝜓 ⋅ ∇Γ𝑣‖𝐿𝑝(Γ) + ‖(𝑢, 𝑣)‖2
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖𝑝
)

.

(4.30)

Moreover, exploiting again 𝑓,∇𝜙 ⋅ ∇𝑢 ∈ 𝐿𝑝(Ω), elliptic regularity theory for Poisson’s equation with an inhomogeneous Neumann 
boundary condition (see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) provides that 

𝑢 ∈ 𝑊 𝑠,𝑝(Ω) with 𝑠 = min
{

2, 3 + 𝑑
𝑝
− 𝑑

2

}

≥ 1 + 2
𝑝

together with the estimate
‖𝑢‖𝑊 𝑠,𝑝 ≤ 𝐶

(

‖𝑓‖𝐿𝑝(Ω) + ‖∇𝑚Ω(𝜙) ⋅ ∇𝑢‖𝐿𝑝(Ω) + ‖𝜕𝐧𝑢‖𝑊 𝑡,𝑝(Γ)
)

≤ 𝐶
(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖𝑝
)

.

Then, since 1 + 2
𝑝 −

1
𝑝 = 1 + 1

𝑝  is positive and not an integer, the trace theorem shows that 

𝑢|Γ ∈ 𝑊 1+ 1
𝑝 ,𝑝(Γ),

which entails 

𝜕𝐧𝑢 =
1

𝐿𝑚Ω(𝜙)
(𝛽𝑣 − 𝑢) ∈ 𝑊 1+ 1

𝑝 ,𝑝(Γ).

Finally, using once more elliptic regularity theory for Poisson’s equation with an inhomogeneous Neumann boundary condition (see, 
e.g., [3, Theorem 3.2] or [5, Theorem A.2]), we conclude that 𝑢 ∈ 𝑊 2,𝑝(Ω) along with

‖𝑢‖𝑊 2,𝑝(Ω) ≤ 𝐶
(

‖𝑓‖𝐿𝑝(Ω) + ‖∇𝑚Ω(𝜙) ⋅ ∇𝑢‖𝐿𝑝(Ω) + ‖𝜕𝐧𝑢‖
𝑊

1+ 1
𝑝 ,𝑝(Γ)

)

≤ 𝐶
(

‖(𝑓, 𝑔)‖𝑝 + ‖(∇𝜙 ⋅ ∇𝑢,∇Γ𝜓 ⋅ ∇Γ𝑣)‖𝑝
)

.
(4.31)

Combining the estimates (4.30) and (4.31) immediately yields (4.24).
Case 𝐿 = ∞. In this case, both the Poisson–Neumann problem (4.25)-(4.26) and the Laplace–Beltrami equation (4.27) are com-

pletely decoupled. Hence, we can apply elliptic regularity theory for Poisson’s equation with a homogeneous Neumann boundary 
condition (see, e.g., [3, Theorem 3.2] or [5, Theorem A.2]) and regularity theory for the Laplace–Beltrami equation (see, e.g., [33, 
Lemma B.1]), respectively, and directly reach the conclusion with the respective estimates, which finishes the proof. ∎

Further properties of 𝐿 and 𝐿[𝜙,𝜓] in two dimensions. In the last part of the section, we provide two useful estimates for 
𝐿[𝜙,𝜓] for 𝑑 = 2 which are based on the estimates (4.7) and (4.24). These will be crucial for the mathematical analysis of (1.1). To 
this end, let Ω ⊂ ℝ2 be of class 𝐶2 and (𝜙,𝜓) ∈ 2,4 with |𝜙| ≤ 1 a.e. in Ω and |𝜓| ≤ 1 a.e. on Γ. We further assume that the mobility 
functions 𝑚Ω, 𝑚Γ ∈ 𝐶1([−1, 1]) satisfy Assumption (A2).

Let (𝑓, 𝑔) ∈ −1
𝐿 ∩ 2. Then, using (2.2) and (4.32) , we find

‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖2 ≤ 𝐶
(

‖(∇𝜙 ⋅ ∇Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),∇Γ𝜓 ⋅ ∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔))‖2 + ‖(𝑓, 𝑔)‖2
)
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≤ 𝐶
(

‖(∇𝜙,∇Γ𝜓)‖4‖(∇Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔))‖4 + ‖(𝑓, 𝑔)‖2
)

≤ 𝐶
(

‖(∇𝜙,∇Γ𝜓)‖
1
2
2‖(𝜙,𝜓)‖

1
2
2‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖

1
2
𝐿‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖

1
2
2 + ‖(𝑓, 𝑔)‖2

)

.

Consequently, we infer from Young’s inequality that 
‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖2 ≤ 𝐶

(

‖(∇𝜙,∇Γ𝜓)‖2‖(𝜙,𝜓)‖2‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖𝐿 + ‖(𝑓, 𝑔)‖2
)

. (4.32)

Furthermore, if (𝑓, 𝑔) ∈ −1
𝐿 ∩ 4, we can choose 𝑝 = 4 in (4.24), and exploiting (2.2), we find 

‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖2,4 ≤ 𝐶
(

‖(∇𝜙,∇Γ𝜓)‖8‖(∇Ω
𝐿 [𝜙,𝜓](𝑓, 𝑔),∇ΓΓ

𝐿[𝜙,𝜓](𝑓, 𝑔))‖8 + ‖(𝑓, 𝑔)‖4
)

≤ 𝐶
(

‖(∇𝜙,∇Γ𝜓)‖
1
4
2‖(𝜙,𝜓)‖

3
4
2‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖

1
4
𝐿‖𝐿[𝜙,𝜓](𝑓, 𝑔)‖

3
4
2 + ‖(𝑓, 𝑔)‖4

)

.
(4.33)

5.  Existence and uniqueness of weak solutions

In this section, we present the proof of Theorem 3.2 regarding the well-posedness of weak solutions of system (1.1). 
Proof of Theorem 3.2.  The proof is divided into several steps. We start with some basic estimates on a weak solution.
Properties of weak solutions. Let (𝜙,𝜓, 𝜇, 𝜃) be a global weak solution as in Definition 3.1 given by, e.g., [23, Theorem 3.4] or [15, 
Theorem 3.2]. First, we deduce from (3.3) and the energy inequality (3.6) that 

sup
𝑡≥0

‖(𝜙(𝑡), 𝜓(𝑡))‖1 ≤ 𝐶 (5.1)

as well as 

∫

∞

0
‖(𝜇(𝑠), 𝜃(𝑠))‖2𝐿 d𝑠 ≤ 𝐶, (5.2)

for some constant depending on 𝐸(𝜙0, 𝜓0), |Ω| and |Γ|. Here, we have additionally used (4.4). The latter implies that ‖(𝜇, 𝜃)‖𝐿 ∈
𝐿2(0,∞). Then, by definition of 𝐿[𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓), it is clear that

𝜇 = −Ω
𝐿 [𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓) + 𝛽mean(𝜇, 𝜃) a.e. in Ω × (0,∞), (5.3)

𝜃 = −Γ
𝐿[𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓) +mean(𝜇, 𝜃) a.e. on Γ × (0,∞). (5.4)

Thus, exploiting (5.3)-(5.4), we obtain 
‖𝐿[𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓)‖𝐿 ≤ 𝐶‖(𝜇, 𝜃)‖𝐿, (5.5)

from which we deduce with (5.2) and the equivalence of the corresponding norms on −1
𝐿  that 

∫

∞

0
‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖2(1

𝐿)
′ d𝑠 ≤ 𝐶. (5.6)

This proves (𝜕𝑡𝜙, 𝜕𝑡𝜓) ∈ 𝐿2(0,∞; (1
𝐿)

′). Next, analyzing the proof of [23, Theorem 3.4] reveals the estimate 
|mean(𝜇, 𝜃)| ≤ 𝐶

(

1 + ‖(𝜇, 𝜃)‖𝐿
)

, (5.7)

from which we immediately deduce, after another application of the bulk-surface Poincaré inequality that 
‖(𝜇, 𝜃)‖1 ≤ 𝐶

(

1 + ‖(𝜇, 𝜃)‖𝐿
)

. (5.8)

Hence, (𝜇, 𝜃) ∈ 𝐿2
uloc([0,∞);1). The inequality (5.7) is based on the Miranville–Zelik inequality (see [28, Appendix A.1] or [13, 

p. 908]). Then, noticing that
−Δ𝜙 + 𝐹 ′

1(𝜙) = 𝜇∗ a.e. in Ω,
−ΔΓ𝜓 + 𝐺′

1(𝜓) + 𝛼𝜕𝐧𝜙 = 𝜃∗ a.e. on Γ,
𝐾𝜕𝐧𝜙 = 𝛼𝜓 − 𝜙 a.e. on Γ,

almost everywhere in (0,∞), where (𝜇∗, 𝜃∗) = (

𝜇 − 𝐹 ′
2(𝜙), 𝜃 − 𝐺

′
2(𝜓)

)

∈ 1, an application of [15, Proposition 6.5] together with the 
Lipschitz continuity of 𝐹 ′

2 and 𝐺′
2, respectively, as well as (5.1) yields that 

‖(𝜙,𝜓)‖2,𝑝 + ‖(𝐹 ′
1(𝜙), 𝐺

′
1(𝜓))‖𝑝 ≤ 𝐶

(

1 + ‖(𝜇, 𝜃)‖1
)

(5.9)

almost everywhere in (0,∞) for all 2 ≤ 𝑝 < ∞. Lastly, noting on 𝐾 ∈ (0,∞) and applying [15, Corollary 5.4], we find that 
‖(−Δ𝜙,−ΔΓ𝜓 + 𝛼𝜕𝐧𝜙)‖22 ≤ 𝐶

(

1 + ‖(𝜇 + 𝐹 ′
2(𝜙), 𝜃 + 𝐺

′
2(𝜓))‖1

)

≤ 𝐶
(

1 + ‖(𝜇, 𝜃)‖𝐿
)

.

Thus, by (5.2) and elliptic regularity theory for systems with bulk-surface coupling (see, e.g., [20, Theorem 3.3]), we have 

sup
𝑡≥0 ∫

𝑡+1

𝑡
‖(𝜙(𝑠), 𝜓(𝑠))‖42 d𝑠 ≤ 𝐶,
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which provides (𝜙,𝜓) ∈ 𝐿4
uloc([0,∞);2).

Continuous dependence estimate and uniqueness of weak solutions. In what follows, we restrict ourselves to the case 𝐿 ∈ [0,∞). 
This case distinction is needed due to a different mass conservation in the cases 𝐿 ∈ [0,∞) and 𝐿 = ∞, see (3.5). The case 𝐿 = ∞
can be handled more easily with the obvious modifications. To this end, let (𝜙1

0, 𝜓
1
0 ) and (𝜙2

0, 𝜓
2
0 ) be two admissible pairs of initial 

data satisfying (3.1a)-(3.1c), and consider two weak solutions (𝜙1, 𝜓1, 𝜇1, 𝜃1) and (𝜙2, 𝜓2, 𝜇2, 𝜃2) originating from (𝜙0
1, 𝜓

0
1 ) and (𝜙2

0, 𝜓
2
0 ), 

respectively. Then, defining (Φ,Ψ) = (𝜙1 − 𝜙2, 𝜓1 − 𝜓2), we have
⟨

(𝜕𝑡Φ, 𝜕𝑡Ψ), (𝜁, 𝜉)
⟩

1
𝐿
= −∫Ω

𝑚Ω(𝜙1)∇(𝜇1 − 𝜇2) ⋅ ∇𝜁 d𝑥 − ∫Γ
𝑚Γ(𝜓1)∇Γ(𝜃1 − 𝜃2) ⋅ ∇Γ𝜉 dΓ

− 𝜒(𝐿)∫Γ
(𝛽(𝜃1 − 𝜃2) − (𝜇1 − 𝜇2))(𝛽𝜉 − 𝜁 ) dΓ (5.10)

− ∫Ω

(

𝑚Ω(𝜙1) − 𝑚Γ(𝜓1)
)

∇𝜇2 ⋅ ∇𝜁 d𝑥 − ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇Γ𝜉 dΓ

a.e. on (0,∞) for all (𝜁, 𝜉) ∈ 1
𝐿, as well as

−ΔΦ + 𝐹 ′(𝜙1) − 𝐹 ′(𝜙2) = 𝜇1 − 𝜇2 a.e. in Ω × (0,∞), (5.11)

−ΔΓΨ + 𝐺′(𝜓1) − 𝐺′(𝜓2) + 𝛼𝜕𝐧Φ = 𝜃1 − 𝜃2 a.e. in Γ × (0,∞), (5.12)

𝐾𝜕𝐧Φ = 𝛼Ψ − Φ a.e. in Γ × (0,∞). (5.13)

Now, we multiply (5.11) with Φ and (5.12) with Ψ, integrate over Ω and Γ, respectively, and perform integration by parts. Adding 
the resulting equations leads to

‖(Φ,Ψ)‖2𝐾 + ∫Ω

(

𝐹 ′
1(𝜙1) − 𝐹 ′

1(𝜙2)
)

Φ d𝑥 + ∫Γ

(

𝐺′
1(𝜓1) − 𝐺′

1(𝜓2)
)

Ψ dΓ − ∫Ω

(

𝜇1 − 𝜇2
)

Φ d𝑥 − ∫Γ

(

𝜃1 − 𝜃2
)

Ψ dΓ

= ∫Ω

(

𝐹 ′
2(𝜙1) − 𝐹 ′

2(𝜙2)
)

Φ d𝑥 + ∫Γ

(

𝐺′
2(𝜓1) − 𝐺′

2(𝜓2)
)

Ψ dΓ
(5.14)

almost everywhere on (0,∞). Next, we want to rewrite the integrals involving the chemical potentials in terms of the solution 
operator 𝐿[𝜙1, 𝜓1](𝜕𝑡Φ, 𝜕𝑡Ψ). To this end, to make the following computations more readable, we use the abbreviation 𝑗 (𝑓, 𝑔) =
𝐿[𝜙𝑗 , 𝜓𝑗 ](𝑓, 𝑔) for 𝑗 = 1, 2 as well as (⋅, ⋅)𝐿,𝑗 = (⋅, ⋅)𝐿,[𝜙𝑗 ,𝜓𝑗 ] and find

− ∫Ω

(

𝜇1 − 𝜇2
)

Φ d𝑥 − ∫Γ

(

𝜃1 − 𝜃2
)

Ψ dΓ

= −
(

1(Φ,Ψ), (𝜇1 − 𝜇2, 𝜃1 − 𝜃2)
)

𝐿,1

=
⟨

(𝜕𝑡Φ, 𝜕𝑡Ψ),1(Φ,Ψ)
⟩

1
𝐿
− ∫Ω

(

𝑚Ω(𝜙1) − 𝑚Ω(𝜙2)
)

∇𝜇2 ⋅ ∇Ω
1 (Φ,Ψ) d𝑥 − ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇ΓΓ
1 (Φ,Ψ) dΓ (5.15)

=
(

1(𝜕𝑡Φ, 𝜕𝑡Ψ),1(Φ,Ψ)
)

𝐿,1 − ∫Ω

(

𝑚Ω(𝜙1) − 𝑚Ω(𝜙2)
)

∇𝜇2 ⋅ ∇Ω
1 (Φ,Ψ) d𝑥 − ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇ΓΓ
1 (Φ,Ψ) dΓ

=
(

(Φ,Ψ),1(𝜕𝑡Φ, 𝜕𝑡Ψ)
)

2 − ∫Ω

(

𝑚Ω(𝜙1) − 𝑚Ω(𝜙2)
)

∇𝜇2 ⋅ ∇Ω
1 (Φ,Ψ) d𝑥 − ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇ΓΓ
1 (Φ,Ψ) dΓ

a.e. on (0,∞), using, in this order, the weak formulations for 1(Φ,Ψ), for (𝜕𝑡Φ, 𝜕𝑡Ψ) (see (5.10)), for 1(𝜕𝑡Φ, 𝜕𝑡Ψ) and again for 1(Φ,Ψ). 
Plugging the identity (5.15) back into (5.14) yields

‖(Φ,Ψ)‖2𝐾 + ∫Ω

(

𝐹 ′
1(𝜙1) − 𝐹 ′

1(𝜙2)
)

Φ d𝑥 + ∫Γ

(

𝐺′
1(𝜓1) − 𝐺′

1(𝜓2)
)

Ψ dΓ + ∫Ω
1(𝜕𝑡Φ, 𝜕𝑡Ψ)Φ d𝑥 + ∫Γ

1(𝜕𝑡Φ, 𝜕𝑡Ψ)Ψ dΓ

− ∫Ω

(

𝑚Ω(𝜙1) − 𝑚Ω(𝜙2)
)

∇𝜇2 ⋅ ∇Ω
1 (Φ,Ψ) d𝑥 − ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇ΓΓ
1 (Φ,Ψ) dΓ

= ∫Ω

(

𝐹 ′
2(𝜙1) − 𝐹 ′

2(𝜙2)
)

Φ d𝑥 + ∫Γ

(

𝐺′
2(𝜓1) − 𝐺′

2(𝜓2)
)

Ψ dΓ.

Now, we claim that

∫Ω
Ω
1 (𝜕𝑡Φ, 𝜕𝑡Ψ)Φ d𝑥 + ∫Γ

Γ
1 (𝜕𝑡Φ, 𝜕𝑡Ψ)Ψ dΓ

= d
d𝑡

1
2
‖(Φ,Ψ)‖2𝐿,[𝜙1 ,𝜓1],∗ +

1
2

(

1(𝜕𝑡𝜙1, 𝜕𝑡𝜓1),
(

𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2, 𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2)
)

𝐿

= d
d𝑡

1
2
‖(Φ,Ψ)‖2𝐿,[𝜙1 ,𝜓1],∗ +

1
2 ∫Ω

∇Ω
1 (𝜕𝑡𝜙1, 𝜕𝑡𝜓1) ⋅ 𝑚′′

Ω(𝜙1)∇𝜙1|∇Ω
1 (Φ,Ψ)|

2 d𝑥

+ 1
2 ∫Γ

∇ΓΓ
1 (𝜕𝑡𝜙1, 𝜕𝑡𝜓1) ⋅ 𝑚′′

Γ (𝜓1)∇Γ𝜓1|∇ΓΓ
1 (Φ,Ψ)|

2 dΓ + ∫Ω
∇Ω

1 (𝜕𝑡𝜙1, 𝜕𝑡𝜓1) ⋅ 𝑚′
Ω(𝜙1)𝐷2Ω

1 (Φ,Ψ)∇
Ω
1 (Φ,Ψ) d𝑥

+ ∫Γ
∇ΓΓ

1 (𝜕𝑡𝜙1, 𝜕𝑡𝜓1) ⋅ 𝑚′
Γ(𝜓1)𝐷2

Γ
Γ
1 (Φ,Ψ)∇ΓΓ

1 (Φ,Ψ) dΓ

+ 1
2
𝜒(𝐿)∫Γ

(

𝛽Γ
1 (𝜕𝑡𝜙1, 𝜕𝑡𝜓1) − Ω

1 (𝜕𝑡𝜙1, 𝜕𝑡𝜓1)
)(

𝛽𝑚′
Γ(𝜓1)|∇ΓΓ

1 (Φ,Ψ)|
2 − 𝑚′

Ω(𝜙1)|∇ΓΩ
1 (Φ,Ψ)|

2) dΓ.

(5.16)
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Here, 𝐷2𝑓 and 𝐷2
Γ𝑔 denote the Hessian and the surface Hessian of 𝑓 and 𝑔, respectively. Then, having (5.16) at hand, we exploit the 

monotonicity of 𝐹 ′
1 and 𝐺′

1 as well as the Lipschitz continuity of 𝐹 ′
2 and 𝐺′

2, respectively, which leads to 
d
d𝑡

1
2
‖(Φ,Ψ)‖2𝐿,[𝜙1 ,𝜓1],∗ + ‖(Φ,Ψ)‖2𝐾 ≤ 𝐶‖(Φ,Ψ)‖22 + 𝐼1 + 𝐼2, (5.17)

where 
𝐼1 = −1

2

(

1(𝜕𝑡𝜙1, 𝜕𝑡𝜓1),
(

𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2, 𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2)
)

𝐿
,

and 

𝐼2 = ∫Ω

(

𝑚Ω(𝜙1) − 𝑚Ω(𝜙2)
)

∇𝜇2 ⋅ ∇Ω
1 (Φ,Ψ) d𝑥 + ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇ΓΓ
1 (Φ,Ψ) dΓ.

The rest of the proof now consists of justifying the chain-rule formula (5.16) as well as estimating the nonlinear terms 𝐼1 and 𝐼2.
Proof of (5.16). Let 𝜌 ∈ 𝐶∞

𝑐 (ℝ) be non-negative with supp 𝜌 ⊂ (0, 1) and ‖𝜌‖𝐿1(ℝ) = 1. For 𝑘 ∈ ℕ, we set 
𝜌𝑘(𝑠) ∶= 𝑘𝜌(𝑘𝑠), 𝑠 ∈ ℝ.

Then, for any Banach space 𝑋 and any function 𝑓 ∈ 𝐿𝑝(−1, 𝑇 ;𝑋) with 2 ≤ 𝑝 < ∞, we define 

𝑓𝑘(𝑡) ∶= (𝜌𝑘 ∗ 𝑓 )(𝑡) = ∫

𝑡

𝑡− 1
𝑘

𝜌𝑘(𝑡 − 𝑠)𝑓 (𝑠) d𝑠 (5.18)

for all 𝑡 ∈ [0, 𝑇 ] and all 𝑘 ∈ ℕ. By this construction, we have 𝑓𝑘 ∈ 𝐶∞([0, 𝑇 ];𝑋) with 𝑓𝑘 → 𝑓 strongly in 𝐿𝑝(0, 𝑇 ;𝑋) as 𝑘 → ∞.
Now, let 𝑇 > 0, 𝑘 ∈ ℕ and 𝑝 = 4. We choose 𝑋 = 𝐻2(Ω) to define 𝜙𝑘1 and 𝑋 = 𝐻2(Γ) to define 𝜓𝑘1  as described above. By this 

construction, we then have 𝜕𝑡𝜙𝑘1 = (𝜕𝑡𝜙1)𝑘 and 𝜕𝑡∇𝜙𝑘1 = ∇𝜕𝑡𝜙𝑘1 a.e. in 𝑄 as well as 𝜕𝑡𝜓𝑘1 = (𝜕𝑡𝜓1)𝑘 and 𝜕𝑡∇Γ𝜓𝑘1 = ∇Γ𝜕𝑡𝜓𝑘1  a.e. on Σ for 
all 𝑘 ∈ ℕ. Moreover, as 𝑘 → ∞,

𝜙𝑘1 → 𝜙1 strongly in 𝐿4(0, 𝑇 ;𝐻2(Ω)), (5.19)

𝜓𝑘1 → 𝜓1 strongly in 𝐿4(0, 𝑇 ;𝐻2(Γ)), (5.20)

(𝜕𝑡𝜙𝑘1 , 𝜕𝑡𝜓
𝑘
1 ) → (𝜕𝑡𝜙1, 𝜕𝑡𝜓

𝑘
1 ) strongly in 𝐿2(0, 𝑇 ; (1

𝐿)
′). (5.21)

In particular, along a non-relabeled subsequence, as 𝑘 → ∞,

𝜙𝑘1 → 𝜙1, ∇𝜙𝑘1 → ∇𝜙1 a.e. in Ω × (0, 𝑇 ), (5.22)

𝜓𝑘1 → 𝜓1, ∇Γ𝜓
𝑘
1 → ∇Γ𝜓1 a.e. on Γ × (0, 𝑇 ). (5.23)

Additionally, we find that
‖𝜙𝑘1‖𝐿∞(0,𝑇 ;𝐻1(Ω)) ≤ ‖𝜙1‖𝐿∞(0,𝑇 ;𝐻1(Ω)),

‖𝜓𝑘1 ‖𝐿∞(0,𝑇 ;𝐻1(Γ)) ≤ ‖𝜓1‖𝐿∞(0,𝑇 ;𝐻1(Γ)),
(5.24)

as well as 
|𝜙𝑘| ≤ 1 a.e. in 𝑄, |𝜓𝑘| ≤ 1 a.e. on Σ (5.25)

for all 𝑘 ∈ ℕ. We further point out that in light of the convergences (5.19)-(5.20) we infer the existence of 𝑘∗ ∈ ℕ such that 
‖(𝜙𝑘1 , 𝜓

𝑘
1 )‖𝐿4(0,𝑇 ;2) ≤ 1 + ‖(𝜙1, 𝜓1)‖𝐿4(0,𝑇 ;2) for all 𝑘 ≥ 𝑘∗. (5.26)

In the following, we assume that 𝑘 ∈ ℕ satisfies 𝑘 ≥ 𝑘∗. Furthermore, we denote by the letter 𝐶 a generic positive constant whose 
value may change from line to line, but is independent of the parameter 𝑘 ∈ ℕ. We now define, for 𝑘 ∈ ℕ, the sequence 

𝑘(Φ,Ψ) ∶= 𝐿[𝜙𝑘, 𝜓𝑘](Φ,Ψ).

It readily follows from (4.3) and (5.25) that 
‖𝑘(Φ,Ψ)‖𝐿∞(0,𝑇 ;1) ≤ 𝐶. (5.27)

Next, in view of (5.24) and (5.27), an application of (4.32) entails that 
‖𝑘(Φ,Ψ)‖2 ≤ 𝐶

(

1 + ‖(𝜙𝑘1 , 𝜓
𝑘
1 )‖2

)

,

which implies that 

∫

𝑇

0
‖𝑘(Φ,Ψ)‖42 d𝑠 ≤ 𝐶𝑇 + 𝐶 ∫

𝑇

0
‖(𝜙𝑘1 , 𝜓

𝑘
1 )‖

4
2 d𝑠 ≤ 𝐶, (5.28)

due to (5.26). Furthermore, employing the estimate (4.33) in combination with (5.24) and (5.27), we deduce that

‖𝑘(Φ,Ψ)‖2,4 ≤ 𝐶
(

‖(∇𝜙𝑘1 ,∇Γ𝜓
𝑘
1 )‖

1
4
2‖(𝜙

𝑘
1 , 𝜓

𝑘
1 )‖

3
4
2‖𝑘(Φ,Ψ)‖

1
4
𝐿‖𝑘(Φ,Ψ)‖

3
4
2 + ‖(Φ,Ψ)‖4

)

≤ 𝐶
(

1 + ‖(𝜙𝑘1 , 𝜓
𝑘
1 )‖

3
4
2‖𝑘(Φ,Ψ)‖

3
4
2

)

.

Nonlinear Analysis 268 (2026) 114060 

16 



J. Stange

Hence, integrating the foregoing inequality in time over (0, 𝑇 ) and using Young’s inequality together with (5.26) and (5.28), we have 

∫

𝑇

0
‖𝑘(Φ,Ψ)‖

8
3
2,4 d𝑠 ≤ 𝐶𝑇 + 𝐶 ∫

𝑇

0
‖(𝜙𝑘1 , 𝜓

𝑘
1 )‖

4
2 + ‖𝑘(Φ,Ψ)‖42 d𝑠 ≤ 𝐶. (5.29)

Now, we study the convergence properties of the operator 𝑘(Φ,Ψ) as 𝑘 → ∞. To this end, let (𝑓, 𝑔) ∈ 𝐿2(0, 𝑇 ;−1
𝐿 ). Then, by 

definition of 1 and 𝑘, we know that

∫Ω
𝑚Ω(𝜙1)∇Ω

1 (𝑓, 𝑔) ⋅ ∇𝜁 d𝑥 + ∫Γ
𝑚Γ(𝜓1)∇ΓΓ

1 (𝑓, 𝑔) ⋅ ∇Γ𝜉 dΓ + 𝜒(𝐿)∫Γ
(𝛽Γ

1 (𝑓, 𝑔) − Ω
1 (𝑓, 𝑔))(𝛽𝜉 − 𝜁 ) dΓ

= ∫Ω
𝑚Ω(𝜙𝑘1)∇

Ω
𝑘 (𝑓, 𝑔) ⋅ ∇𝜁 d𝑥 + ∫Γ

𝑚Γ(𝜓𝑘1 )∇ΓΓ
𝑘 (𝑓, 𝑔) ⋅ ∇Γ𝜉 dΓ + 𝜒(𝐿)∫Γ

(

𝛽Γ
𝑘 (𝑓, 𝑔) − Γ

𝑘 (𝑓, 𝑔)
)

(𝛽𝜉 − 𝜁 ) dΓ

for all (𝜁, 𝜉) ∈ 1
𝐿, which implies that

∫Ω
𝑚Ω(𝜙1)∇

(

Ω
1 (𝑓, 𝑔) − Ω

𝑘 (𝑓, 𝑔)
)

⋅ ∇𝜁 d𝑥 + ∫Γ
𝑚Γ(𝜓1)∇Γ

(

Γ
1 (𝑓, 𝑔) − Γ

𝑘 (𝑓, 𝑔)
)

⋅ ∇Γ𝜉 dΓ

+ 𝜒(𝐿)∫Γ

(

𝛽(Γ
1 (𝑓, 𝑔) − Γ

𝑘 (𝑓, 𝑔))
)

(𝛽𝜉 − 𝜁 ) dΓ (5.30)

= ∫Ω

(

𝑚Ω(𝜙𝑘1) − 𝑚Ω(𝜙1)
)

∇Ω
𝑘 (𝑓, 𝑔) ⋅ ∇𝜁 d𝑥 + ∫Γ

(

𝑚Γ(𝜓𝑘1 ) − 𝑚Γ(𝜓1)
)

∇ΓΓ
𝑘 (𝑓, 𝑔) ⋅ ∇Γ𝜉 dΓ

for all (𝜁, 𝜉) ∈ 1
𝐿. Therefore, taking (𝜁, 𝜉) = 1(𝑓, 𝑔) − 𝑘(𝑓, 𝑔) ∈ 1

𝐿 as a test function in (5.30), we find with (4.4) that 

∫

𝑇

0
‖1(𝑓, 𝑔) − 𝑘(𝑓, 𝑔)‖2𝐿 d𝑠

≤ 1
min

{

1, 𝑚∗
} ∫

𝑇

0
‖

(

𝑚Ω(𝜙𝑘1) − 𝑚Ω(𝜙1)
)

∇Ω
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Ω)

d𝑠 + 1
min

{

1, 𝑚∗
} ∫

𝑇

0
‖

(

𝑚Γ(𝜓𝑘1 ) − 𝑚Γ(𝜓1)
)

∇ΓΓ
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Γ)

d𝑠

≤ 1
min

{

1, 𝑚∗
} ∫

𝑇

0
‖𝑚Ω(𝜙𝑘1) − 𝑚Ω(𝜙1)‖2𝐿∞(Ω)‖∇

Ω
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Ω)

d𝑠

+ 1
min

{

1, 𝑚∗
} ∫

𝑇

0
‖𝑚Γ(𝜓𝑘1 ) − 𝑚Γ(𝜓1)‖2𝐿∞(Γ)‖∇ΓΓ

𝑘 (𝑓, 𝑔)‖
2
𝐿2(Γ)

d𝑠.

(5.31)

We aim to pass to the limit 𝑘 → ∞ in (5.31) by applying the dominated convergence theorem. Toward this end, we first notice by
(4.5) that 

‖𝑚Ω(𝜙𝑘1) − 𝑚Ω(𝜙1)‖2𝐿∞(Ω)‖∇
Ω
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Ω)

+ ‖𝑚Γ(𝜓𝑘1 ) − 𝑚Γ(𝜓1)‖2𝐿∞(Γ)‖∇ΓΓ
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Γ)

≤ 𝐶‖(𝑓, 𝑔)‖2𝐿 ∈ 𝐿1(0, 𝑇 ).

On the other hand, since 𝑚Ω and 𝑚Γ are Lipschitz continuous on [−1, 1], the Sobolev inequality shows that
‖𝑚Ω(𝜙𝑘1) − 𝑚Ω(𝜙1)‖2𝐿∞(Ω) + ‖𝑚Γ(𝜓𝑘1 ) − 𝑚Γ(𝜓1)‖2𝐿∞(Γ) ≤ 𝐶‖𝜙𝑘1 − 𝜙1‖

2
𝐿∞(Ω) + 𝐶‖𝜓

𝑘
1 − 𝜓1‖

2
𝐿∞(Γ)

≤ 𝐶‖𝜙𝑘1 − 𝜙1‖
2
𝐻2(Ω)

+ 𝐶‖𝜓𝑘1 − 𝜓1‖
2
𝐻2(Γ)

almost everywhere on (0, 𝑇 ). Thus, in light of (5.19)-(5.20), we obtain that
‖𝑚Ω(𝜙𝑘1) − 𝑚Ω(𝜙1)‖2𝐿∞(Ω)‖∇

Ω
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Ω)

+ ‖𝑚Γ(𝜓𝑘1 ) − 𝑚Γ(𝜓1)‖2𝐿∞(Γ)‖∇ΓΓ
𝑘 (𝑓, 𝑔)‖

2
𝐿2(Γ)

≤ 𝐶‖(𝜙𝑘1 − 𝜙1, 𝜓
𝑘
1 − 𝜓1)‖22‖(𝑓, 𝑔)‖

2
𝐿 → 0

up to a subsequence 𝑘 → ∞ almost everywhere on (0, 𝑇 ). Consequently, we can use (5.31) and the Lebesgue convergence theorem to 
conclude that 

‖𝑘(𝑓, 𝑔) − 1(𝑓, 𝑔)‖𝐿 → 0 strongly in 𝐿2(0, 𝑇 )

up to a subsequence 𝑘 → ∞. In particular, for (𝑓, 𝑔) = (𝜕𝑡Φ, 𝜕𝑡Ψ) and (𝑓, 𝑔) = (Φ,Ψ), we find that 
𝑘(𝜕𝑡Φ, 𝜕𝑡Ψ) → 1(𝜕𝑡Φ, 𝜕𝑡Ψ) strongly in 𝐿2(0, 𝑇 ;1), (5.32)

as well as 
𝑘(Φ,Ψ) → 1(Φ,Ψ) strongly in 𝐿2(0, 𝑇 ;1), (5.33)

as 𝑘 → ∞, respectively. Furthermore, in view of the uniform estimates (5.28) and (5.29), we deduce that 
𝑘(Φ,Ψ) ⇀ 1(Φ,Ψ) weakly in 𝐿4(0, 𝑇 ;2) (5.34)

and 
𝑘(Φ,Ψ) ⇀ 1(Φ,Ψ) weakly in 𝐿 8

3 (0, 𝑇 ;2,4), (5.35)
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respectively, as 𝑘 → ∞. Next, for any 𝜀 ∈ (0, 12 ), by interpolation, there exists a constant 𝐶 = 𝐶(𝜀) > 0 such that

‖𝑓‖𝐻2−𝜀(Ω) ≤ 𝐶‖𝑓‖𝜀
𝐻1(Ω)

‖𝑓‖1−𝜀
𝐻2(Ω)

for all 𝑓 ∈ 𝐻2(Ω),

‖𝑔‖𝐻2−𝜀(Γ) ≤ 𝐶‖𝑔‖𝜀
𝐻1(Γ)

‖𝑔‖1−𝜀
𝐻2(Γ)

for all 𝑔 ∈ 𝐻2(Γ),

see, for instance, [7, Lemma 2.2]. Thus, combining these two estimates, by Young’s inequality, we deduce
‖(𝑓, 𝑔)‖

𝐿
4

1+𝜀 (0,𝑇 ;2−𝜀)
≤ 𝐶‖(𝑓, 𝑔)‖𝐿2(0,𝑇 ;1)‖(𝑓, 𝑔)‖𝐿4(0,𝑇 ;2) (5.36)

for all (𝑓, 𝑔) ∈ 𝐿4(0, 𝑇 ;2). Choosing (𝑓, 𝑔) = 𝑘(Φ,Ψ) − 1(Φ,Ψ) ∈ 𝐿4(0, 𝑇 ;2) in (5.36), the convergences (5.33) and (5.34) lead to 

𝑘(Φ,Ψ) → 1(Φ,Ψ) strongly in 𝐿
4

1+𝜀 (0, 𝑇 ;2−𝜀) (5.37)

as 𝑘 → ∞. Now, we claim that for any 𝜎 ∈ 𝐶∞
𝑐 (0, 𝑇 ) it holds that

∫

𝑇

0

(

𝑘(𝜕𝑡Φ, 𝜕𝑡Ψ), (Φ,Ψ)
)

2𝜎 d𝑠

= −1
2 ∫

𝑇

0
‖(Φ,Ψ)‖2

𝐿,[𝜙𝑘1 ,𝜓
𝑘
1 ],∗

𝜕𝑡𝜎 d𝑠 + 1
2 ∫

𝑇

0

(

𝜕𝑡𝜙
𝑘
1 , 𝑚Ω(𝜙𝑘1)∇

Ω
𝑘 (Φ,Ψ) ⋅ ∇

Ω
𝑘 (Φ,Ψ)

)

2𝜎 d𝑠

+ 1
2 ∫

𝑇

0

(

𝜕𝑡𝜓
𝑘
1 , 𝑚Γ(𝜓𝑘1 )∇ΓΓ

𝑘 (Φ,Ψ) ⋅ ∇ΓΓ
𝑘 (Φ,Ψ)

)

2𝜎 d𝑠.

(5.38)

To this end, for almost every 𝑡 ∈ (0, 𝑇 ), let 𝑐(⋅, 𝑡) be measurable in Ω, 𝑑(⋅, 𝑡) be measurable on Γ, and (𝑓 (⋅, 𝑡), 𝑔(⋅, 𝑡)) ∈ −1
𝐿 ∩ 2 such that 

(𝜕𝑡𝑐(⋅, 𝑡), 𝜕𝑡𝑑(⋅, 𝑡)), (𝜕𝑡𝑓 (⋅, 𝑡), 𝜕𝑡𝑔(⋅, 𝑡)) ∈ 2. Then, differentiating the weak formulation (4.2) that is satisfied by 𝐿[𝑐, 𝑑](𝑓, 𝑔) and taking 
(𝜁, 𝜉) = 𝐿[𝑐, 𝑑](𝑓, 𝑔) ∈ 1

𝐿 as a test function, we obtain that

∫Ω
𝜕𝑡𝑓 Ω

𝐿 [𝑐, 𝑑](𝑓, 𝑔) d𝑥 + ∫Γ
𝜕𝑡𝑔 Γ

𝐿[𝑐, 𝑑](𝑓, 𝑔) dΓ

= ∫Ω
𝑚′
Ω(𝑐)𝜕𝑡𝑐 |∇

Ω
𝐿 [𝑐, 𝑑](𝑓, 𝑔)|

2 d𝑥 + ∫Γ
𝑚′
Γ(𝑑)𝜕𝑡𝑑 |∇ΓΓ

𝐿[𝑐, 𝑑](𝑓, 𝑔)|
2 dΓ

+ ∫Ω
𝑓 𝜕𝑡Ω

𝐿 [𝑐, 𝑑](𝑓, 𝑔) d𝑥 + ∫Γ
𝑔 𝜕𝑡Γ

𝐿[𝑐, 𝑑](𝑓, 𝑔) dΓ.

Hence, noting again on (4.2), we find that
d
d𝑡
‖(𝑓, 𝑔)‖2𝐿,[𝑐,𝑑],∗ = d

d𝑡
‖𝐿[𝑐, 𝑑](𝑓, 𝑔)‖2𝐿,[𝑐,𝑑]

= d
d𝑡
(

𝐿[𝑐, 𝑑](𝑓, 𝑔), (𝑓, 𝑔)
)

2

=
(

𝐿[𝑐, 𝑑](𝑓, 𝑔), (𝑓, 𝑔)
)

2 +
(

𝐿[𝑐, 𝑑](𝑓, 𝑔), (𝜕𝑡𝑓, 𝜕𝑡𝑔)
)

2 (5.39)

= 2
(

𝐿[𝑐, 𝑑](𝜕𝑡𝑓, 𝜕𝑡𝑔), (𝑓, 𝑔)
)

2 − ∫Ω
𝑚′
Ω(𝑐)𝜕𝑡𝑐 |∇

Ω
𝐿 [𝑐, 𝑑](𝑓, 𝑔)|

2 d𝑥 − ∫Γ
𝑚′
Γ(𝑑)𝜕𝑡𝑑 |∇ΓΓ

𝐿[𝑐, 𝑑](𝑓, 𝑔)|
2 dΓ.

As (𝑐, 𝑑) and (𝑓, 𝑔) were arbitrary, we can simply take (𝑐, 𝑑) = (𝜙𝑘1 , 𝜓
𝑘
1 ) and (𝑓, 𝑔) = (Φ,Ψ) in (5.39) obtaining (5.38). Now, we wish to 

take the limit 𝑘→ ∞ in (5.38). To this end, we first notice that from the convergences (5.32) and (5.33) we easily conclude that 

lim
𝑘→∞∫

𝑇

0

(

𝑘(𝜕𝑡Φ, 𝜕𝑡Ψ), (Φ,Ψ)
)

2𝜎 d𝑠 = ∫

𝑇

0

(

1(𝜕𝑡Φ, 𝜕𝑡Ψ), (Φ,Ψ)
)

2𝜎 d𝑠 (5.40)

as well as

lim
𝑘→∞

1
2 ∫

𝑇

0
‖(Φ,Ψ)‖2

𝐿,[𝜙𝑘1 ,𝜓
𝑘
1 ],∗

𝜕𝑡𝜎 d𝑠 = lim
𝑘→∞

1
2 ∫

𝑇

0

(

𝑘(Φ,Ψ), (Φ,Ψ)
)

2𝜕𝑡𝜎 d𝑠

= 1
2 ∫

𝑇

0

(

1(Φ,Ψ), (Φ,Ψ)
)

2𝜕𝑡𝜎 d𝑠 (5.41)

= 1
2 ∫

𝑇

0
‖(Φ,Ψ)‖2𝐿,[𝜙1 ,𝜓1],∗𝜕𝑡𝜎 d𝑠,

respectively. To handle the last two terms on the right-hand side of (5.38), we show that there exists a constant 𝐶 > 0, independent 
of 𝑘 ∈ ℕ, such that 

∫

𝑇

0
‖

(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
‖

2
𝐿 d𝑠 ≤ 𝐶. (5.42)

In fact, by (2.2), we have
‖∇

(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2)
‖𝐿2(Ω) ≤ ‖𝑚′′

Ω(𝜙
𝑘
1)∇𝜙

𝑘
1|∇

Ω
𝑘 (Φ,Ψ)|

2
‖𝐿2(Ω) + 2‖𝑚′

Ω(𝜙
𝑘
1)𝐷

2Ω
𝑘 (Φ,Ψ)∇

Ω
𝑘 (Φ,Ψ)‖𝐿2(Ω)

≤ 𝐶‖∇𝜙𝑘1‖𝐿6(Ω)‖∇
Ω
𝑘 (Φ,Ψ)‖

2
𝐿6(Ω)

+ 𝐶‖𝐷2Ω
𝑘 (Φ,Ψ)‖𝐿4(Ω)‖∇

Ω
𝑘 (Φ,Ψ)‖𝐿4(Ω)
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≤ 𝐶‖∇𝜙𝑘1‖
1
3
𝐿2(Ω)

‖𝜙𝑘1‖
2
3
𝐻2(Ω)

‖∇Ω
𝑘 (Φ,Ψ)‖

2
3
𝐿2(Ω)

‖Ω
𝑘 (Φ,Ψ)‖

4
3
𝐻2(Ω)

+ 𝐶‖𝐷2Ω
𝑘 (Φ,Ψ)‖𝐿4(Ω)‖∇

Ω
𝑘 (Φ,Ψ)‖

1
2
𝐿2(Ω)

‖∇Ω
𝑘 (Φ,Ψ)‖

1
2
𝐻2(Ω)

.

Hence, applying the estimates (5.24) and (5.27), we find

‖∇
(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2)
‖𝐿2(Ω) ≤ 𝐶‖𝜙𝑘1‖

2
3
𝐻2(Ω)

‖Ω
𝑘 (Φ,Ψ)‖

4
3
𝐻2(Ω)

+ 𝐶‖𝐷2Ω
𝑘 (Φ,Ψ)‖𝐿4(Ω)‖

Ω
𝑘 (Φ,Ψ)‖

1
2
𝐻2(Ω)

≤ 𝐶‖𝜙𝑘1‖
2
𝐻2(Ω)

+ 𝐶‖Ω
𝑘 (Φ,Ψ)‖

2
𝐻2(Ω)

+ 𝐶‖Ω
𝑘 (Φ,Ψ)‖

4
3
𝑊 2,4(Ω)

.
(5.43)

In a similar manner, we derive the estimate

‖∇Γ
(

𝑚Γ(𝜓𝑘1 )|∇ΓΓ
𝑘 (Φ,Ψ)|

2)
‖𝐿2(Γ) ≤ 𝐶‖𝜓𝑘1 ‖

2
𝐻2(Γ)

+ 𝐶‖Γ
𝑘 (Φ,Ψ)‖

2
𝐻2(Γ)

+ 𝐶‖Γ
𝑘 (Φ,Ψ)‖

4
3
𝑊 2,4(Γ)

. (5.44)

Lastly, we use the trace theorem and the Sobolev inequality to obtain
‖𝛽𝑚′

Γ(𝜓
𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2 − 𝑚′

Ω(𝜙
𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2
‖𝐿2(Γ) ≤ 𝐶‖∇Ω

𝑘 (Φ,Ψ)‖
2
𝐿4(Γ)

+ 𝐶‖∇ΓΓ
𝑘 (Φ,Ψ)‖

2
𝐿4(Γ)

≤ 𝐶‖𝑘(Φ,Ψ)‖22 .
(5.45)

Thus, in conclusion, combining the estimates (5.43)-(5.45) yields

‖

(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
‖𝐿 ≤ 𝐶‖(𝜙𝑘1 , 𝜓

𝑘
1 )‖

2
2 + 𝐶‖𝑘(Φ,Ψ)‖

2
2 + 𝐶‖𝑘(Φ,Ψ)‖

4
3
2,4 , (5.46)

and the desired claim (5.42) readily follows in light of the estimates (5.26), (5.28) and (5.29). We then compute
(

(

𝜕𝑡𝜙
𝑘
1 , 𝜕𝑡𝜓

𝑘
1
)

,
(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
)

2

=
(

(𝜕𝑡𝜙𝑘1 , 𝜕𝑡𝜓
𝑘
1 ),

(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
)

𝐿

+
(

(𝜕𝑡𝜙𝑘1 − 𝜕𝑡𝜙1, 𝜕𝑡𝜓
𝑘
1 − 𝜕𝑡𝜓1),

(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
)

𝐿

almost everywhere on (0, 𝑇 ). Thus, multiplying the above identity by 𝜎 ∈ 𝐶∞
𝑐 (0, 𝑇 ) and integrating in time over (0, 𝑇 ), we take the 

limit 𝑘 → ∞ and obtain using (5.19)-(5.20) and (5.42) that

lim
𝑘→∞∫

𝑇

0

(

(

𝜕𝑡𝜙
𝑘
1 , 𝜕𝑡𝜓

𝑘
1
)

,
(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
)

2
𝜎 d𝑠

= lim
𝑘→∞∫

𝑇

0

(

(𝜕𝑡𝜙𝑘1 , 𝜕𝑡𝜓
𝑘
1 ),

(

𝑚′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2)
)

𝐿
𝜎 d𝑠.

(5.47)

To compute the limit of the right-hand side of (5.47), we first note that by our above computations, specifically (5.43)-(5.45), there 
exist functions ℎ1,… , ℎ5 such that, along a non-relabeled subsequence 𝑘→ ∞,

𝑚′′
Ω(𝜙

𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2 ⇀ ℎ1 weakly in 𝐿2(0, 𝑇 ;𝐿2(Ω)), (5.48)

2𝑚′
Ω(𝜙

𝑘
1)𝐷

2Ω
𝑘 (Φ,Ψ)∇

Ω
𝑘 (Φ,Ψ) ⇀ ℎ2 weakly in 𝐿2(0, 𝑇 ;𝐿2(Ω)), (5.49)

𝑚′′
Γ (𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2 ⇀ ℎ3 weakly in 𝐿2(0, 𝑇 ;𝐿2(Γ)), (5.50)

2𝑚′
Γ(𝜓

𝑘
1 )𝐷

2
Γ

Γ
𝑘 (Φ,Ψ)∇ΓΓ

𝑘 (Φ,Ψ) ⇀ ℎ4 weakly in 𝐿2(0, 𝑇 ;𝐿2(Γ)), (5.51)

𝛽𝑚′
Γ(𝜓

𝑘
1 )|∇ΓΓ

𝑘 (Φ,Ψ)|
2 − 𝑚′

Ω(𝜙
𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2 ⇀ ℎ5 weakly in 𝐿2(0, 𝑇 ;𝐿2(Γ)). (5.52)

As a last step, we are left with identifying the weak limits ℎ1,… , ℎ5. First, using (5.37) with 𝜀 = 1
4 , we find that 

𝑘(Φ,Ψ) → 1(Φ,Ψ) strongly in 𝐿 16
5 (0, 𝑇 ;

7
4 )

as 𝑘 → ∞. In particular, this implies that 
(

|∇Ω
𝑘 (Φ,Ψ)|

2, |∇ΓΓ
𝑘 (Φ,Ψ)|

2) →
(

|∇Ω
1 (Φ,Ψ)|

2, |∇ΓΓ
1 (Φ,Ψ)|

2) strongly in 𝐿 16
5 (0, 𝑇 ;3).

Next, due to (5.19)-(5.20), we have 
(

∇𝜙𝑘1 ,∇Γ𝜓
𝑘
1
)

→
(

∇𝜙1,∇Γ𝜓1
)

strongly in 𝐿4(0, 𝑇 ;3).

Finally, since 𝑚′′
Ω, 𝑚

′′
Γ ∈ 𝐶([−1, 1]), (5.22) implies that 

(

𝑚′′
Ω(𝜙

𝑘
1), 𝑚

′′
Γ (𝜓

𝑘
1 )
)

→
(

𝑚′′
Ω(𝜙1), 𝑚′′

Γ (𝜓1)
)

strongly in 𝐿8(0, 𝑇 ;12).

Thus, we readily infer that
𝑚′′
Ω(𝜙

𝑘
1)∇𝜙

𝑘
1|∇

Ω
𝑘 (Φ,Ψ)|

2 ⇀ 𝑚′′
Ω(𝜙1)∇𝜙1|∇Ω

1 (Φ,Ψ)|
2 weakly in 𝐿1(0, 𝑇 ;𝐿1(Ω)),
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𝑚′′
Γ (𝜓

𝑘
1 )∇Γ𝜓

𝑘
1 |∇ΓΓ

𝑘 (Φ,Ψ)|
2 ⇀ 𝑚′′

Γ (𝜓1)∇Γ𝜓1|∇ΓΓ
1 (Φ,Ψ)|

2 weakly in 𝐿1(0, 𝑇 ;𝐿1(Γ)),

from which we deduce that 
ℎ1 = 𝑚′′

Ω(𝜙1)∇𝜙1|∇Ω
1 (Φ,Ψ)|

2,

as well as 
ℎ3 = 𝑚′′

Γ (𝜓1)∇Γ𝜓1|∇ΓΓ
1 (Φ,Ψ)|

2.

Similarly, owing to (5.33) and (5.35), and noting on 
(

𝑚′
Ω(𝜙

𝑘
1), 𝑚

′
Γ(𝜓

𝑘
1 )
)

→
(

𝑚′
Ω(𝜙1), 𝑚′

Γ(𝜓1)
)

strongly in 𝐿8(0, 𝑇 ;4),

we obtain
2𝑚′

Ω(𝜙
𝑘
1)𝐷

2Ω
𝑘 (Φ,Ψ)∇

Ω
𝑘 (Φ,Ψ) ⇀ 2𝑚′

Ω(𝜙1)𝐷2Ω
1 (Φ,Ψ)∇

Ω
1 (Φ,Ψ) weakly in 𝐿1(0, 𝑇 ;𝐿1(Ω)),

2𝑚′
Γ(𝜓

𝑘
1 )𝐷

2
Γ

Γ
𝑘 (Φ,Ψ)∇ΓΓ

𝑘 (Φ,Ψ) ⇀ 2𝑚′
Γ(𝜓1)𝐷2

Γ
Γ
1 (Φ,Ψ)∇ΓΓ

1 (Φ,Ψ) weakly in 𝐿1(0, 𝑇 ;𝐿1(Γ)).

This entails that 
ℎ2 = 2𝑚′

Ω(𝜙1)𝐷2Ω
1 (Φ,Ψ)∇

Ω
1 (Φ,Ψ)

and 
ℎ4 = 2𝑚′

Γ(𝜓1)𝐷2
Γ

Γ
1 (Φ,Ψ)∇ΓΓ

1 (Φ,Ψ).

Lastly, to identify ℎ5 we note that given the aforementioned convergences and the trace theorem, we find that

|∇Ω
𝑘 (Φ,Ψ)|Γ|

2 → |∇Ω
1 (Φ,Ψ)|Γ|

2 strongly in 𝐿 16
3 (0, 𝑇 ;𝐿

3
2 (Γ)),

|∇ΓΓ
𝑘 (Φ,Ψ)|

2 → |∇ΓΓ
1 (Φ,Ψ)|

2 strongly in 𝐿 16
3 (0, 𝑇 ;𝐿

3
2 (Γ))

as 𝑘 → ∞, and thus, readily deduce that 
𝛽𝑚′

Γ(𝜓
𝑘
1 )|∇ΓΓ

𝑘 (Φ, 𝜓)|
2 − 𝑚′

Ω(𝜙
𝑘
1)|∇

Ω
𝑘 (Φ,Ψ)|

2 ⇀ 𝛽𝑚′
Γ(𝜓1)|∇ΓΓ

1 (Φ,Ψ)|
2 − 𝑚′

Ω(𝜙1)|∇Ω
1 (Φ,Ψ)|

2 weakly in 𝐿1(0, 𝑇 ;𝐿1(Γ)).

This shows 
ℎ5 = 𝛽𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2 − 𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2.

Therefore, by exploiting (5.48)–(5.52) in (5.47), we finally deduce that

∫

𝑇

0

(

1(𝜕𝑡Φ, 𝜕𝑡Ψ)(Φ,Ψ)
)

2𝜎 d𝑠

= 1
2 ∫

𝑇

0
‖(Φ,Ψ)‖𝐿,[𝜙1 ,𝜓1],∗𝜕𝑡𝜎 d𝑠 + 1

2 ∫

𝑇

0

(

(𝜕𝑡𝜙1, 𝜕𝑡𝜓1),
(

𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2, 𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2))
𝐿𝜎 d𝑠

for any 𝜎 ∈ 𝐶∞
𝑐 (0, 𝑇 ). The latter readily implies the desired conclusion (5.16).

Estimates of the nonlinear terms. In the rest of the proof, the letter 𝐶 denotes a generic positive constant that may change its 
value from line to line, and which depends on the parameter of the system and the initial energy 𝐸(𝜙0, 𝜓0). We now intend to bound 
the terms 𝐼1 and 𝐼2.

Regarding 𝐼1, we have
|𝐼1| =

|

|

|

(

𝐿(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)), (𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2, 𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2)
)

𝐿
|

|

|

≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2, 𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2)‖𝐿.

For the second term on the right-hand side, we note that
‖(𝑚′

Ω(𝜙1)|∇Ω
1 (Φ,Ψ)|

2, 𝑚′
Γ(𝜓1)|∇ΓΓ

1 (Φ,Ψ)|
2)‖𝐿

≤ ‖

(

𝑚′′
Ω(𝜙1)∇𝜙1|∇Ω

1 (Φ,Ψ)|
2, 𝑚′′

Γ (𝜓1)∇Γ𝜓1|∇ΓΓ
1 (Φ,Ψ)|

2)
‖2

+ ‖

(

𝑚′
Ω(𝜙1)𝐷2Ω

1 (Φ,Ψ)∇
Ω
1 (Φ, 𝜓), 𝑚

′
Γ(𝜓1)𝐷2

Γ
Γ
1 (Φ,Ψ)∇ΓΓ

1 (Φ,Ψ)
)

‖2

+ 𝜒(𝐿)‖𝛽𝑚′
Γ(𝜓1)|∇ΓΓ

1 (Φ,Ψ)|
2 − 𝑚′

Ω(𝜙1)|∇Ω
1 (Φ,Ψ)|

2
‖𝐿2(Γ),

which entails
|𝐼1| ≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1

𝐿)
′‖
(

∇𝜙1|∇Ω
1 (Φ,Ψ)|

2,∇Γ𝜓1|∇ΓΓ
1 (Φ,Ψ)|

2)
‖2

+ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖
(

𝐷2Ω
1 (Φ,Ψ)∇

Ω
1 (Φ,Ψ), 𝐷

2
Γ

Γ
1 (Φ,Ψ)∇ΓΓ

1 (Φ,Ψ)
)

‖2

+ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′𝜒(𝐿)‖𝛽𝑚′
Γ(𝜓1)|∇ΓΓ

1 (Φ,Ψ)|
2 − 𝑚′

Ω(𝜙1)|∇Ω
1 (Φ,Ψ)|

2
‖𝐿2(Γ)

=∶ 𝐽1 + 𝐽2 + 𝐽3.
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Utilizing (4.32) and owing to (4.21) in the case 𝐾 ∈ (0,∞), we see that
‖1(Φ,Ψ)‖2

≤ 𝐶
(

‖(∇𝜙1,∇Γ𝜓1)‖2‖(𝜙1, 𝜓1)‖2‖1(Φ,Ψ)‖𝐿 + ‖1(Φ,Ψ)‖
1
2
𝐿‖(Φ,Ψ)‖

1
2
𝐾
)

.
(5.53)

Then, concerning 𝐽1, we employ the estimates (2.2), (5.1) and (5.53), and find
𝐽1 ≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1

𝐿)
′‖(∇𝜙1,∇Γ𝜓1)‖6‖

(

∇Ω
1 (Φ,Ψ),∇ΓΓ

1 (Φ,Ψ)
)

‖

2
6

≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(∇𝜙1,∇Γ𝜓1)‖
1
3
2‖(𝜙1, 𝜓1)‖

2
3
2‖1(Φ,Ψ)‖

2
3
𝐿‖1(Φ,Ψ)‖

4
3
2

≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖
2
3
2‖1(Φ,Ψ)‖

2
3
𝐿

(

‖(𝜙1, 𝜓1)‖2‖1(Φ,Ψ)‖𝐿 + ‖1(Φ,Ψ)‖
1
2
𝐿‖(Φ,Ψ)‖

1
2
𝐿

)
4
3 (5.54)

≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′

(

‖(𝜙1, 𝜓1)‖22‖1(Φ,Ψ)‖2𝐿 + 𝐶‖(𝜙1, 𝜓1)‖
2
3
2‖1(Φ,Ψ)‖

4
3
𝐿‖(Φ,Ψ)‖

2
3
𝐾

)

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖22 + ‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖2

)

‖1(Φ,Ψ)‖2𝐿

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿.

If however 𝐾 = ∞, a similar argumentation owing to (4.22) leads to the estimate 

𝐽1 ≤
1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

1 + ‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿.

In the following, we restrict ourselves to the case 𝐾 ∈ (0,∞), as the case 𝐾 = ∞ can be handled similarly as above. Next, we consider 
𝐽2. Due to (2.2), (5.1) and (5.53) we have

‖(∇Ω
1 (Φ,Ψ),∇ΓΓ

1 (Φ,Ψ))‖4

≤ 𝐶‖1(Φ,Ψ)‖
1
2
𝐿‖1(Φ,Ψ)‖

1
2
2

≤ 𝐶
(

‖(∇𝜙1,∇Γ𝜓1)‖
1
2
2‖(𝜙1, 𝜓1)‖

1
2
2‖1(Φ,Ψ)‖𝐿 + ‖1(Φ,Ψ)‖

3
4
𝐿‖(Φ,Ψ)‖

1
4
𝐾

)

≤ 𝐶
(

‖(𝜙1, 𝜓1)‖
1
2
2‖1(Φ,Ψ)‖𝐿 + ‖1(Φ,Ψ)‖

3
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾

)

(5.55)

On the other hand, exploiting

‖(Φ,Ψ)‖4 ≤ 𝐶‖(Φ,Ψ)‖
1
2
2‖(Φ,Ψ)‖

1
2
1 ≤ 𝐶‖1(Φ,Ψ)‖

1
4
𝐿‖(Φ,Ψ)‖

1
4
𝐾‖(Φ,Ψ)‖

1
2
1

≤ 𝐶‖1(Φ,Ψ)‖
1
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾 ,

(5.56)

which follows from Lemma 2.1 (note that mean(Φ,Ψ) = 0), (2.2) and (4.21), we obtain similarly from (4.33), using again (5.1) as 
well as (5.53), that 

‖1(Φ,Ψ)‖2,4 ≤ 𝐶
(

‖(𝜙1, 𝜓1)‖2‖1(Φ,Ψ)‖
1
4
𝐿‖1(Φ,Ψ)‖

3
4
2 + ‖1(Φ,Ψ)‖

1
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾

)

≤ 𝐶
(

‖(𝜙1, 𝜓1)‖
3
2
2‖1(Φ,Ψ)‖𝐿 + ‖(𝜙1, 𝜓1)‖

3
4
2‖1(Φ,Ψ)‖

5
8
𝐿‖(Φ,Ψ)‖

3
8
𝐿 + ‖1(Φ,Ψ)‖

1
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾

)

.
(5.57)

Consequently, noticing that 
𝐽2 ≤ ‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1

𝐿)
′‖(𝐷2Ω

1 (Φ,Ψ), 𝐷
2
Γ

Γ
1 (Φ,Ψ))‖4‖(∇Ω

1 (Φ,Ψ),∇ΓΓ
1 (Φ,Ψ))‖4 ,

we deduce from (5.55) and (5.57) that

𝐽2 ≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖22‖1(Φ,Ψ)‖2𝐿 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖
3
2
2‖1(Φ,Ψ)‖

7
4
𝐿‖(Φ,Ψ)‖

1
4
𝐾

+ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖
5
4
2‖1(Φ,Ψ)‖

13
8
𝐿 ‖(Φ,Ψ)‖

3
8
𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1

𝐿)
′‖(𝜙1, 𝜓1)‖

3
4
2‖1(Φ,Ψ)‖

11
8
𝐿 ‖(Φ,Ψ)‖

5
8
𝐾

+ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖
1
2
2‖1(Φ,Ψ)‖

5
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1

𝐿)
′‖1(Φ,Ψ)‖𝐿‖(Φ,Ψ)‖𝐾

=∶ 𝐾1 +…𝐾6.

Next, we control the terms 𝐾1,… , 𝐾6 separately. Applying Young’s inequality, we readily find that

𝐾1 ≤ 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿,

𝐾2 ≤
1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖
8
7
(1

𝐿)
′‖(𝜙1, 𝜓1)‖

12
7
2‖1(Φ,Ψ)‖2𝐿
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≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿,

𝐾3 ≤
1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖
16
13
(1

𝐿)
′‖(𝜙1, 𝜓1)‖

20
13
2‖1(Φ,Ψ)‖2𝐿

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿,

𝐾4 ≤
1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖
16
11
(1

𝐿)
′‖(𝜙1, 𝜓1)‖

12
11
2‖1(Φ,Ψ)‖2𝐿

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿,

𝐾5 ≤
1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖
8
5
(1

𝐿)
′‖(𝜙1, 𝜓1)‖

4
5
2‖1(Φ,Ψ)‖2𝐿

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿,

𝐾6 ≤
1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′‖1(Φ,Ψ)‖2𝐿.

Therefore, we conclude that 

𝐽2 ≤
5
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿. (5.58)

For 𝐽3, we can simply use the trace theorem and the Sobolev inequality in combination with (4.3) and (5.53) to find that
𝐽3 ≤ 𝐶‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1

𝐿)
′𝜒(𝐿)‖𝛽𝑚′

Γ(𝜓1)|∇ΓΓ
1 (Φ,Ψ)|

2 − 𝑚′
Ω(𝜙1)|∇Ω

1 (Φ,Ψ)|
2
‖𝐿2(Γ)

≤ 𝐶𝜒(𝐿)‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(∇Ω
1 (Φ,Ψ),∇ΓΓ

1 (Φ,Ψ))‖
2
𝐿4(Γ)

≤ 𝐶𝜒(𝐿)‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖1(Φ,Ψ)‖22

≤ 𝐶𝜒(𝐿)‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′

(

‖(𝜙1, 𝜓1)‖22‖1(Φ,Ψ)‖2𝐿 + ‖1(Φ,Ψ)‖𝐿‖(Φ,Ψ)‖𝐾
)

(5.59)

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶𝜒(𝐿)
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖(1
𝐿)

′‖(𝜙1, 𝜓1)‖22

)

‖1(Φ,Ψ)‖2𝐿

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶𝜒(𝐿)
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿.

Collecting the estimates (5.54), (5.58) and (5.59), we obtain the following bound for 𝐼1: 

|𝐼1| ≤
7
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿. (5.60)

Next, concerning 𝐼2, we employ again (2.2), (5.55) and (5.56), and deduce

|𝐼2| =
|

|

|∫Ω

(

𝑚Ω(𝜙1) − 𝑚Ω(𝜙2)
)

∇𝜇2 ⋅ ∇Ω
1 (Φ,Ψ) d𝑥 + ∫Γ

(

𝑚Γ(𝜓1) − 𝑚Γ(𝜓2)
)

∇Γ𝜃2 ⋅ ∇ΓΓ
1 (Φ,Ψ) dΓ

|

|

|

≤ ‖(∇𝜇2,∇Γ𝜃2)‖2‖(𝑚Ω(𝜙1) − 𝑚Ω(𝜙2), 𝑚Γ(𝜓1) − 𝑚Γ(𝜓2))‖4‖(∇Ω
1 (Φ,Ψ),∇ΓΓ

1 (Φ,Ψ))‖4

≤ 𝐶‖(∇𝜇2,∇Γ𝜃2)‖2‖(Φ,Ψ)‖4‖(∇Ω
1 (Φ,Ψ),∇ΓΓ

1 (Φ,Ψ))‖4

≤ 𝐶‖(𝜇2, 𝜃2)‖𝐿‖1(Φ,Ψ)‖
1
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾

(

‖(𝜙1, 𝜓1)‖
1
2
2‖1(Φ,Ψ)‖𝐿 + ‖1(Φ,Ψ)‖

3
4
𝐿‖(Φ,Ψ)‖

1
4
𝐾

)

(5.61)

≤ 𝐶‖(𝜇2, 𝜃2)‖𝐿‖(𝜙1, 𝜓1)‖
1
2
2‖1(Φ,Ψ)‖

5
4
𝐿‖(Φ,Ψ)‖

3
4
𝐾 + 𝐶‖(𝜇2, 𝜃2)‖𝐿‖1(Φ,Ψ)‖𝐿‖(Φ,Ψ)‖𝐾

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜇2, 𝜃2)‖
8
5
𝐿‖(𝜙1, 𝜓1)‖

4
5
2 + ‖(𝜇2, 𝜃2)‖2𝐿

)

‖1(Φ,Ψ)‖2𝐿

≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶
(

‖(𝜇2, 𝜃2)‖2𝐿 + ‖(𝜙1, 𝜓1)‖42

)

‖1(Φ,Ψ)‖2𝐿.

Lastly, utilizing (4.21) once more, we find 

𝐶‖(Φ,Ψ)‖2 ≤ 𝐶‖1(Φ,Ψ)‖𝐿‖(Φ,Ψ)‖𝐾 ≤ 1
18

‖(Φ,Ψ)‖2𝐾 + 𝐶‖1(Φ,Ψ)‖2𝐿. (5.62)

Recalling the equivalence of the respective norms on −1
𝐿 , we combine the differential inequality (5.17) with the estimates (5.60),

(5.61) and (5.62), and end up with 
d
d𝑡

1
2
‖(Φ,Ψ)‖2𝐿,[𝜙1 ,𝜓1],∗ +

1
2
‖(Φ,Ψ)‖2𝐾 ≤ 𝑄(𝑡)‖(Φ,Ψ)‖2𝐿,[𝜙1 ,𝜓1],∗, (5.63)

where 
𝑄(⋅) = 𝐶

(

1 + ‖(𝜇2, 𝜃2)‖2𝐿 + ‖(𝜕𝑡𝜙1, 𝜕𝑡𝜓1)‖2(1
𝐿)

′ + ‖(𝜙1, 𝜓1)‖42

)

∈ 𝐿1(0, 𝑇 ) for all 𝑇 > 0.
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Therefore, noting again the equivalence of the respective norms on −1
𝐿 , an application of Gronwall’s lemma entails that 

‖

(

𝜙1(𝑡) − 𝜙2(𝑡), 𝜓1(𝑡) − 𝜓2(𝑡)
)

‖

2
(1

𝐿)
′ ≤ ‖

(

𝜙0
1 − 𝜙

0
2, 𝜓

0
1 − 𝜓0

2
)

‖

2
(1

𝐿)
′ exp

(

∫

𝑡

0
𝑄(𝑠) d𝑠

)

for all 𝑡 ≥ 0. Consequently, if 𝜙0
1 = 𝜙0

2 a.e. in Ω and 𝜓0
1 = 𝜓0

2  a.e. on Γ, the above inequality yields the uniqueness of weak solutions. ∎

6.  Propagation of regularity and instantaneous separation property

In this section, we prove Theorems 3.4 and 3.7 regarding the propagation of regularity and the instantaneous separation property.
The proof of Theorem 3.4 is based on deriving suitable estimates for the time difference quotients (𝜕ℎ𝑡 𝜙, 𝜕ℎ𝑡 𝜓) by exploiting the dif-

ferential inequality (5.63). This argument, however, requires the mobility functions to satisfy higher regularity assumptions, namely, 
𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]). Therefore, the strategy of the proof is as follows. First, under the stronger assumption 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]), we 
prove that the unique weak solution to (1.1) satisfies the desired propagation of regularity. Then, in the second step, we return to 
the original assumption 𝑚Ω, 𝑚Γ ∈ 𝐶1([−1, 1]), and construct a sequence of smooth approximations of the mobility functions lying in 
𝐶2([−1, 1]). This allows us to apply the results from the first step to obtain a corresponding sequence of approximate solutions to (1.1), 
where now the mobility functions are replaced by their respective regularizations. Then, employing the chain-rule formula established 
in Proposition A.1, we derive uniform estimates for the approximate solutions with respect to the approximation parameter. Finally, 
standard compactness arguments yield the desired result.
Proof of Theorem 3.4. 

Step 1: We start by assuming 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]). To prove the propagation of regularity, we make use of the differential in-
equality (5.63) proven in the uniqueness part of Theorem 3.2. First, for brevity, we use the notation

ℎ(𝑓, 𝑔) = 𝐿[𝜙(⋅ + ℎ), 𝜓(⋅ + ℎ)](𝑓, 𝑔),

‖ ⋅ ‖𝐿,ℎ,∗ = ‖ ⋅ ‖𝐿,[𝜙(⋅+ℎ),𝜓(⋅+ℎ)],∗.

Then for any ℎ ∈ (0, 1), we apply the estimate (5.63) to (𝜙1, 𝜓1) = (𝜙,𝜓) and (𝜙2, 𝜓2) = (𝜙(⋅ + ℎ), 𝜓(⋅ + ℎ)). Dividing the resulting 
inequality by ℎ2, and denoting the difference quotient in time of a function 𝑓 by 𝜕ℎ𝑡 𝑓 (𝑡) = 1

ℎ (𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)), we obtain
d
d𝑡

1
2
‖(𝜕ℎ𝑡 𝜙(𝑡), 𝜕

ℎ
𝑡 𝜓(𝑡))‖

2
𝐿,ℎ,∗ +

1
2
‖(𝜕ℎ𝑡 𝜙(𝑡), 𝜕

ℎ
𝑡 𝜓(𝑡))‖

2
𝐾 ≤ 𝑄ℎ(𝑡)‖(𝜕ℎ𝑡 𝜙(𝑡), 𝜕

ℎ
𝑡 𝜓(𝑡))‖

2
𝐿,ℎ,∗ (6.1)

where, now, 

𝑄ℎ(⋅) = 𝐶
(

1 + ‖(𝜇(⋅ + ℎ), 𝜃 ⋅ +ℎ))‖2𝐿 + ‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖2(1
𝐿)

′ + ‖(𝜙,𝜓)‖42

)

∈ 𝐿1(0, 𝑇 )

for any 𝑇 > 0. To apply the uniform Gronwall Lemma 2.3, we note that 

sup
𝑡≥0 ∫

𝑡+1

𝑡
‖(𝜕ℎ𝑡 𝜙(𝑠), 𝜕

ℎ
𝑡 𝜓(𝑠))‖

2
𝐿,ℎ,∗ d𝑠 ≤ 𝐶0, sup

𝑡≥0 ∫

𝑡+1

𝑡
𝑄ℎ(𝑠) d𝑠 ≤ 𝐶1, (6.2)

where the constants 𝐶0, 𝐶1 > 0 solely depend on 𝐸(𝜙0, 𝜓0), mean(𝜙0, 𝜓0), and the parameters of the system. Let 𝜏 > 0. Then, an 
application of Lemma 2.3 with 𝑡0 = 0 and 𝑟 = 𝜏 yields 

‖(𝜕ℎ𝑡 𝜙(𝑡), 𝜕
ℎ
𝑡 𝜓(𝑡))‖

2
𝐿,ℎ,∗ ≤

𝐶0
𝜏

exp(𝐶1) for all 𝑡 ≥ 𝜏. (6.3)

Recalling again the equivalence of the corresponding norms on −1
𝐿 , we readily obtain 

‖(𝜕ℎ𝑡 𝜙(𝑡), 𝜕
ℎ
𝑡 𝜓(𝑡))‖

2
(1

𝐿)
′ ≤

𝐶𝐶0
𝜏

exp(𝐶1) for all 𝑡 ≥ 𝜏, (6.4)

where the constant 𝐶 > 0 depends solely on the parameters of the system. This allows us to pass to the limit ℎ → 0 in (6.4) to deduce 
that 

sup
𝑡≥𝜏

‖(𝜕𝑡𝜙(𝑡), 𝜕𝑡𝜓(𝑡))‖2(1
𝐿)

′ ≤
𝐶𝐶0
𝜏

exp(𝐶1). (6.5)

Then, we integrate (6.1) over the time interval [𝑡, 𝑡 + 1], and employ the estimates (6.2) and (6.5). Passing again to the limit ℎ → 0 in 
the resulting estimate yields 

sup
𝑡≥𝜏 ∫

𝑡+1

𝑡
‖(𝜕𝑡𝜙(𝑠), 𝜕𝑡𝜓(𝑠))‖2𝐾 d𝑠 ≤

(1 + 𝐶1)𝐶𝐶0
𝜏

exp(𝐶1). (6.6)

Next, testing (3.4a) with 𝐿[𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓) and noting on the identities (5.3)-(5.4), an application of the bulk-surface Poincaré in-
equality together with Young’s inequality shows that 

‖(𝜇, 𝜃)‖𝐿 ≤ 𝐶‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖(1
𝐿)

′ ,
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which proves that 
𝑡↦ ‖(𝜇(𝑡), 𝜃(𝑡))‖𝐿 ∈ 𝐿∞(𝜏,∞)

in view of (6.5). Thus, in light of (5.7), we use the bulk-surface Poincaré inequality to obtain that 
‖(𝜇, 𝜃)‖𝐿∞(𝜏,∞;1) ≤ 𝐶. (6.7)

By (5.9) we learn that 
‖(𝜙,𝜓)‖𝐿∞(𝜏,∞;2,𝑝) + ‖(𝐹 ′

1(𝜙), 𝐺
′
1(𝜓))‖𝐿∞(𝜏,∞;𝑝) ≤ 𝐶 (6.8)

for all 2 ≤ 𝑝 < ∞. To derive higher regularity estimates for the chemical potentials, we first recall that
‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖2

= ‖𝐿[𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓)‖2

≤ 𝐶
(

‖(∇𝜙,∇Γ𝜓)‖2‖(𝜙,𝜓)‖2‖𝐿[𝜙,𝜓](𝜕𝑡𝜙, 𝜕𝑡𝜓)‖𝐿 + ‖(𝜇, 𝜃)‖
1
2
𝐿‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖

1
2
𝐾

)

.

Thus, thanks to (6.5), (6.7) and (6.8), we have 

‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖2 ≤ 𝐶
(

1 + ‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖
1
2
𝐾
)

a.e. on (𝜏,∞). Therefore, we infer with (6.6) that 

sup
𝑡≥𝜏 ∫

𝑡+1

𝑡
‖(𝜇 −mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖42 d𝑠 ≤ 𝐶. (6.9)

In light of (5.7), the latter implies that (𝜇, 𝜃) ∈ 𝐿4
uloc([𝜏,∞);2).

Furthermore, exploiting the additional assumption 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]), we can use Corollary 4.4 to find that
‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖3

≤ 𝐶

(

‖

‖

‖

(

𝜕𝑡𝜙
𝑚Ω(𝜙)

,
𝜕𝑡𝜓
𝑚Γ(𝜓)

)

‖

‖

‖1 +
‖

‖

‖

(𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇𝜇
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)∇Γ𝜓 ⋅ ∇Γ𝜃

𝑚Γ(𝜓)

)

‖

‖

‖1

)

.
(6.10)

By standard computations, we estimate the terms on the right-hand side of (6.10) as
‖

‖

‖

(

𝜕𝑡𝜙
𝑚Ω(𝜙)

,
𝜕𝑡𝜓
𝑚Γ(𝜓)

)

‖

‖

‖1

≤ ‖

‖

‖

(

𝜕𝑡𝜙
𝑚Ω(𝜙)

,
𝜕𝑡𝜓
𝑚Γ(𝜓)

)

‖

‖

‖2 +
‖

‖

‖

(𝑚′
Ω(𝜙)𝜕𝑡𝜙∇𝜙

𝑚Ω(𝜙)2
,
𝑚′
Γ(𝜓)𝜕𝑡𝜓∇Γ𝜓

𝑚Γ(𝜓)2

)

‖

‖

‖2 +
‖

‖

‖

(

∇𝜕𝑡𝜙
𝑚Ω(𝜙)

,
∇Γ𝜕𝑡𝜓
𝑚Γ(𝜓)

)

‖

‖

‖2

≤ 𝐶‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖2 + 𝐶‖(∇𝜙,∇Γ𝜓)‖∞‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖2 + 𝐶‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖𝐾

and

‖

‖

‖

(𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇𝜇
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)∇Γ𝜓 ⋅ ∇Γ𝜃

𝑚Γ(𝜓)

)

‖

‖

‖1

≤ ‖

‖

‖

(𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇𝜇
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)∇Γ𝜓 ⋅ ∇Γ𝜃

𝑚Γ(𝜓)

)

‖

‖

‖2

+ ‖

‖

‖

(

(

𝑚′′
Ω(𝜙)𝑚Ω(𝜙) − 𝑚′

Ω(𝜙)
2)(∇𝜙 ⋅ ∇𝜇)∇𝜙

𝑚Ω(𝜙)2
,

(

𝑚′′
Γ (𝜓)𝑚Γ(𝜓) − 𝑚′

Γ(𝜓)
2)(∇Γ𝜓 ⋅ ∇Γ𝜃

)

∇Γ𝜓

𝑚Γ(𝜓)2

)

‖

‖

‖2

+ ‖

‖

‖

(𝑚′
Ω(𝜙)𝐷

2𝜙∇𝜇
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)𝐷

2
Γ𝜓∇Γ𝜃

𝑚Γ(𝜓)

)

‖

‖

‖2 +
‖

‖

‖

(𝑚′
Ω(𝜙)𝐷

2𝜇∇𝜙
𝑚Ω(𝜙)

,
𝑚′
Γ(𝜓)𝐷

2
Γ𝜃∇Γ𝜓

𝑚Γ(𝜓)

)

‖

‖

‖2

≤ 𝐶‖(∇𝜙,∇Γ𝜓)‖∞‖(∇𝜇,∇Γ𝜃)‖2 + 𝐶‖(∇𝜙,∇Γ𝜓)‖2∞‖(∇𝜇,∇Γ𝜃)‖2 + 𝐶‖(𝜙,𝜓)‖2,4‖(∇𝜇,∇Γ𝜃)‖4

+ 𝐶‖(∇𝜙,∇Γ𝜓)‖∞‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖2 .

Recalling the Sobolev embedding 2,3 ↪ 1,∞, and exploiting (6.8), we arrive at
‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖3

≤ 𝐶
(

1 + ‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖2 + ‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖𝐾
)

.

Hence, by (6.6) and (6.9), we conclude that 

sup
𝑡≥𝜏 ∫

𝑡+1

𝑡
‖(𝜇 − 𝛽mean(𝜇, 𝜃), 𝜃 −mean(𝜇, 𝜃))‖23 d𝑠 ≤ 𝐶.

In light of (5.7), the latter entails that (𝜇, 𝜃) ∈ 𝐿2
uloc([𝜏,∞);3).

Step 2: Now, let 𝑚Ω, 𝑚Γ ∈ 𝐶1([−1, 1]). Then, we can construct a sequence (𝑚Ω,𝑘)𝑘∈ℕ ⊂ 𝐶2([−1, 1]) such that
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(M1) 0 < 𝑚∗

2 ≤ 𝑚Ω,𝑘(𝑠) ≤ 2𝑀∗ for all 𝑠 ∈ [−1, 1] and 𝑘 ∈ ℕ;
(M2) 𝑚Ω,𝑘 → 𝑚Ω in 𝐶1([−1, 1]) as 𝑘 → ∞;
(M3) |𝑚′

Ω,𝑘(𝑠)| ≤ 𝐶mob‖𝑚′
Ω‖𝐿∞([−1,1]) for all 𝑠 ∈ [−1, 1] and 𝑘 ∈ ℕ,

where 𝑚∗ and 𝑀∗ are the constants from Assumption (A2), and the constant 𝐶mob > 0 does not depend on 𝑘 ∈ ℕ. Similarly, we can 
construct a sequence (𝑚Γ,𝑘)𝑘∈ℕ ⊂ 𝐶2([−1, 1]) that satisfies analogous properties. Considering the corresponding unique weak solution 
(𝜙𝑘, 𝜓𝑘, 𝜇𝑘, 𝜃𝑘) which exists according to Theorem 3.2, the results from Step 1 show that for any 𝜏 > 0, it holds that

(𝜙𝑘, 𝜓𝑘) ∈ 𝐿∞(𝜏,∞;2,𝑝), (𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘) ∈ 𝐿∞(𝜏,∞; (1
𝐿)

′) ∩ 𝐿2
uloc([𝜏,∞);1),

(𝜇𝑘, 𝜃𝑘) ∈ 𝐿∞(𝜏,∞;1
𝐿) ∩ 𝐿

2
uloc([𝜏,∞);3), (𝐹 ′(𝜙𝑘), 𝐺′(𝜓𝑘)) ∈ 𝐿∞(𝜏,∞;𝑝),

for any 2 ≤ 𝑝 < ∞ and all 𝑘 ∈ ℕ. Moreover, with these regularities at hand, and exploiting the additional Assumption (A4), one can 
show similarly to [25, Theorem 2.3] and [26, Theorem 2.2] that 

(𝐹 ′′(𝜙𝑘), 𝐺′′(𝜓𝑘)) ∈ 𝐿∞(𝜏,∞;𝑝)

for any 2 ≤ 𝑝 < ∞ (see also [23, Theorem 3.11]). From this, one can deduce that the time derivative (𝜕𝑡𝜇𝑘, 𝜕𝑡𝜃𝑘) exists for all 𝑘 ∈ ℕ in 
the sense that (𝜕𝑡𝜇𝑘, 𝜕𝑡𝜃𝑘) ∈ 𝐿2

uloc([𝜏,∞); (1)′), and it satisfies
⟨

(𝜕𝑡𝜇𝑘, 𝜕𝑡𝜃𝑘), (𝜂, 𝜗)
⟩

1 = ∫Ω
∇𝜕𝑡𝜙𝑘 ⋅ ∇𝜂 + 𝐹 ′′(𝜙𝑘)𝜕𝑡𝜙𝑘𝜂 d𝑥 + ∫Γ

∇Γ𝜕𝑡𝜓𝑘 ⋅ ∇Γ𝜗 + 𝐺′′(𝜓𝑘)𝜕𝑡𝜓𝑘𝜗 dΓ

+ 𝜒(𝐾)∫Γ
(𝛼𝜕𝑡𝜓𝑘 − 𝜕𝑡𝜙𝑘)(𝛼𝜓𝑘 − 𝜙𝑘) dΓ

(6.11)

a.e. on (𝜏,∞) for all (𝜂, 𝜗) ∈ 1. For more details, we refer to [15]. In the following, the letter 𝐶 will denote generic positive constants 
that are independent of 𝑘.

As shown at the beginning of the proof of Theorem 3.2, one readily deduces from the energy inequality (3.6) the following uniform 
estimates

sup
𝑡≥0

‖(𝜙𝑘(𝑡), 𝜓𝑘(𝑡))‖1 ≤ 𝐶, (6.12)

∫

∞

0
‖(𝜇𝑘, 𝜃𝑘)‖2𝐿 + ‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2(1

𝐿)
′ d𝑠 ≤ 𝐶, (6.13)

sup
𝑡≥0 ∫

𝑡+1

𝑡
‖(𝜙𝑘, 𝜓𝑘)‖42 d𝑠 ≤ 𝐶 (6.14)

as well as 
‖(𝜙𝑘, 𝜓𝑘)‖2,𝑝 + ‖(𝐹 ′

1(𝜙𝑘), 𝐺
′
1(𝜓𝑘))‖𝑝 ≤ 𝐶

(

1 + ‖(𝜇𝑘, 𝜃𝑘)‖𝐿
)

a.e. on (0,∞). To establish the main estimates for the regularity argument, we aim to apply Proposition A.1. To this end, noting on 
(

div(𝑚Ω,𝑘(𝜙𝑘)∇𝜇𝑘),divΓ(𝑚Γ,𝑘(𝜓𝑘)∇Γ𝜃𝑘) − 𝛽𝑚Ω,𝑘(𝜙𝑘)𝜕𝐧𝜇𝑘
)

= (𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘) ∈ 𝐿2
uloc([𝜏,∞);1),

the aforementioned proposition yields that
d
d𝑡

1
2

(

∫Ω
𝑚Ω,𝑘(𝜙𝑘)|∇𝜇𝑘|2 d𝑥 + ∫Γ

𝑚Γ,𝑘(𝜓𝑘)|∇Γ𝜃𝑘|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝜃𝑘 − 𝜇𝑘)2 dΓ
)

=
⟨

(𝜕𝑡𝜇𝑘, 𝜕𝑡𝜃𝑘), (−div(𝑚Ω,𝑘(𝜙𝑘)∇𝜇𝑘),−divΓ(𝑚Γ,𝑘(𝜓𝑘)∇Γ𝜃𝑘) + 𝛽𝑚Ω,𝑘(𝜙𝑘)𝜕𝐧𝜇𝑘)
⟩

1

+ ∫Ω
𝑚′
Ω,𝑘(𝜙𝑘)𝜕𝑡𝜙𝑘|∇𝜇𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ,𝑘(𝜓𝑘)𝜕𝑡𝜓𝑘|∇Γ𝜃𝑘|

2 dΓ

= −
⟨

(𝜕𝑡𝜇𝑘, 𝜕𝑡𝜃𝑘), (𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)
⟩

1 + ∫Ω
𝑚′
Ω,𝑘(𝜙𝑘)𝜕𝑡𝜙𝑘|∇𝜇𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ,𝑘(𝜓𝑘)𝜕𝑡𝜓𝑘|∇Γ𝜃𝑘|

2 dΓ

= −‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2𝐾 − ∫Ω
𝐹 ′′(𝜙𝑘)|𝜕𝑡𝜙𝑘|2 d𝑥 − ∫Γ

𝐺′′(𝜓𝑘)|𝜕𝑡𝜓𝑘|2 dΓ + ∫Ω
𝑚′
Ω,𝑘(𝜙𝑘)𝜕𝑡𝜙𝑘|∇𝜇𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ,𝑘(𝜓𝑘)𝜕𝑡𝜓𝑘|∇Γ𝜃𝑘|

2 dΓ

a.e. on (𝜏,∞). Exploiting the strong convexity of 𝐹1 and 𝐺1, respectively, as well as the Lipschitz continuity of 𝐹 ′
2 and 𝐺′

2, respectively, 
we readily infer

d
d𝑡

1
2

(

∫Ω
𝑚Ω,𝑘(𝜙𝑘)|∇𝜇𝑘|2 d𝑥 + ∫Γ

𝑚Γ,𝑘(𝜓𝑘)|∇Γ𝜃𝑘|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝜃𝑘 − 𝜇𝑘)2 dΓ
)

+ ‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2𝐾

≤ 𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖22 + ∫Ω
𝑚′
Ω,𝑘(𝜙𝑘)𝜕𝑡𝜙𝑘|∇𝜇𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ,𝑘(𝜓𝑘)𝜕𝑡𝜓𝑘|∇Γ𝜃𝑘|

2 dΓ.
(6.15)

For the first term on the right-hand side of (6.15), if 𝐾 ∈ [0,∞), we employ Ehrling’s lemma and (5.5) to find that 

𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖22 ≤ 1
4
‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2𝐾 + 𝐶‖(𝜇𝑘, 𝜃𝑘)‖2𝐿. (6.16)

Nonlinear Analysis 268 (2026) 114060 

25 



J. Stange

On the other hand, if 𝐾 = ∞, Ehrling’s lemma yields that, for any 𝜀 > 0,

𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖22 ≤ 𝜀‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖21 + 𝐶𝜀‖(𝜇𝑘, 𝜃𝑘)‖
2
𝐿

≤ 𝜀‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖22 + 𝜀‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖
2
𝐾 + 𝐶𝜀‖(𝜇𝑘, 𝜃𝑘)‖2𝐿.

Consequently, choosing 𝜀 = 𝐶
5 , we conclude that (6.16) also holds in the case 𝐾 = ∞.

Next, to control the remaining terms on the right-hand side of (6.15), we use (2.2) and (M3), obtaining
|

|

|∫Ω
𝑚′
Ω,𝑘(𝜙𝑘)𝜕𝑡𝜙𝑘|∇𝜇𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ,𝑘(𝜓𝑘)𝜕𝑡𝜓𝑘|∇Γ𝜃𝑘|

2 dΓ||
|

≤ 𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2‖(∇𝜇𝑘,∇Γ𝜃𝑘)‖24

≤ 𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2‖(𝜇𝑘, 𝜃𝑘)‖𝐿‖(𝜇𝑘 − 𝛽mean(𝜇𝑘, 𝜃𝑘), 𝜃𝑘 −mean(𝜇𝑘, 𝜃𝑘))‖2 .

(6.17)

Arguing as previously done in Step 1, we deduce with (4.21), (4.32), (5.1), and (5.5) that
‖(𝜇𝑘 − 𝛽mean(𝜇𝑘, 𝜃𝑘), 𝜃𝑘 −mean(𝜇𝑘, 𝜃𝑘))‖2

= ‖𝐿[𝜙𝑘, 𝜓𝑘](𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2

≤ 𝐶
(

‖(∇𝜙𝑘,∇Γ𝜓𝑘)‖2‖(𝜙𝑘, 𝜓𝑘)‖2‖𝐿[𝜙𝑘, 𝜓𝑘](𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖𝐿 + ‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2
)

≤ 𝐶
(

‖(𝜙𝑘, 𝜓𝑘)‖2‖(𝜇𝑘, 𝜃𝑘)‖𝐿 + ‖(𝜇𝑘, 𝜃𝑘)‖
1
2
𝐿‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖

1
2
𝐾

)

.

Consequently, we infer with Young’s inequality that
|

|

|∫Ω
𝑚′
Ω,𝑘(𝜙𝑘)𝜕𝑡𝜙𝑘|∇𝜇𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ,𝑘(𝜓𝑘)𝜕𝑡𝜓𝑘|∇Γ𝜃𝑘|

2 dΓ||
|

≤ 𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2‖(𝜇𝑘, 𝜃𝑘)‖𝐿
(

‖(𝜙𝑘, 𝜓𝑘)‖2‖(𝜇𝑘, 𝜃𝑘)‖𝐿 + ‖(𝜇𝑘, 𝜃𝑘)‖
1
2
𝐿‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖

1
2
𝐾

)

≤ 𝐶‖(𝜇𝑘, 𝜃𝑘)‖
3
2
𝐿‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖

1
2
𝐾

(

‖(𝜙𝑘, 𝜓𝑘)‖2‖(𝜇𝑘, 𝜃𝑘)‖𝐿 + ‖(𝜇𝑘, 𝜃𝑘)‖
1
2
𝐿‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖

1
2
𝐾

)

≤ 𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖
1
2
𝐾‖(𝜙𝑘, 𝜓𝑘)‖2‖(𝜇𝑘, 𝜃𝑘)‖

5
2
2 + 𝐶‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖𝐾‖(𝜇𝑘, 𝜃𝑘)‖

2
𝐿 (6.18)

≤ 1
4
‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2𝐾 + 𝐶‖(𝜙𝑘, 𝜓𝑘)‖

4
3
2‖(𝜇𝑘, 𝜃𝑘)‖

10
3
𝐿 + 𝐶‖(𝜇𝑘, 𝜃𝑘)‖4𝐿

≤ 1
4
‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2𝐾 + 𝐶

(

‖(𝜙𝑘, 𝜓𝑘)‖42 + ‖(𝜇𝑘, 𝜃𝑘)‖2𝐿
)

‖(𝜇𝑘, 𝜃𝑘)‖2𝐿.

Thus, in view of (6.15), we obtain from (6.17) and (6.18) that
d
d𝑡

1
2

(

∫Ω
𝑚Ω,𝑘(𝜙𝑘)|∇𝜇𝑘|2 d𝑥 + ∫Γ

𝑚Γ,𝑘(𝜓𝑘)|∇Γ𝜃𝑘|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝜃𝑘 − 𝜇𝑘)2 dΓ
)

+ 1
2
‖(𝜕𝑡𝜙𝑘, 𝜕𝑡𝜓𝑘)‖2𝐾

≤ 𝐶
(

1 + ‖(𝜙𝑘, 𝜓𝑘)‖42 + ‖(𝜇𝑘, 𝜃𝑘)‖2𝐿
)(

∫Ω
𝑚Ω,𝑘(𝜙𝑘)|∇𝜇𝑘|2 d𝑥 + ∫Γ

𝑚Γ,𝑘(𝜓𝑘)|∇Γ𝜃𝑘|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝜃𝑘 − 𝜇𝑘)2 dΓ
)

(6.19)

a.e. on (𝜏,∞). In light of (6.13) and (6.14), we may now apply the uniform Gronwall Lemma 6.3 and deduce with (M3) that 

sup
𝑡≥𝜏

‖(𝜇𝑘(𝑡), 𝜃𝑘(𝑡))‖2𝐿 ≤ 𝐶
𝜏
.

Integrating (6.19) in time over [𝑡, 𝑡 + 1] for 𝑡 ≥ 𝜏, we find 

sup
𝑡≥𝜏 ∫

𝑡+1

𝑡
‖(𝜕𝑡𝜙𝑘(𝑠), 𝜕𝑡𝜓𝑘(𝑠))‖2𝐾 d𝑠 ≤ 𝐶

𝜏
.

Based on these bounds, we can follow along the lines of Step 1 and conclude that 
‖(𝜇𝑘, 𝜃𝑘)‖𝐿∞(𝜏,∞;1

𝐿)
+ ‖(𝜙𝑘, 𝜓𝑘)‖𝐿∞(𝜏,∞;2,𝑝) + ‖(𝐹 ′

1(𝜙𝑘), 𝐺
′
1(𝜓𝑘))‖𝐿∞(𝜏,∞;𝑝) + ‖(𝜇𝑘, 𝜃𝑘)‖𝐿4

uloc([𝜏,∞);2) ≤ 𝐶

for all 2 ≤ 𝑝 < ∞. These estimates ensure, by standard compactness arguments, the existence of a limit quadruple (𝜙,𝜓, 𝜇, 𝜃) solving
(1.1) in the sense of Definition 3.1, and satisfying

(𝜙,𝜓) ∈ 𝐿∞(𝜏,∞;2,𝑝),

(𝜕𝑡𝜙, 𝜕𝑡𝜓) ∈ 𝐿∞(𝜏,∞; (1
𝐿)

′) ∩ 𝐿2
uloc([𝜏,∞);1),

(𝜇, 𝜃) ∈ 𝐿∞(𝜏,∞;1
𝐿) ∩ 𝐿

4
uloc([𝜏,∞);2),

(𝐹 ′(𝜙), 𝐺′(𝜓)) ∈ 𝐿∞(𝜏,∞;𝑝)

for any 2 ≤ 𝑝 < ∞. This finishes the proof. ∎
As a consequence of Theorem 3.4, we can improve the energy inequality (3.6) to be an energy equality.
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Proposition 6.1.  Suppose the assumptions from Theorem 3.4 hold, and consider a global weak solution (𝜙,𝜓, 𝜇, 𝜃) that satisfies the 
propagation of regularity. Then 

d
d𝑡
𝐸(𝜙(𝑡), 𝜓(𝑡)) + ∫Ω

𝑚Ω(𝜙)|∇𝜇|2 d𝑥 + ∫Γ
𝑚Γ(𝜓)|∇Γ𝜃|

2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝜃 − 𝜇)2 dΓ = 0 (6.20)

for a.e. 𝑡 > 0, and

𝐸(𝜙(𝑡), 𝜓(𝑡)) + ∫

𝑡

0 ∫Ω
𝑚Ω(𝜙)|∇𝜇|2 d𝑥 d𝑠 + ∫

𝑡

0 ∫Γ
𝑚Γ(𝜓)|∇Γ𝜃|

2 dΓ d𝑠 + 𝜒(𝐿)∫

𝑡

0 ∫Γ
(𝛽𝜃 − 𝜇)2 dΓ d𝑠 = 𝐸(𝜙0, 𝜓0) (6.21)

for all 𝑡 ≥ 0. 
Proof.  We start by defining the functional 𝐸0 ∶ 2 → (−∞,∞] given by 

𝐸0(𝜁, 𝜉) ∶=
1
2
‖(𝜁, 𝜉)‖2𝐾 + ∫Ω

𝐹1(𝜁 ) d𝑥 + ∫Γ
𝐺1(𝜉) dΓ,

where 𝐹1 and 𝐺1 are the convex parts of the potentials 𝐹  and 𝐺 in Assumption (A3), respectively. Then, the functional 𝐸0 is proper, 
convex, and lower-semicontinuous (see, e.g., [15, Lemma 5.1]). Owing to [30, Lemma 4.1] in combination with [15, Proposition 5.2] 
we deduce that [0,∞) ∋ 𝑡↦ 𝐸0(𝜙(𝑡), 𝜓(𝑡)) is absolutely continuous and it holds

d
d𝑡
𝐸0(𝜙,𝜓) =

⟨

(𝜕𝑡𝜙, 𝜕𝑡𝜓), (−Δ𝜙 + 𝐹 ′
1(𝜙),−ΔΓ𝜓 + 𝐺′

1(𝜓) + 𝛼𝜕𝐧𝜙)
⟩

1
𝐿

=
⟨

(𝜕𝑡𝜙, 𝜕𝑡𝜓), (𝜇 − 𝐹 ′
2(𝜙), 𝜃 − 𝐺

′
2(𝜓))

⟩

1
𝐿

= ∫Ω
𝑚Ω(𝜙)|∇𝜇|2 d𝑥 + ∫Γ

𝑚Γ(𝜓)|∇Γ𝜃|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝜃 − 𝜇)2 dΓ − ∫Ω
𝐹 ′
2(𝜙)𝜕𝑡𝜙 d𝑥 − ∫Γ

𝐺′
2(𝜓)𝜕𝑡𝜓 dΓ

almost everywhere in (𝜏,∞) for any 𝜏 > 0. Consequently,
d
d𝑡
𝐸(𝜙,𝜓) = ∫Ω

𝑚Ω(𝜙)|∇𝜇|2 d𝑥 + ∫Γ
𝑚Γ(𝜓)|∇Γ𝜃|

2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝜃 − 𝜇)2 dΓ (6.22)

almost everywhere in (𝜏,∞). Since 𝜏 > 0 was arbitrary, we readily obtain (6.20). Then, integrating (6.22) over (𝑠, 𝑡) for 𝑠, 𝑡 > 𝜏 with 
𝑠 ≤ 𝑡, we infer

𝐸(𝜙(𝑡), 𝜓(𝑡)) − 𝐸(𝜙(𝑠), 𝜓(𝑠)) = ∫

𝑡

𝑠 ∫Ω
𝑚Ω(𝜙)|∇𝜇|2 d𝑥 d𝑠 + ∫

𝑡

𝑠 ∫Γ
𝑚Γ(𝜓)|∇Γ𝜃|

2 dΓ d𝑠 + 𝜒(𝐿)∫

𝑡

𝑠 ∫Γ
(𝛽𝜃 − 𝜇)2 dΓ d𝑠. (6.23)

It follows from (3.6) that lim sup𝑠→0 𝐸(𝜙(𝑠), 𝜓(𝑠)) ≤ 𝐸(𝜙(0), 𝜓(0)). On the other hand, by weak lower-semicontinuity of norms 
and Lebesgue’s dominated convergence theorem, we have lim inf 𝑠→0 𝐸(𝜙(𝑠), 𝜓(𝑠)) ≥ 𝐸(𝜙(0), 𝜓(0)). As a result, it holds that 
lim𝑠→0 𝐸(𝜙(𝑠), 𝜓(𝑠)) = 𝐸(𝜙(0), 𝜓(0)). This allows us to pass to the limit 𝑠 → 0 in (6.23) and conclude the energy identity (6.21). ∎

Now, we are in a position to present the proof of Theorem 3.7.
Proof of Theorem 3.7.  The case with Assumption (A4.1). Let (𝜙,𝜓, 𝜇, 𝜃) be a weak solution to (1.1) that exhibits the propagation 
of regularity. Then, we have already seen in the proof of Theorem 3.4 that 

𝐹 ′′
1 (𝜙) ∈ 𝐿∞(𝜏,∞;𝐿𝑝(Ω))

for any 2 ≤ 𝑝 < ∞ (see, e.g., [23, Theorem 3.11]). Analogously, one can show that 
𝐹 ′′
1 (𝜓) ∈ 𝐿∞(𝜏,∞;𝐿𝑝(Γ))

for all 2 ≤ 𝑝 < ∞ (see, e.g., [26, Theorem 2.2]). On the other hand, since (𝜙,𝜓) ∈ 𝐿∞(𝜏,∞;2,𝑝) and (𝐹 ′
1(𝜙), 𝐹

′
1(𝜓)) ∈ 𝐿∞(𝜏,∞;𝑝)

for any 2 ≤ 𝑝 < ∞, it holds that 
sup
𝑡≥𝜏

‖𝐹 ′
1(𝜙(𝑡))‖𝑊 1,3(Ω) + sup

𝑡≥𝜏
‖𝐹 ′

1(𝜓(𝑡))‖𝑊 1,3(Γ) ≤ 𝐶.

As 𝑑 = 2, we have the Sobolev embeddings 𝑊 1,3(Ω) ↪ 𝐶(Ω) and 𝑊 1,3(Γ) ↪ 𝐶(Γ), and deduce that 
sup
𝑡≥𝜏

‖𝐹 ′
1(𝜙(𝑡))‖𝐿∞(Ω) + sup

𝑡≥𝜏
‖𝐹 ′

1(𝜓(𝑡))‖𝐿∞(Γ) ≤ 𝐶 =∶ 𝐶∗.

Thus, taking 
𝛿 = 1 − (𝐹 ′

1)
−1(𝐶∗),

we arrive at the conclusion (3.12).
The case with Assumption (A4.2). In this case, we exploit the dissipative structure of (1.1) in combination with a De Giorgi-type 

iteration scheme, following the recent approach developed in [12]. This method has already been successfully adapted to dynamic 
boundary conditions in the case of constant mobility functions, see, for instance, [25,26]. The extension to the setting with a non-
degenerate mobility is straightforward and follows along similar lines. For brevity, we omit the details and refer the interested reader 
to the aforementioned works. ∎
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As a direct consequence of the separation property (3.12) and regularity theory for elliptic systems with bulk-surface coupling 
(see, e.g., [20, Theorem 3.3], we can prove further regularity of the phase fields.
Corollary 6.2.  Let the assumptions from Theorem 3.7 hold, and consider a weak solution of (1.1) that satisfies the propagation of regularity. 
Then we have (𝜙,𝜓) ∈ 𝐿∞(𝜏,∞;3). 
Proof.  First, recall that

−Δ𝜙(𝑡) = 𝜇(𝑡) − 𝐹 ′(𝜙(𝑡)) a.e. in Ω,
−ΔΓ𝜓(𝑡) + 𝛼𝜕𝐧𝜙(𝑡) = 𝜃(𝑡) − 𝐺′(𝜓(𝑡)) a.e. on Γ,

𝐾𝜕𝐧𝜙(𝑡) = 𝛼𝜓(𝑡) − 𝜙(𝑡) a.e. on Γ
for almost all 𝑡 ≥ 𝜏 > 0. Then, from the separation property (3.12), the Lipschitz continuity of 𝐹 ′

2 and 𝐺′
2, respectively, and the fact 

that (𝜙,𝜓) ∈ 𝐿∞(𝜏,∞;2,𝑝) for any 𝜏 > 0, we readily deduce that 
sup
𝑡≥𝜏

‖(𝐹 ′(𝜙(𝑡)), 𝐺′(𝜓(𝑡)))‖1 ≤ 𝐶

for any 𝜏 > 0. As additionally (𝜇, 𝜃) ∈ 𝐿∞(𝜏,∞;1), the claim follows from elliptic regularity theory (see, e.g., [20, Theorem 3.3]). ∎

7.  Convergence to equilibrium

The following argument is inspired by the approach developed in [1] and its subsequent extension to the Cahn–Hilliard system 
with dynamic boundary conditions, see, for instance, [10,25,26].

Let 
𝑚 ∈ ℝ with 𝛽𝑚,𝑚 ∈ (−1, 1) if 𝐿 ∈ [0,∞), (7.1a)

and 
𝑚 = (𝑚1, 𝑚2) ∈ ℝ2 with 𝑚1, 𝑚2 ∈ (−1, 1) if 𝐿 = ∞. (7.1b)

We define the phase space 
𝐾,𝐿
𝑚 = {(𝜙,𝜓) ∈ 1

𝐾,𝐿,𝑚 ∶ 𝐸(𝜙,𝜓) <∞},

equipped with the metric

d𝐾,𝐿𝑚

(

(𝜙,𝜓), (𝜁, 𝜉)
)

∶= ‖(𝜙 − 𝜁, 𝜓 − 𝜉)‖𝐾 + |

|

|∫Ω
𝐹1(𝜙) d𝑥 − ∫Ω

𝐹1(𝜁 ) d𝑥
|

|

|

1
2

+ |

|

|∫Γ
𝐺1(𝜓) dΓ − ∫Γ

𝐺1(𝜉) dΓ
|

|

|

1
2 for all (𝜙,𝜓), (𝜁, 𝜉) ∈ 𝐾,𝐿

𝑚 .

Thus, (𝐾,𝐿
𝑚 , d𝐾,𝐿𝑚

) is a complete metric space. We then have the following conclusion, which follows from Theorem 3.2 and is a 
straightforward extension of [10, Proposition 4.1] (see also [25, Proposition 4.1]).
Proposition 7.1.  Suppose that the assumptions from Theorem 3.9 hold. Then, the system (1.1) defines a strongly continuous semigroup 
𝐾,𝐿 ∶ 𝐾,𝐿

𝑚 → 𝐾,𝐿
𝑚  such that 

𝐾,𝐿(𝑡)(𝜙0, 𝜓0) = (𝜙(𝑡), 𝜓(𝑡)) for all 𝑡 ≥ 0,

where (𝜙,𝜓) is the unique global weak solution of (1.1) subject to the initial datum (𝜙0, 𝜓0) ∈ 𝐾,𝐿
𝑚 . Moreover, 𝐾,𝐿 ∈ 𝐶(𝐾,𝐿

𝑚 ,𝐾,𝐿
𝑚 ). 

Next, we define the 𝜔-limit set 

𝜔𝐾,𝐿(𝜙0, 𝜓0) ∶=

{

(𝜙∞, 𝜓∞) ∈ 2 ∩𝐾,𝐿
𝑚

|

|

|

|

|

∃(𝑡𝑛)𝑛∈ℕ ⊂ ℝ≥0 with 𝑡𝑛 → ∞ such that 
𝐾,𝐿𝑚 (𝑡𝑛)(𝜙0, 𝜓0) → (𝜙∞, 𝜓∞) in 2 as 𝑛→ ∞

}

.

Let (𝜙0, 𝜓0) ∈ 𝐾,𝐿
𝑚  and consider the unique global weak solution to (1.1) departing from (𝜙0, 𝜓0). Then, since for any 𝜏 > 0 it 

holds that (𝜙,𝜓) ∈ 𝐿∞(𝜏,∞;3) as well as (𝜕𝑡𝜙, 𝜕𝑡𝜓) ∈ 𝐿2
uloc([𝜏,∞);1), we find from the Aubin–Lions–Simon lemma that (𝜙,𝜓) ∈

𝐶([𝑡, 𝑡 + 1];2) for all 𝑡 ≥ 𝜏 > 0. Hence, it holds that 
(𝜙,𝜓) ∈ 𝐵𝐶([𝜏,∞);𝑠)

for any 𝑠 ∈ (2, 3) and for any 𝜏 > 0. It then follows that the 𝜔-limit set 𝜔𝐾,𝐿(𝜙0, 𝜓0) is non-empty, compact and connected in 2 (see, 
e.g., [4, Theorem 9.1.8]), and we have 

lim
𝑡→∞

dist2
(

𝐾,𝐿(𝑡)(𝜙0, 𝜓0), 𝜔𝐾,𝐿(𝜙0, 𝜓0)
)

= 0. (7.2)

Additionally, as 𝐸 ∶ 𝐾,𝐿
𝑚 → ℝ serves as a strict Lyapunov functional for the strongly continuous semigroup 𝐾,𝐿, we observe 

that every (𝜙∞, 𝜓∞) ∈ 𝜔𝐾,𝐿(𝜙0, 𝜓0) is a stationary point of {𝐾,𝐿(𝑡)}𝑡≥0, that is, 𝐾,𝐿(𝑡)(𝜙∞, 𝜓∞) = (𝜙∞, 𝜓∞) for all 𝑡 ≥ 0. Denoting the 
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corresponding bulk and surface chemical potentials by 𝜇∞ and 𝜃∞, respectively, we find that (𝜙∞, 𝜓∞, 𝜇∞, 𝜃∞) can be regarded as a 
global weak solution of 

𝜕𝑡𝜙∞ = div(𝑚Ω(𝜙∞)∇𝜇∞) in Ω × (0,∞),

𝜇 = −Δ𝜙∞ + 𝐹 ′(𝜙∞) in Ω × (0,∞),

𝜕𝑡𝜓∞ = divΓ(𝑚Γ(𝜓∞)∇Γ𝜃∞) − 𝛽𝑚Ω(𝜙∞)𝜕𝐧𝜇∞ on Γ × (0,∞),

𝜃∞ = −ΔΓ𝜓∞ + 𝐺′(𝜓∞) + 𝛼𝜕𝐧𝜙∞ on Γ × (0,∞),
{

𝐾𝜕𝐧𝜙∞ = 𝛼𝜓∞ − 𝜙∞ if 𝐾 ∈ (0,∞),
𝜕𝐧𝜙∞ = 0 if 𝐾 = ∞

on Γ × (0,∞),

{

𝐿𝑚Ω(𝜙∞)𝜕𝐧𝜇∞ = 𝛽𝜃∞ − 𝜇∞ if 𝐿 ∈ [0,∞),
𝑚Ω(𝜙∞)𝜕𝐧𝜇∞ = 0 if 𝐿 = ∞

on Γ × (0,∞),

𝜙∞|𝑡=0 = 𝜙0 in Ω,
𝜓∞|𝑡=0 = 𝜓0 on Γ.

In light of the regularity properties proven in Theorem 3.4, (𝜙∞, 𝜓∞, 𝜇∞, 𝜃∞) is actually a strong solution to the stationary problem 

div(𝑚Ω(𝜙∞)∇𝜇∞) = 0 in Ω, (7.4a)

𝜇∞ = −Δ𝜙∞ + 𝐹 ′(𝜙∞) in Ω, (7.4b)

divΓ(𝑚Γ(𝜓∞)∇Γ𝜃∞) − 𝛽𝑚Ω(𝜙∞)𝜕𝐧𝜇∞ = 0 on Γ, (7.4c)

𝜃∞ = −ΔΓ𝜓∞ + 𝐺′(𝜓∞) + 𝛼𝜕𝐧𝜙∞ on Γ, (7.4d)
{

𝐾𝜕𝐧𝜙∞ = 𝛼𝜓∞ − 𝜙∞ if 𝐾 ∈ (0,∞),
𝜕𝐧𝜙∞ = 0 if 𝐾 = ∞

on Γ, (7.4e)

{

𝐿𝑚Ω(𝜙∞)𝜕𝐧𝜇∞ = 𝛽𝜃∞ − 𝜇∞ if 𝐿 ∈ [0,∞),
𝑚Ω(𝜙∞)𝜕𝐧𝜇∞ = 0 if 𝐿 = ∞

on Γ. (7.4f)

Multiplying (7.4a) with 𝜇∞ and (7.4c) with 𝜃∞, integrating over Ω and Γ, respectively, adding the resulting equations and using the 
boundary condition (7.4f), we obtain 

∫Ω
𝑚Ω(𝜙∞)|∇𝜇∞|

2 d𝑥 + ∫Γ
𝑚Γ(𝜓∞)|∇Γ𝜃∞|

2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝜃∞ − 𝜇∞)2 dΓ = 0.

Thus, for all 𝐿 ∈ [0,∞] we infer that 𝜇∞ and 𝜃∞ are both constant. Furthermore, if 𝐿 ∈ [0,∞), we can conclude that 𝛽𝜃∞ = 𝜇∞. Then, 
multiplying (7.4b) with 𝛼 and integrating over Ω, and integrating (7.4d) over Γ, we get 

𝜇∞ = 𝛽𝜃∞ = 𝛼
𝛼𝛽|Ω| + |Γ|

(

𝛼 ∫Ω
𝐹 ′(𝜙∞) d𝑥 + ∫Γ

𝐺′(𝜓∞) dΓ
)

(7.5)

if 𝐿 ∈ [0,∞). If 𝐿 = ∞, we find instead

𝜇∞ = 1
|Ω|

(

∫Ω
𝐹 ′(𝜙∞) d𝑥 − ∫Γ

𝜕𝐧𝜙∞ dΓ
)

,

𝜃∞ = 1
|Γ|

(

∫Γ
𝐺′(𝜓∞) + 𝛼𝜕𝐧𝜙∞ dΓ

)

.
(7.6)

Consequently the stationary problem (7.4) reduces to
𝜇∞ = −Δ𝜙∞ + 𝐹 ′(𝜙∞) in Ω,
𝜃∞ = −ΔΓ𝜓∞ + 𝐺′(𝜓∞) + 𝛼𝜕𝐧𝜙∞ on Γ,
{

𝐾𝜕𝐧𝜙∞ = 𝛼𝜓∞ − 𝜙∞ if 𝐾 ∈ (0,∞),
𝜕𝐧𝜙∞ = 0 if 𝐾 = ∞

on Γ,

with 𝜇∞ and 𝜃∞ given by (7.5) or (7.6) depending on the value of 𝐿 ∈ [0,∞].
Finally, we learn from [4, Theorems 9.2.3 and 9.2.7] that 

𝐸∞ = lim
𝑡→∞

𝐸(𝜙(𝑡), 𝜓(𝑡)) exists, and 𝐸(𝜙∞, 𝜓∞) = 𝐸∞ for all (𝜙∞, 𝜓∞) ∈ 𝜔𝐾,𝐿(𝜙0, 𝜓0). (7.7)

Now, to prove that the 𝜔-limit set 𝜔𝐾,𝐿(𝜙0, 𝜓0) is a singleton, we apply the Łojasiewicz–Simon approach, see, for instance, [1,10]. 
The main tool is the following extended Łojasiewicz–Simon inequality.
Lemma 7.2  (Łojasiewicz–Simon inequality). Suppose that the assumptions from Theorem 3.9 are satisfied. In addition, assume that 𝐹1, 𝐺1
are real analytic functions on (−1, 1), and 𝐹2, 𝐺2 are real analytic functions on ℝ. Let (𝜙∞, 𝜓∞) ∈ 𝜔𝐾,𝐿(𝜙0, 𝜓0). Then, there exist constants 
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𝜛 ∈ (0, 12 ), 𝑏 > 0, and 𝐶 > 0, such that 

𝐶
‖

‖

‖

‖

‖

𝐏𝐿
(

−Δ𝜁 + 𝐹 ′(𝜁 )
−ΔΓ𝜉 + 𝐺′(𝜉) + 𝛼𝜕𝐧𝜁

)

‖

‖

‖

‖

‖2
≥ |𝐸(𝜁, 𝜉) − 𝐸(𝜙∞, 𝜓∞)|1−𝜛 (7.8)

for all (𝜁, 𝜉) ∈ 2 ∩1
𝐾,𝐿,𝑚 satisfying ‖(𝜁 − 𝜙∞, 𝜉 − 𝜓∞)‖2 ≤ 𝑏. Here, 𝐏𝐿 denotes the projection of 2 onto

{

{(𝜙,𝜓) ∈ 2 ∶ mean(𝜙,𝜓) = 0}, if 𝐿 ∈ [0,∞),
{(𝜙,𝜓) ∈ 2 ∶ ⟨𝜙⟩Ω = ⟨𝜓⟩Γ = 0}, if 𝐿 = ∞.

The proof of Lemma 7.2 can be found in [25, Lemma 5.2] in the case 𝐿 = ∞, and can be readily adapted to our current setting 
(see also [10, Lemma 5.2] and [26, Lemma 5.2]).
Proof of Theorem 3.9. 

Let (𝜙0, 𝜓0) ∈ 𝐾,𝐿
𝑚  with 𝑚 as in (7.1). Then, as 𝜔𝐾,𝐿(𝜙0, 𝜓0) is compact in 2 ∩1

𝐾,𝐿,𝑚, we can cover 𝜔𝐾,𝐿(𝜙0, 𝜓0) with finitely many 
open balls {𝐵𝑗}𝑗=1,…,𝑁  in 2 ∩1

𝐾,𝐿,𝑚 centered at (𝜙
𝑗
∞, 𝜓

𝑗
∞) ∈ 𝜔𝐾,𝐿(𝜙0, 𝜓0) with radius 𝑏𝑗 , where 𝑏𝑗 > 0 is the constant from Lemma 7.2 

corresponding to (𝜙𝑗∞, 𝜓 𝑗∞). Recalling that 𝐸|𝜔𝐾,𝐿(𝜙0 ,𝜓0) = 𝐸∞ and setting 𝑈 ∶=
⋃𝑁
𝑗=1 𝐵𝑗 , we find universal constants 𝜛̃ ∈ (0, 12 ) and 

𝐶 > 0 such that 

𝐶
‖

‖

‖

‖

‖

𝐏𝐿
(

−Δ𝜁 + 𝐹 ′(𝜁 )
−ΔΓ𝜉 + 𝐺′(𝜉) + 𝛼𝜕𝐧𝜁

)

‖

‖

‖

‖

‖2
≥ |𝐸(𝜁, 𝜉) − 𝐸∞|

1−𝜛̃ for all (𝜁, 𝜉) ∈ 𝑈.

Then, in light of (7.2), there exists 𝑡∗ > 0 such that (𝜙(𝑡), 𝜓(𝑡)) ∈ 𝑈 for all 𝑡 ≥ 𝑡∗. Thus, recalling the energy identity (6.20) and setting 
𝐻(𝑡) ∶= (𝐸(𝜙(𝑡), 𝜓(𝑡)) − 𝐸∞)𝜛̃ , we have that

− d
d𝑡
𝐻(𝑡) = −𝜛̃

(

𝐸(𝜙(𝑡), 𝜓(𝑡)) − 𝐸∞
)𝜛̃−1 d

d𝑡
𝐸(𝜙(𝑡), 𝜓(𝑡))

≥ 𝜛̃
𝐶

‖(𝜇(𝑡), 𝜃(𝑡))‖2𝐿,[𝜙,𝜓]
‖

‖

‖

𝐏𝐿
(

−Δ𝜙(𝑡) + 𝐹 ′(𝜙(𝑡))
−ΔΓ𝜓(𝑡) + 𝐺′(𝜓(𝑡)) + 𝛼𝜕𝐧𝜙(𝑡)

)

‖

‖

‖2

≥ 𝜛̃min{1, 𝑚∗}
𝐶

‖(𝜇(𝑡), 𝜃(𝑡))‖2𝐿
‖

‖

‖

𝐏𝐿
(

−Δ𝜙(𝑡) + 𝐹 ′(𝜙(𝑡))
−ΔΓ𝜓(𝑡) + 𝐺′(𝜓(𝑡)) + 𝛼𝜕𝐧𝜙(𝑡)

)

‖

‖

‖2

for almost every 𝑡 ≥ 𝑡∗. By (1.1b) and (1.1d) we deduce that
‖

‖

‖

𝐏𝐿
(

−Δ𝜙(𝑡) + 𝐹 ′(𝜙(𝑡))
−ΔΓ𝜓(𝑡) + 𝐺′(𝜓(𝑡)) + 𝛼𝜕𝐧𝜙(𝑡)

)

‖

‖

‖2

= ‖(𝜇(𝑡) − 𝛽mean(𝜇(𝑡), 𝜃(𝑡)), 𝜃(𝑡) −mean(𝜇(𝑡), 𝜃(𝑡)))‖2

≤ 𝐶𝑃 ‖(𝜇(𝑡), 𝜃(𝑡))‖𝐿.

Therefore, we arrive at 

− d
d𝑡
𝐻(𝑡) ≥ 𝜛̃min{1, 𝑚∗}

𝐶𝑝𝐶
‖(𝜇(𝑡), 𝜃(𝑡))‖𝐿 for a.e. 𝑡 ≥ 𝑡∗.

Integrating the previous inequality in time from 𝑡∗ to ∞, we derive from (7.7) that 

∫

∞

𝑡∗
‖(𝜇(𝑡), 𝜃(𝑡))‖𝐿 d𝑡 ≤

𝐶𝑝𝐶
𝜛̃min{1, 𝑚∗}

𝐻(𝑡∗),

from which we deduce that 𝑡 ↦ ‖(𝜇(𝑡), 𝜃(𝑡))‖𝐿 ∈ 𝐿1(𝑡∗,∞), entailing by comparison (𝜕𝑡𝜙, 𝜕𝑡𝜓) ∈ 𝐿1(𝑡∗,∞; (1
𝐿)

′). Hence, there exists 
(𝜙∞, 𝜓∞) ∈ 𝜔𝐾,𝐿(𝜙0, 𝜓0) such that 

(𝜙(𝑡), 𝜓(𝑡)) = (𝜙(𝑡∗), 𝜓(𝑡∗)) + ∫

𝑡

𝑡∗
(𝜕𝑡𝜙(𝑠), 𝜕𝑡𝜓(𝑠)) d𝑠⟶ (𝜙∞, 𝜓∞) in (1

𝐿)
′ as 𝑡 → ∞,

and, by the uniqueness of the limit, we conclude that 𝜔𝐾,𝐿(𝜙0, 𝜓0) = {(𝜙∞, 𝜓∞)}. ∎
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Appendix A.  A bulk-surface chain rule

Proposition A.1. Let Ω ⊂ ℝ𝑑 , 𝑑 = 2, 3, be an open bounded domain with 𝐶3-boundary, let 𝐼 = (𝑎, 𝑏) ⊂ ℝ be an open interval and (𝜙,𝜓) ∈
𝐻1(𝐼 ;3) ∩ 𝐿∞(𝐼 ;2,4) with |𝜙| ≤ 1 a.e. in Ω and |𝜓| ≤ 1 a.e. on Γ. Furthermore, let 𝑚Ω, 𝑚Γ ∈ 𝐶2([−1, 1]) satisfy Assumption (A2). Consider 
(𝑢, 𝑣) ∈ 𝐶(𝐼 ;2) ∩ 𝐿∞(𝐼 ;1

𝐿) ∩ 𝐿
2(𝐼 ;3) such that 𝐿𝑚Ω(𝜙)𝜕𝐧𝑢 = 𝛽𝑣 − 𝑢 a.e. on Γ and (𝜕𝑡𝑢, 𝜕𝑡𝑣) ∈ 𝐿2(𝐼 ; (1

𝐾 )
′). In addition, assume that 

(

div(𝑚Ω(𝜙)∇𝑢),divΓ(𝑚Γ(𝜓)∇Γ𝑣) − 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢
)

∈ 𝐿2(𝐼 ;1
𝐾 ).

Then, the continuity property (𝑢, 𝑣) ∈ 𝐶(𝐼 ;1
𝐿) holds, the mapping 

𝐼 ∋ 𝑡↦ ∫Ω
𝑚Ω(𝜙(𝑡))|∇𝑢(𝑡)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑡))|∇Γ𝑣(𝑡)|2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣(𝑡) − 𝑢(𝑡))2 dΓ

is absolutely continuous, and the chain rule formula
d
d𝑡

1
2

(

∫Ω
𝑚Ω(𝜙)|∇𝑢|2 d𝑥 + ∫Γ

𝑚Γ(𝜓)|∇Γ𝑣|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝑣 − 𝑢)2 dΓ
)

=
⟨

(𝜕𝑡𝑢, 𝜕𝑡𝑣), (−div(𝑚Ω(𝜙)∇𝑢),−divΓ(𝑚Γ(𝜓)∇Γ𝑣) + 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢)
⟩

1
𝐾
+ ∫Ω

𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇𝑢|

2 d𝑥 + ∫Γ
𝑚′
Γ(𝜓)𝜕𝑡𝜓|∇Γ𝑣|

2 dΓ
(A.1)

holds a.e. on 𝐼 .
Proof.  Our proof is inspired by the approach in [7, Proposition A.1]. In the present setting, additional care is required to handle the 
terms arising from the non-degenerate mobility, which necessitates further technical considerations. First, fix 𝑢 and 𝑣 as arbitrary 
representative of their respective equivalence class. Then, since (𝑢, 𝑣) ∈ 𝐶([𝑎, 𝑏];2), we can extend the functions 𝑢 and 𝑣 onto [2𝑎 − 𝑏, 𝑎]
by reflection for all 𝑡 < 𝑎.

Let 𝜌 ∈ 𝐶∞
𝑐 (ℝ) be non-negative with supp 𝜌 ⊂ (0, 1) and ‖𝜌‖𝐿1(ℝ) = 1. For any 𝑘 ∈ ℕ, we set 

𝜌𝑘(𝑠) ∶= 𝑘𝜌(𝑘𝑠) for all 𝑠 ∈ ℝ.

Then, for any Banach space 𝑋 and any function 𝑓 ∈ 𝐿2(𝑎 − 1, 𝑏;𝑋), we define 

𝑓𝑘(𝑡) ∶= (𝜌𝑘 ∗ 𝑓 )(𝑡) = ∫

𝑡

𝑡− 1
𝑘

𝜌𝑘(𝑡 − 𝑠)𝑓 (𝑠) d𝑠 for all 𝑡 ∈ [𝑎, 𝑏] and 𝑘 ∈ ℕ.

By this construction, we have 𝑓𝑘 ∈ 𝐶∞([𝑎, 𝑏];𝑋) with 𝑓𝑘 → 𝑓 strongly in 𝐿2(𝑎, 𝑏;𝑋) as 𝑘 → ∞.
Now, for any 𝑘 ∈ ℕ, we use 𝑋 = 𝐻3(Ω) to define 𝑢𝑘 and 𝑋 = 𝐻3(Γ) to define 𝑣𝑘 as described above. By this construction, it 

holds that 𝜕𝑡𝑢𝑘 = (𝜕𝑡𝑢)𝑘 and 𝜕𝑡∇𝑢𝑘 = ∇𝜕𝑡𝑢𝑘 a.e. in Ω × (𝑎, 𝑏) as well as 𝜕𝑡𝑣𝑘 = (𝜕𝑡𝑣)𝑘 and 𝜕𝑡∇Γ𝑣𝑘 = ∇Γ𝜕𝑡𝑣𝑘 a.e. on Γ × (𝑎, 𝑏) for all 𝑘 ∈ ℕ. 
Moreover, we have

𝑢𝑘 → 𝑢 strongly in 𝐿2(𝑎, 𝑏;𝐻3(Ω)), (A.2)

𝑣𝑘 → 𝑣 strongly in 𝐿2(𝑎, 𝑏;𝐻3(Γ)), (A.3)

(𝑢𝑘, 𝑣𝑘) → (𝑢, 𝑣) strongly in 𝐿2(𝑎, 𝑏;1
𝐿), (A.4)

(𝜕𝑡𝑢𝑘, 𝜕𝑡𝑣𝑘) → (𝜕𝑡𝑢, 𝜕𝑡𝑣) strongly in 𝐿2(𝑎, 𝑏; (1
𝐾 )

′) (A.5)

as 𝑘 → ∞. Furthermore, we readily see that
‖𝑢𝑘‖𝐿∞(𝑎,𝑏;𝐻1(Ω)) ≤ ‖𝑢‖𝐿∞(𝑎,𝑏;𝐻1(Ω)),

‖𝑣𝑘‖𝐿∞(𝑎,𝑏;𝐻1(Γ)) ≤ ‖𝑣‖𝐿∞(𝑎,𝑏;𝐻1(Γ))
(A.6)

for all 𝑘 ∈ ℕ. In the following, we will denote with 𝐶 generic positive constants independent of 𝑘 ∈ ℕ, which may change their value 
from line to line. Now, for any 𝑘 ∈ ℕ, we derive the identity

d
d𝑡

1
2

(

∫Ω
𝑚Ω(𝜙)|∇𝑢𝑘|2 d𝑥 + ∫Γ

𝑚Γ(𝜓)|∇Γ𝑣𝑘|
2 dΓ + 𝜒(𝐿)∫Γ

(𝛽𝑣𝑘 − 𝑢𝑘)2 dΓ
)

(A.7)
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=
⟨

(𝜕𝑡𝑢𝑘, 𝜕𝑡𝑣𝑘), (−div(𝑚Ω(𝜙)∇𝑢𝑘),−divΓ(𝑚Γ(𝜓)∇Γ𝑣𝑘) + 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢𝑘)
⟩

1
𝐾
+ ∫Ω

𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇𝑢𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ(𝜓)𝜕𝑡𝜓|∇Γ𝑣𝑘|

2 dΓ

a.e. on [𝑎, 𝑏] by differentiating under the integral sign and applying integration by parts. Similarly, for 𝑗, 𝑘 ∈ ℕ, we calculate
d
d𝑡

1
2

(

∫Ω
𝑚Ω(𝜙)|∇(𝑢𝑗 − 𝑢𝑘)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓)|∇Γ(𝑣𝑗 − 𝑣𝑘)|2 dΓ + 𝜒(𝐿)∫Γ

(

𝛽(𝑣𝑗 − 𝑣𝑘) − (𝑢𝑗 − 𝑢𝑘)
)2 dΓ

)

=
⟨

(𝜕𝑡(𝑢𝑗 − 𝑢𝑘), 𝜕𝑡(𝑣𝑗 − 𝑣𝑘)), (−div(𝑚Ω(𝜙)∇(𝑢𝑗 − 𝑢𝑘)),−divΓ(𝑚Γ(𝜓)∇Γ(𝑣𝑗 − 𝑣𝑘)) + 𝛽𝑚Ω(𝜙)𝜕𝐧(𝑢𝑗 − 𝑢𝑘))
⟩

1
𝐾

+ ∫Ω
𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇(𝑢𝑗 − 𝑢𝑘)|

2 d𝑥 + ∫Γ
𝑚′
Γ(𝜓)𝜕𝑡𝜓|∇Γ(𝑣𝑗 − 𝑣𝑘)|2 dΓ (A.8)

≤ ‖(𝜕𝑡(𝑢𝑗 − 𝑢𝑘), 𝜕𝑡(𝑣𝑗 − 𝑣𝑘))‖(1
𝐾 )′‖(div(𝑚Ω(𝜙)∇(𝑢𝑗 − 𝑢𝑘)),divΓ(𝑚Γ(𝜓)∇Γ(𝑣𝑗 − 𝑣𝑘)) − 𝛽𝑚Ω(𝜙)𝜕𝐧(𝑢𝑗 − 𝑢𝑘))‖1

+ 𝐶‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖3‖(∇(𝑢𝑗 − 𝑢𝑘),∇Γ(𝑣𝑗 − 𝑣𝑘))‖6‖(∇(𝑢𝑗 − 𝑢𝑘),∇Γ(𝑣𝑗 − 𝑣𝑘))‖2 .

To estimate the right-hand side suitably, we use standard computations together with the Sobolev inequality to find that
‖(div(𝑚Ω(𝜙)∇(𝑢𝑗 − 𝑢𝑘)),divΓ(𝑚Γ(𝜓)∇Γ(𝑣𝑗 − 𝑣𝑘)) − 𝛽𝑚Ω(𝜙)𝜕𝐧(𝑢𝑗 − 𝑢𝑘))‖1

≤ ‖(div(𝑚Ω(𝜙)∇(𝑢𝑗 − 𝑢𝑘)),divΓ(𝑚Γ(𝜓)∇Γ(𝑣𝑗 − 𝑣𝑘)) − 𝛽𝑚Ω(𝜙)𝜕𝐧(𝑢𝑗 − 𝑢𝑘))‖2

+ ‖

(

∇
(

div(𝑚Ω(𝜙)∇(𝑢𝑗 − 𝑢𝑘))
)

,∇Γ
(

divΓ(𝑚Γ(𝜓)∇Γ(𝑣𝑗 − 𝑣𝑘)) − 𝛽𝑚Ω(𝜙)𝜕𝐧(𝑢𝑗 − 𝑢𝑘)
))

‖1

≤ ‖(𝑚Ω(𝜙)Δ(𝑢𝑗 − 𝑢𝑘), 𝑚Γ(𝜓)ΔΓ(𝑣𝑗 − 𝑣𝑘))‖2

+ ‖(𝑚′
Ω(𝜙)∇𝜙 ⋅ ∇(𝑢𝑗 − 𝑢𝑘), 𝑚′

Γ(𝜓)∇Γ𝜓 ⋅ ∇Γ(𝑣𝑗 − 𝑣𝑘))‖2

+ ‖(𝑚Ω(𝜙)∇Δ(𝑢𝑗 − 𝑢𝑘), 𝑚Γ(𝜓)∇ΓΔΓ(𝑣𝑗 − 𝑣𝑗 ))‖2

+ ‖(𝑚′
Ω(𝜙)Δ(𝑢𝑗 − 𝑢𝑘)∇𝜙,𝑚

′
Γ(𝜓)ΔΓ(𝑣𝑗 − 𝑣𝑘)∇Γ𝜓)‖2

+ ‖(𝑚′′
Ω(𝜙)(∇𝜙 ⋅ ∇(𝑢𝑗 − 𝑢𝑘))∇𝜙,𝑚′′

Γ (𝜓)(∇Γ𝜓 ⋅ ∇Γ(𝑣𝑗 − 𝑣𝑘))∇Γ𝜓)‖2

+ ‖(𝑚′
Ω(𝜙)𝐷

2𝜙∇(𝑢𝑗 − 𝑢𝑘), 𝑚′
Γ(𝜓)𝐷

2
Γ𝜓∇Γ(𝑣𝑗 − 𝑣𝑘))‖2

+ ‖(𝑚′
Ω(𝜙)𝐷

2(𝑢𝑗 − 𝑢𝑘)∇𝜙,𝑚′
Γ(𝜓)𝐷

2
Γ(𝑣𝑗 − 𝑣𝑗 )∇Γ𝜓)‖2

+ ‖𝛽𝑚Ω(𝜙)𝜕𝐧(𝑢𝑗 − 𝑢𝑘)‖𝐿2(Γ) + ‖𝛽𝑚′
Ω(𝜙)∇Γ𝜙𝜕𝐧(𝑢𝑗 − 𝑢𝑘)‖𝐿2(Γ)

+ ‖𝛽𝑚Ω(𝜙)∇Γ𝜕𝐧(𝑢𝑗 − 𝑢𝑘)‖𝐿2(Γ)

≤ 𝐶‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖2 + 𝐶‖(∇𝜙,∇Γ𝜓)‖∞‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖1

+ 𝐶‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖3 + 𝐶‖(∇𝜙,∇Γ𝜓)‖∞‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖2

+ 𝐶‖(∇𝜙,∇Γ𝜓)‖2∞‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖1 + ‖(𝜙,𝜓)‖2,6‖(∇(𝑢𝑗 − 𝑢𝑘),∇Γ(𝑣𝑗 − 𝑣𝑘))‖3

+ 𝐶‖(∇𝜙,∇Γ𝜓)‖∞‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖2 + 𝐶‖𝑢𝑗 − 𝑢𝑘‖𝐻2(Ω)

+ 𝐶‖𝜙‖𝑊 2,4(Ω)‖(𝑢𝑗 − 𝑢𝑘)‖2 + 𝐶‖𝑢𝑗 − 𝑢𝑘‖𝐻3(Ω)

≤ 𝐶‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖3 .

Here, we have additionally used the embedding 𝐻3(Ω) ↪ 𝐻2(Γ) yielding 
‖𝜕𝐧(𝑢𝑗 − 𝑢𝑘)‖𝐻1(Γ) ≤ ‖𝑢𝑗 − 𝑢𝑘‖𝐻2(Γ) ≤ 𝐶‖𝑢𝑗 − 𝑢𝑘‖𝐻3(Ω),

whereas the embedding 𝑊 2,4(Ω) ↪ 𝑊 1,∞(Γ) shows that 
‖∇Γ𝜙‖𝐿∞(Γ) ≤ ‖𝜙‖𝑊 1,∞(Γ) ≤ 𝐶‖𝜙‖𝑊 2,4(Ω).

Next, employing (A.6), we have 
‖(∇(𝑢𝑗 − 𝑢𝑘),∇Γ(𝑣𝑗 − 𝑣𝑘))‖6‖(∇(𝑢𝑗 − 𝑢𝑘),∇Γ(𝑣𝑗 − 𝑣𝑘))‖2 ≤ 𝐶‖(𝑢, 𝑣)‖𝐿∞(𝐼 ;1)‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖3 .

Collecting our previous estimates, we conclude from (A.8) that
d
d𝑡

1
2

(

∫Ω
𝑚Ω(𝜙)|∇(𝑢𝑗 − 𝑢𝑘)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓)|∇Γ(𝑣𝑗 − 𝑣𝑘)|2 dΓ + 𝜒(𝐿)∫Γ

(

𝛽(𝑣𝑗 − 𝑣𝑘) − (𝑢𝑗 − 𝑢𝑘)
)2 dΓ

)

≤ 𝐶
(

‖(𝜕𝑡(𝑢𝑗 − 𝑢𝑘), 𝜕𝑡(𝑣𝑗 − 𝑣𝑘))‖(1
𝐾 )′ + ‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖3

)

‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖3 .
(A.9)

Now, let 𝑠, 𝑡 ∈ [𝑎, 𝑏] be arbitrary with 𝑠 ≤ 𝑡. We then integrate (A.9) with respect to time over [𝑠, 𝑡], and obtain

∫Ω
𝑚Ω(𝜙(𝑡))|∇(𝑢𝑗 − 𝑢𝑘)(𝑡)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑡))|∇Γ(𝑣𝑗 − 𝑣𝑘)(𝑡)|2 dΓ + 𝜒(𝐿)∫Γ

(

𝛽(𝑣𝑗 − 𝑣𝑘)(𝑡) − (𝑢𝑗 − 𝑢𝑘)(𝑡)
)2 dΓ

≤ ∫Ω
𝑚Ω(𝜙(𝑠))|∇(𝑢𝑗 − 𝑢𝑘)(𝑠)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑠))|∇Γ(𝑣𝑗 − 𝑣𝑘)(𝑠)|2 dΓ + 𝜒(𝐿)∫Γ

(

𝛽(𝑣𝑗 − 𝑣𝑘)(𝑠) − (𝑢𝑗 − 𝑢𝑘)(𝑠)
)2 dΓ (A.10)

+ 𝐶 ∫

𝑡

𝑠
‖(𝜕𝑡(𝑢𝑗 − 𝑢𝑘), 𝜕𝑡(𝑣𝑗 − 𝑣𝑘))‖2(1

𝐾 )′
+ ‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖23 d𝜏 + 𝐶 ∫

𝑡

𝑠
‖(𝜕𝑡𝜙, 𝜕𝑡𝜓)‖1‖(𝑢𝑗 − 𝑢𝑘, 𝑣𝑗 − 𝑣𝑘)‖2 d𝜏.
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In light of the convergences (A.2)-(A.3), we can fix 𝑠 ∈ [𝑎, 𝑡] such that (𝑢𝑘(𝑠), 𝑣𝑘(𝑠)) → (𝑢(𝑠), 𝑣(𝑠)) strongly in 3 along a non-relabeled 
subsequence 𝑘 → ∞. Recalling (A.2)–(A.5), we thus deduce that the right-hand side of (A.10) tends to zero as 𝑗, 𝑘 → ∞. As 𝑚Ω and 𝑚Γ
are uniformly positive according to (2.3), we infer that (∇𝑢𝑘)𝑘∈ℕ is a Cauchy sequence in 𝐶([𝑎, 𝑏];𝐿2(Ω)) and (∇Γ𝑣𝑘)𝑘∈ℕ is a Cauchy 
sequence in 𝐶([𝑎, 𝑏];𝐿2(Γ)). Consequently,

∇𝑢𝑘 → ∇𝑢 strongly in 𝐶([𝑎, 𝑏];𝐿2(Ω)), (A.11)

∇Γ𝑣𝑘 → ∇Γ𝑣 strongly in 𝐶([𝑎, 𝑏];𝐿2(Γ)) (A.12)

as 𝑘 → ∞. In view of the assumption (𝑢, 𝑣) ∈ 𝐶([𝑎, 𝑏];2), we readily deduce that (𝑢, 𝑣) ∈ 𝐶([𝑎, 𝑏];1).
Let now 𝑠, 𝑡 ∈ [𝑎, 𝑏] be arbitrary with 𝑠 ≤ 𝑡. We then integrate (A.7) in time from 𝑠 to 𝑡 and find 

∫Ω
𝑚Ω(𝜙(𝑡))|∇𝑢𝑘(𝑡)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑡))|∇Γ𝑣𝑘(𝑡)|2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣𝑘(𝑡) − 𝑢𝑘(𝑡))2 dΓ

= ∫Ω
𝑚Ω(𝜙(𝑠))|∇𝑢𝑘(𝑠)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑠))|∇Γ𝑣𝑘(𝑠)|2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣𝑘(𝑠) − 𝑢𝑘(𝑠))2 dΓ

+ 2∫

𝑡

𝑠

⟨

(𝜕𝑡𝑢𝑘, 𝜕𝑡𝑣𝑘), (−div(𝑚Ω(𝜙)∇𝑢𝑘),−divΓ(𝑚Γ(𝜓)∇Γ𝑣𝑘) + 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢𝑘)
⟩

1
𝐾
d𝜏

+ 2∫

𝑡

𝑠

(

∫Ω
𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇𝑢𝑘|

2 d𝑥 + ∫Γ
𝑚′
Γ(𝜓)𝜕𝑡𝜓|∇Γ𝑣𝑘|

2 dΓ
)

d𝜏.

(A.13)

It is now clear from the convergences (A.2)–(A.5) and (A.11)-(A.12) to pass to the limit in all terms except the last one on the 
right-hand side. Here, we notice that

|

|

|∫

𝑡

𝑠 ∫Ω
𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇𝑢𝑘|

2 d𝑥 d𝜏 − ∫

𝑡

𝑠 ∫Ω
𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇𝑢|

2 d𝑥 d𝜏||
|

= |

|

|∫

𝑡

𝑠 ∫Ω
𝑚′
Ω(𝜙)𝜕𝑡𝜙(∇𝑢𝑘 + ∇𝑢) ⋅ (∇𝑢𝑘 − ∇𝑢) d𝑥 d𝜏||

|

≤ ‖𝑚′
Ω‖𝐿∞(−1,1)‖𝜕𝑡𝜙‖𝐿2(𝑎,𝑏;𝐿3(Ω))‖∇𝑢𝑘 + ∇𝑢‖𝐿2(𝑎,𝑏;𝐿6(Ω))‖∇𝑢𝑘 − ∇𝑢‖𝐶([𝑎,𝑏];𝐿2(Ω))

≤ 2‖𝑚′
Ω‖𝐿∞(−1,1)‖𝜕𝑡𝜙‖𝐿2(𝑎,𝑏;𝐿3(Ω))‖𝑢‖𝐿2(𝑎,𝑏;𝐻3(Ω))‖∇𝑢𝑘 − ∇𝑢‖𝐶([𝑎,𝑏];𝐿2(Ω))

⟶ 0

as 𝑘 → ∞ in light of (A.11). A similar computation shows that the corresponding term on the boundary also converges. Altogether, 
we are now able to pass to the limit 𝑘 → ∞ in (A.13) and conclude that

∫Ω
𝑚Ω(𝜙(𝑡))|∇𝑢(𝑡)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑡))|∇Γ𝑣(𝑡)|2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣(𝑡) − 𝑢(𝑡))2 dΓ

= ∫Ω
𝑚Ω(𝜙(𝑠))|∇𝑢(𝑠)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑠))|∇Γ𝑣(𝑠)|2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣(𝑠) − 𝑢(𝑠))2 dΓ

+ 2∫

𝑡

𝑠

⟨

(𝜕𝑡𝑢, 𝜕𝑡𝑣), (−div(𝑚Ω(𝜙)∇𝑢),−divΓ(𝑚Γ(𝜓)∇Γ𝑣) + 𝛽𝑚Ω(𝜙)𝜕𝐧𝑢𝑘)
⟩

1
𝐾
d𝜏

+ 2∫

𝑡

𝑠

(

∫Ω
𝑚′
Ω(𝜙)𝜕𝑡𝜙|∇𝑢|

2 d𝑥 + ∫Γ
𝑚′
Γ(𝜓)𝜕𝑡𝜓|∇Γ𝑣|

2 dΓ
)

d𝜏.

By our previous considerations, we readily see that the integrands on the right-hand side belong to 𝐿1(𝑎, 𝑏), and thus, that the mapping 

[𝑎, 𝑏] ∋ 𝑡↦ ∫Ω
𝑚Ω(𝜙(𝑡))|∇𝑢(𝑡)|2 d𝑥 + ∫Γ

𝑚Γ(𝜓(𝑡))|∇Γ𝑣(𝑡)|2 dΓ + 𝜒(𝐿)∫Γ
(𝛽𝑣(𝑡) − 𝑢(𝑡))2 dΓ

is absolutely continuous. It is therefore differentiable almost everywhere on [𝑎, 𝑏] and its derivative satisfies the formula (A.1). This 
finishes the proof. ∎
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