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We report experiments on epitaxially grown Fe/GaAs/Au tunnel junctions demonstrating that the magnitude
of the tunneling anisotropic magnetoresistance �TAMR� effect can be controlled by magnetic field strength.
Theoretical modeling shows that the interplay of the orbital effects of a magnetic field and the Dresselhaus
spin-orbit coupling in the GaAs barrier leads to an independent contribution to the TAMR effect with uniaxial
symmetry, whereas the Bychkov-Rashba spin-orbit coupling does not play a role. The effect is intrinsic to
barriers with bulk inversion asymmetry.
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Magnetic tunnel junctions �MTJs� are prominent ex-
amples of spintronic devices1,2 and have reached already
technological importance.3 Typically, the resistance of a MTJ
depends on the relative orientation of two ferromagnetic
layers.1,2 Hence it came as a surprise when experiments on
MTJs with only one ferromagnetic GaMnAs layer showed a
sizable spin valve effect.4 Since then, this tunneling aniso-
tropic magnetoresistance �TAMR� effect has been observed
in tunnel junctions involving various materials5–9 as well as
nanoconstrictions and break junctions.9–11 Amongst these ex-
periments, the TAMR effect in Fe/GaAs/Au MTJs �Ref. 7�
stands out due to its qualitatively different origin: whereas
the TAMR effect usually originates from properties of the
magnetic layer, namely, a spin-orbit induced anisotropic den-
sity of states4–6,8,10 in the ferromagnet or surface states,12–14

the TAMR in the Fe/GaAs/Au MTJ was attributed to an in-
terference of Bychkov-Rashba spin-orbit coupling �SOC� at
the barrier interface and the Dresselhaus SOC inside the bar-
rier, i.e., to properties of the tunneling process itself. More-
over, the size and sign of the effect in this MTJ can be tuned
by the bias voltage.

In this Rapid Communication, we show experimentally
that the TAMR in Fe/GaAs/Au MTJs can also be controlled
by a magnetic field. Our theoretical calculations ascribe this
effect to an interplay of the orbital effects of the magnetic
field and the Dresselhaus SOC in the GaAs barrier. This
interplay leads to an independent TAMR contribution with
uniaxial symmetry and is intrinsic to semiconductor barriers
with bulk inversion asymmetry. In contrast to the usual tun-
ing of spin-orbit effects through the electric field dependence
of the Bychkov-Rashba SOC1,2 �bias voltage in the case of
the TAMR7�, here we demonstrate the control of a spin-orbit
effect, namely the TAMR, through a magnetic field and the
Dresselhaus SOC only; curiously the Bychkov-Rashba SOC
does not play a role in this respect. As we show below, this is
due to the different symmetries of the SOCs. Furthermore, in
our analysis we find it important to include the orbital effects
of the magnetic field in both the kinetic and SOC terms of
the Hamiltonian, as both terms give rise to large competing
contributions, resulting in a net TAMR effect in good agree-
ment with experiment.

The type of tunneling device studied here is sketched in
Fig. 1. We explored eight different samples all showing the
same orbital effects discussed below. We hence focus here on

one sample which consists of a 13-nm-thick Fe layer, grown
epitaxially on a 8-nm-thick GaAs-tunneling barrier, and a Au
top electrode.7 The GaAs barrier was grown by molecular
beam epitaxy on sacrificial AlGaAs layers and capped with
As to prevent oxidation during transport to a UHV magne-
tron sputtering system. There the As cap was removed at T
=250 °C and Fe was grown at room temperature. Epitaxial
growth of the Fe film was monitored by in situ reflection
high-energy electron diffraction �RHEED�. The Fe-layer is
finally covered with 50 nm Co, and 150 nm Au and serves as
back contact. To prepare the top Au contact on the other side
of the GaAs tunnel barrier, the wafer is glued upside down to
another substrate and the original substrate is etched away.
By employing optical lithography, selective etching and
UHV-magnetron sputtering a circular, 13-�m-wide and 100-
nm-thick Au contact is fabricated.

The measurements were carried out at a temperature of
4.2 K inside a variable temperature insert of a 4He cryostat.
The device was placed in a rotatable sample holder allowing
a 360° in-plane rotation in the magnetic field B of a super-
conducting solenoid. The direction of B with respect to the
hard axis of the Fe layer in �110� direction �nomenclature
with respect to GaAs crystallographic directions� is given by
the angle � �Fig. 1�. The resistance drop across the tunnel
barrier was measured in four-point configuration using a HP
4155A semiconductor parameter analyzer with the Au-
contact grounded.

To measure the TAMR we rotated the sample by 180° in
a constant external magnetic field. The magnetic field
strength was always high enough to align the magnetization

a) b)

FIG. 1. �Color online� �a� Sketch of the Fe/GaAs/Au MTJ. �b�
Schematic of the conduction-band profile. The gray background is a
transmission electron micrograph of an epitaxial Fe/GaAs interface
displaying the 8-nm-thick GaAs barrier.
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M along B. Figure 2�a� shows the results of such � scans for
various values of the magnetic field between 0.5 and 5 T and
the two bias voltages, +90 mV �upper left panel� and
−90 mV �lower left panel�. The TAMR R��� /R�110� shows
the distinct uniaxial anisotropy characteristic for this
system.7 As demonstrated recently, the TAMR strongly de-
pends on the applied bias voltage and is connected to a bias
dependent sign and strength of the Bychkov-Rashba
parameter.7 For M � �110� we always get a resistance maxi-
mum for +90 mV but a minimum for −90 mV. This behav-
ior is in accord with the one observed by Moser et al.7 and
occurs for all samples investigated. In the simplest model the
TAMR R��� /R�110�−1����cos�2��−1�, where � and � are
the Bychkov-Rashba and Dresselhaus parameters. While � is
a material parameter, � is obtained by fitting the angular
dependence R��� /R�110� �see below�.

With increasing magnetic field strength both the traces for
positive and negative bias voltages are bent towards lower
resistance values. If we define the TAMR ratio as

TAMR =
R�1̄10� − R�110�

R�110�
, �1�

in which R�1̄10� is the resistance for �=+90°, the magnitude
of the TAMR ratio decreases for positive bias voltages but
increases for negative ones. This TAMR value measured as
function of B is displayed in the left panel of Fig. 2�b� for

magnetic field strengths up to 5 T. Note that the TAMR van-
ishes for a bias voltage of +50 mV at about 4.5 T but reap-
pears again upon further increasing B. The magnetic field
dependence of the TAMR ratio is in all cases linear. The
slope �TAMR /�B of the best-fit line is nearly the same for
all bias voltages indicating that the B dependence of the
TAMR is independent of the applied voltage. The experi-
mental data in Fig. 2 are compared to model calculations
discussed below.

The importance of orbital effects for charge tunneling has
been pointed out already in the literature.15 Here, we focus
on orbital effects on spin-dependent tunneling. In order to
explain the experimental findings, we employ the spin-orbit
based model for the TAMR effect of Refs. 2, 7, and 16 and
include the orbital effects of the magnetic field. We choose
the coordinate system such that the x, y, and z directions are

along the �110�, �1̄00�, and �001� crystallographic directions
and consider an in-plane magnetic field B=Bn, where
n= �cos � , sin � ,0� is a unit vector forming an angle � with
the x axis �see Fig. 1�a��. The Hamiltonian is given as
H=H0+HBR+HD, where

H0 = +
1

2
�

1

m��z�
� + V�z� +

��z�
2

n · � . �2�

Here, �=−i��+eA, where A is the magnetic vector poten-
tial and −e the electron charge. m��z� is a position-dependent
effective mass with m��z�=0.067me in the GaAs barrier and
m��z�=me in the Fe and Au layer, where me denotes the bare
electron mass. V�z� is the conduction-band profile in growth
direction z. The GaAs Schottky barrier height is given by
VS=0.75 eV. The ferromagnetism in the Fe layer is de-
scribed in terms of a Stoner model17 with spin splitting ��z�.
��z� and V�z� are chosen such that the Fermi wave vector in
Fe is kF,Fe

↑ =1.05�10−10 m−1 and kF,Fe
↓ =0.44�10−10 m−1 for

majority and minority electrons,18 respectively, and in Au
kF,Au=1.2�10−10 m−1.19 The Zeeman splitting in GaAs and
Au is much smaller than any relevant energy scale in the
system and can be neglected, as is also confirmed by numeri-
cal simulations.

The SOC due to the structural inversion asymmetry �SIA�
at the Fe/GaAs-interface can be written as20

HBR =
�

�
�	x
y − 	y
x���z − zl� , �3�

where zl denotes the position of the Fe/GaAs interface. As in
Refs. 2, 7, and 16 we use the Bychkov-Rashba parameter �
as a fitting parameter to reproduce the bias dependence of the
TAMR effect; �=��Vb�.21

Finally, the SOC due to the bulk inversion asymmetry
�BIA� of the zinc-blende GaAs barrier takes the form22

HD = −
1

�
�	x
y + 	y
x�

�

�z
��z�

�

�z
, �4�

where the bulk Dresselhaus parameter �=24 eV Å3 in the
GaAs barrier and �=0 elsewhere. Note that the orbital ef-
fects of B are also included in the SOC terms.

With the gauge A�z�= �B sin���z ,−B cos���z ,0� the
Hamiltonian H is translationally invariant in x and y direc-
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FIG. 2. �Color online� Comparison of experimental results �left
panels� and numerical simulations �right panels� for the TAMR. �a�
Angular dependence of R��� at various magnetic fields for an ap-
plied bias voltage of Vb=90 mV �upper panels� and Vb=−90 mV
�lower panels�. �b� B dependence of the TAMR ratio �Eq. �1�� for
different bias voltages. Lines in the left panel are a linear fit to the
experimental data, shown as dots.
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tions, and the in-plane wave vector k� = �kx ,ky ,0� is a good
quantum number. The conductance in the Landauer-Büttiker
formalism23 is then given as G= �e2S /h�2
�2��dk�T�k��,
where S is the cross-sectional area of the junction and T�k��
is the total transmission probability �including different spin
species� for the transverse wave vector k� at the Fermi en-
ergy EF. We calculate T�k�� from the scattering wave
functions;24 those are obtained numerically from a tight-
binding approximation to H, using the method of finite dif-
ferences on a one-dimensional grid with lattice spacing
a=0.01 nm �Ref. 25� and the recursive Green’s-function
technique.26

In Fig. 2 we compare the results of the numerical simula-
tions on the B dependence of the TAMR with the corre-
sponding experimental data. For this, we fit the parameter �
at B=0.5 T for every value of the bias voltage Vb to the
experimental data. The dependence on B can then be calcu-
lated without fitting any further parameter.

Figure 2�a� shows the angular dependence of the TAMR
effect for different values of the bias voltage and magnetic
field. The numerical simulations show the same trend as the
experiment: The magnitude of the TAMR effect decreases
with increasing B when the effect is positive, and it increases
when the effect is negative. Furthermore, the numerical cal-
culations reproduce the experimentally found change with
magnetic field within a factor of 1.5–2. This is an especially
satisfying agreement, given the fact that the B dependence is
calculated without any fitting parameter. The numerically
calculated magnetic field dependence of the TAMR ratio is
shown in Fig. 2�b�. As the experiment, we find a linear de-
pendence on B, with a slope that is nearly independent of �,
i.e., the bias voltage. Again, the numerics underestimates the
slope only by a small factor of 1.5–2.

Having established that our model is able to reproduce
both qualitatively and quantitatively the experimental find-
ings, we now develop a phenomenological model to high-
light the underlying physics. In Refs. 2, 7, and 16 it was
shown that in the absence of a magnetic field, T�k�� can be
expanded in powers of the SOC in the form T�k��
=T�0��k��+T�1��k��n ·w�k��+T�2��k���n ·w�k���2+¯, where
the T�n��k�� are expansion coefficients and w�k��
= ���̃− �̃�ky ,−��̃+ �̃�kx ,0� the effective spin-orbit field ob-
tained by averaging the spin-orbit field BSO�z�, HD+HBR
=BSO�z� ·�, over the unperturbed states of the system. The
effective spin-orbit parameters are given by �̃=�f��k�� and
�̃=�f��k��. To second order in the SOC, the conductance was
then found as

G��� = G0 + g�2��� cos�2�� , �5�

where G0 is the angular-independent part of the conductance
and g�2� a coefficient that is independent of the spin-orbit
parameters �for details see Refs. 2 and 16�.

In the presence of a magnetic field, the transmission can
still be expanded in powers of the SOC, albeit with
B-dependent coefficients TB

�n��k�� and spin-orbit field wB�k��.
Below, we derive approximate relations for TB

�n��k�� and
wB�k��, valid to linear order in B, in terms of their counter-
parts at B=0, T�n��k�� and w�k��.

First, we consider the orbital effects of B on the kinetic-

energy term of the Hamiltonian. The kinetic energy
associated with k� increases the effective barrier height, and
hence T�k�� is sharply peaked at k� =0 in the absence of a
magnetic field. For B�0 however, the effective barrier
height is smallest for an in-plane wave vector k�,0 with
��kx,0+eB /� sin���z�2	=0 and ��ky,0−eB /� cos���z�2	=0,
where � . . . 	 denotes a quantum mechanical average. Thus,
the maximum of the transmission is shifted to
k�,0= �−b1B sin��� ,b1B cos��� ,0�, where b1 depends
on �z	 and �z2	, and hence we assume TB

�n��k��

T�n����kx−kx,0�2+ �ky −ky,0�2�. This shift can be interpreted
as an effect of the Lorentz force. In addition to the shift of
the maximum, the overall transmission decreases.15

However, this decrease is quadratic in B and will conse-
quently be neglected. Apart from TB�k��, also the effective
spin-orbit field is shifted in momentum space, wB�k��

w�kx+b2B sin��� ,ky −b2B cos����, where b2 is a constant
that depends on �z	 only, as the SOC terms are linear in
momentum. Therefore we can in general expect b1�b2.

With these approximations we can now obtain the mag-
netic field corrections to the conductance of Eq. �5� by evalu-
ating �dk�T�k�� in orders of the SOC. The zeroth-order term
remains unchanged upon integration, and the corrections to
the second-order term are quadratic in B, thus being ne-
glected. In contrast, the first-order term that vanishes in the
absence of a magnetic field2,7,16 gives a contribution linear in
B:

e2S

h�2
�2n ·� dk�TB
�1��k��wB�k�� = g�

�1��B − g�
�1��B cos�2�� ,

�6�

where we used the approximations of the previous
paragraph and the fact that terms linear in k� vanish
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FIG. 3. �Color online� �a� Schematic picture of the influence of
B on the TAMR: B and w=�dk�TB

�1�wB are shown in relation to the
effective Bychkov-Rashba and Dresselhaus spin-orbit fields. The
shift of the transmission maximum is indicated by a blue circle; the
situation for two different angles � is shown in dark and light color.
�b� Slope of the B dependence of the TAMR effect, �TAMR /�B,
as a function of the Dresselhaus parameter � for various values of
�. �c� B dependence of the TAMR effect when A is only included in
the kinetic term �red dashed line�, only in the spin-orbit term �blue
dash-dotted line�, or in both terms �black solid line�.
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upon integration.2,7,16 The coefficients g�,�
�1�

= �e2S /h�2
�2��b1−b2��dk�T�1��k��f�,��k�� do not depend on
the spin-orbit parameters. We find a different angular depen-
dence for the Bychkov-Rashba and Dresselhaus SOC due to
different symmetries of the spin-orbit fields, as shown in Fig.
3�a�: the Bychkov-Rashba field exhibits rotational symmetry
leading to an angular-independent contribution, whereas the
interplay of B and the Dresselhaus field leads to an angular
dependence with uniaxial symmetry.

The total conductance in a magnetic field is then

G��,B� = G0 + g�
�1��B + �g�2��� − g�

�1��B�cos�2�� �7�

valid up to second order in the SOC. The magnetic field
dependence of the TAMR ratio is then

TAMR � g�2��� − g�
�1��B , �8�

where we can deduce from the numerical results that the
coefficients g�2� ,g�

�1�
0. Equation �8� reproduces all the
characteristic features of the TAMR observed in experiment:
a linear B dependence with a bias ���-independent slope.
Note that the interplay of Dresselhaus SOC in the barrier and
the orbital effect of the magnetic field leads to an indepen-
dent contribution to the TAMR effect which turns out to have
the same uniaxial symmetry as the TAMR effect in the ab-
sence of B.

Finally, we verify some aspects of the phenomenological
model by comparing to numerical simulations. In Fig. 3�b�
we show the slope �TAMR /�B as a function of the Dressel-
haus parameter � that is predicted to be linear in � and in-
dependent of � �Eq. �8��. Indeed, we find a nearly linear
dependence on � and only a weak dependence on �, presum-
ably originating from higher orders in the SOC expansion.
Furthermore, the coefficient g�

�1� in Eq. �8� depends on
�b1−b2�, i.e., opposing contributions from the kinetic and the
SOC term. Figure 3�c� shows the results of simulations
where the magnetic vector potential is included only in the
kinetic term �dashed line�, only in the SOC term �dashed-
dotted line�, and in both �solid line�. When the magnetic field
is included in one term only, we find large TAMR effects
with opposite sign that nearly cancel in the full Hamiltonian,
yielding the small signal observed in experiment and in the
numerics.

In summary, our experiments and theoretical consider-
ations indicate that the interplay of the orbital effects of a
magnetic field and the Dresselhaus SOC in a tunnel barrier
leads to a contribution to the TAMR effect with uniaxial
symmetry. This effect is predicted to an intrinsic feature of
semiconductor barriers with BIA and not limited to the stud-
ied Fe/GaAs/Au tunnel junction.
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