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SUMMARY

The existence of both linear and radial non-steady state drug diffusion
within rotationally-symmetric matrices and membranes held in a diffusion
cell has been investigated. The error involved in the calculation of
diffusivities from experimental release and permeation data using solutions
to the linear form of Fick’s Second Law could thereby be determined as a
function of system geometry. For the case of drug release from a matrix, the
use of a linear model underestimates the diffusivity, even for thin matrices
(radius : height = 200). For drug permeation through a membrane,
diffusivity will be overestimated with a linear model, the error also being
strongly dependent on the value for partition coefficient,

I INTRODUCTION

The release of a drug from a rectangular matrix or its permeation
through a plane membrane are two common diffusional problems of great
importance in the field of controlled release. The kinetics of either process
can be investigated experimentally by using a diffusion cell. Although
numerous designs are available for such cells,) they have in common the
manner in which the matrix or membrane is affixed within the cell. As
iltustrated schematically in Figure 1a, the matrix or membrane is held taught
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within the cell, between either a backing plate for a matrix or a donor

chamber for a mmnbmnc, and an acceptor chamber. The results of such
experiments are expressed as release or pmmwnon profiles of drug mass in
the acceptor medium, m (), versus time, t. The diffusivity of the drug within
either matrix, D_, or membrane, D, can be ~alculated from a pm ile by
using the a;}pnmr iate solution to Hck s Second Law. If the drug is initially
homogeneously distributed within the matrix or donor solution and
membrane, the simplification is made that only linear diffusion of drug in
the x-dimension occurs. The two diffusional models Musimmi in Figure 1b
can then be employed, for which analytical solutions to the linear form of
Fick’s Second Law for both sink?®? and non-sink®* boundary conditions are
known.
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Figure 1. Schematic illustrations of drug release from a matrix (left) and drug
permeation through a membrane (right). a) C sections through a diffusion cell (1,
acceptor chamber; 2, donor chamber; 3, matrix; 4, membrane; 5, stirrer; 6, sampling port).
) Linear diffusional maodels for the two processes (X, space coordinate; 12, drug diffusivity
in matrix; D, drug diffusivity in membrane; m (1), drug mass in acceptor medium. ¢}
Hlustration of radial and linear drug diffusion within matrix and membrane.

As part of a study of the transdermal application of the drug clenbuterol,
we wished to make measurements of drug release and permeation using matrices
and membranes of substantial thickness (up to 4 mm). A closer examination of
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the geometry of the diffusion cell shows that in these cases the assumption of
linear diffusion may be far from exact. Thus, Figure 1a shows how the matrix or
membrane is larger in size than the area available within the cell for release or
permeation. The edge region of the matrix or membrane necessary for fixation
within the cell is not in contact with the opening of the donor or acceptor
chambers. A true representation of the two models is given in Figure 1c for
radially-symmetric bodies. It is clear that not only linear diffusion in the x-
dimension occurs. Within the matrix, radial diffusion out of the edge region into
its centre also takes place. Within the membrane, radial diffusion into the edge
region occurs adjacent to the donor, and out of the edge region adjacent to the
acceptor. The existence of both linear and radial diffusion within thick matrices
or membranes is not taken into account by the linear models of Figure 1b. The
use of solutions to the linear form of Fick’s Second Law to calculate diffusivities
from release or permeation data must, therefore, be subject toanerror. The error
arising in steady state flux has been shown some years ago by Barrer’ to be
negligible for permeation through very thin membranes. Hissteady state analysis
does not, however, consider the error in calculated diffusivity, nor does it take
into account the influence of partitioning. Additionally, it is uncertain at what
matrix or membrane thickness the errors becomes large enough that they can no
longer be ignored.

We have conducted an examination of the influence of matrix and
membrane geometry on the size of the error. A numerical solution to a
multi-dimensional form of Fick’s Second Law for non-sink diffusion through
matrices and membranes held in a diffusion cell is first derived. With the
help of this model it is possible to predict the influence of system geometry
on experimental release and permeation data. It is also used to evaluate
results obtained from two series of experiments, namely, drug release from a
thin polyacrylate matrix and drug permeation through a thick silicone
membrane. The contrast between thick and thin bodies can thus clearly be
made. Additionally, multi-dimensional diffusion can be made visible to the
eye by examining the uptake of a dyestuff into a gel-matrix using digital
image processing.

Il. THEORY

The most general formulation of the problem to be solved is that of
the non-steady state diffusion of dissolved drug with a single diffusivity, D,
through the isotropic cylinder of finite length illustrated in Figure 2. The
selection of suitable initial and non-sink boundary conditions allows the
representation of either a matrix or a membrane held perpendicularly within
a diffusion cell. Solution of this non-steady state problem is very involved.
For the related case under sink boundary conditions, a formidable analytical
solution is available.® The non-sink problem is, however, too ponderous to
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Figure 2. Geometric model applicable to non-steady state diffusion within a composite
eylinder. ([, inner laver of cylinder; 2, outer layer of cylinder; H, length of cylinder; v, total
radius; r,, radius of inner layer).

be considered analytically, and must be tackled using numerical techniques.
We solved the problem using Crank and Nicolson’s implicit finite-difference
method.”® As the system is radially symmetric about the axis r=0 (see
Figure 2), the drug concentration within the cylinder, e(r,z,t), is independent
of angle, s, and can be represented by the applicable form of Fick’s Second
Law™:

dc(r,z,t)y 10 4 dof(r,z, L) a dofr,z, )
SR, ( et ) R (m R -) . tr0. ... (1)
at r | dr Jr dz dz

The outer circumference of the cylinder represents the edge region and is
insulated:

JC{Ya,X,t}

=0 £50 e (2)
dr

For the case of release from a matrix, the cylinder can be represented
by the finite difference grid illustrated in Figure 3a. By rotating the grid
around its symmetry axis, the resulting body has the form of a cylindrical
matrix. The grid points describe circles around the axis and delineate the
points where the same drug concentration exists. Only those points marked
with a cross lie within the release area of the face of the matrix, which is
limited by an inner radius r. r_is the total radius of the matrix. The drug is
initially homogeneously dispersed within the matrix:

el{r,z,0) = ¢ O<z<H, O<rsr e (3)

Sl
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Figure 3. Finite difference grids. a) Drug release from a matrix. b) Drug permeation

through a membrane. ¢} Uptake into a gel-matrix.
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The whole area of the face at z=H is insulated:

do(r,H,t)
=) 0<r<r,  ..... (4)
dz

Drug release into a non-sink occurs through the inner layer (crosses) of the
face at z=0, the outer layer representing the edge region and being,
therefore, insulated;

do(r,0,t) dmy (t) do(r,o,t)
- e DU A S AP e NI S B -, Osr=r. cee . (5}
dz * “ dt " dz *
Koe,(t) = o(xr,0,t), Osrgr, el (6)

where K is the drug’s partition coefficient between matrix and acceptor
medium.

For the case of permeation through a membrane, the finite difference
grid shown in Figure 3b is used. At z=H uptake of drug from the donor into
the membrane occurs at the points marked with a cross (z=H,0<r<r). The
complete model is described by rotating the grid around the symmetry axis.
The drug is initially contained within a perfectly-stirred medium adjacent to
the membrane’s face at z=0, the membrane being drug free:

cﬁ(g,) = Cqi c(r,z,0) = 0, 0O=z<H, Osrsry s (7
Uptake of drug from the donor medium occurs through the inner layer

(crosses) of the face at z=H, with the outer layer representing the edge
region and being insulated:

o (v, H,t) dmg () do(r , H,t)
— — = 0, T{ETST,4) Bl e ;o OsTrsry ... (8)
dz - ' dt dz
K ca(t) = c(r,0,t), Osrsry s e (9)

where K is the drug’s partition coefficient between membrane and
donor/acceptor medium. The non-sink release of drug through the inner
laver (crosses) of the face at z=0 is described, as for the matrix, by

Equations 5 and 6.
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111, MATERIALS AND METHODS
3.1 Solution of models and simulation of theoretical behaviour

The finite difference representations of the initial and boundary
conditions were first derived. For drug release from a matrix, the resulting
forms of Equations 1-6 form a lingar system of multi-diagonal matrices that
was programmed in Pascal on an Epson PC (80 386 processor with 80 387
coprocessor). For drug permeation through a membrane, the finite
difference forms of Equations 1, 2 and 5-9 were similarly programmed.
Solution by Gauss’s elimination method yielded both the theoretical drug
concentration profile within matrix or membrane, ¢(r,z,t), and the
theoretical release or permeation profile, m (t).

3.2  Measurement of drug release from a thin polyacrylate matrix

The model was used to evaluate some results obtained for the release
of the basic drug clenbuterol (MWt = 277, pK, = 9.5; Boehringer Ingelheim,
Germany) from matrices prepared from purified® Eudragit NE30D (R6hm
Pharma, Darmstadt, Germany). The 50 upm-thick matrices were prepared by
solvent casting.'® The release rate into pH 8 phosphate buffer was
undertaken using the glass diffusional cell illustrated schematically in Figure
1a and operated as described before.! Two solutions to Fick’s Second Law
were then fitted to the experimentally-determined release profile, m (1), :
the numerical solution for the linear release model" illustrated in Figure 1b;
and the numerical solution to the multi-dimensional release model
illustrated in Figures 2 and 3a. An improved simplex method was used for
the fit'2, which yielded the best value for D .

33 Measurement of drug permeation through a thick silicone membrane

An evaluation of the experimental permeation of clenbuterol through
a thick poly(dimethyl)siloxane membrane was also undertaken with the
model. The membrane was prepared by vulcanising dimethyl dichlorosilane
with 3% Hardner T (Wacker Chemie, Munich, Germany) at 70°C for 12 hin
a 4 mm deep, circular teflon mold. The diffusional cell illustrated in Figure
1a was used as described before®, with Miglyol 840 (Dynamit Nobel, Witten,
Germany) as a donor and acceptor medium to ensure high drug solubility.
The linear!! (Figure 1b) and multi-dimensional (Figure 3b) models were
then fitted to the experimentally-determined permeation profile, m, (1),
yielding the best values in this case for both D_and K.
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3.4  Measurement of uptake into a thick agarose gel matrix

With this experiment, the edge effect could be made visible to the
naked eye. A plexiglas diffusion cell was used, which had a geometry
equivalent to that of matrix and acceptor illustrated in Figure Ic. It allowed
examination of the two-dimensional uptake of a dyestuff from a donor
medium into a solid gel. The gel was prepared from a 5% seaplaque agarose
sol (FMC Corporation, Rockland, USA) that had been allowed to set within
the diffusion cell. 2 ml of a 1% w/w aqueous methylene blue (Merck,
Darmstadt, Germany) solution were then carefully filled into the neck of the
cell at room temperature. The dyestuff diffused into the gel to produce a
visible, two-dimensional profile of blue colour-intensity. Digitalized
photographs of the cell were taken at regular intervals up to 56 h with a ccd
camera (WVCD 110E, Panasonic, Tokyo, Japan) connected to a IBM-AT
containing an 8 bit digitial image processing card (MVP-AT, Matrox Ltd,,
Canada). A resolution of 512 x 512 picture points with shades on a scale of 0
to 255 was used, the latter being subsequently converted into concentration
profiles, ¢(r,z,t), with the help of calibration gels of known dyestuff
concentration.

To calculate diffusivity, the applicable multi-dimensional numerical
solution to Fick’s Second Law was fitted fo each concentration profile. A
complication arose here in the design of a two-dimensional finite difference
grid to fit the contours of the diffusion cell. For a constant step size in space,
delta x, the edge points A and B at the neck of the cell and also the side
walls of the cell did not necessarily coincide with grid points. To account for
this, the grid was deformed as illustrated in Figure 3c. Delta x is now not
constant across the grid from x = 0 to x = x,. The isolated grid points A and
B take into account the concave shape of the gel surface. The origin of the
coordinate system is the upper right corner of the cell at the point (0]0).
Problems arise at those grid points where delta x changes. At a specific grid
point (e.g. x,]0), the two neighbouring points on the x axis are now not
equally distanced. The usual finite difference form of Equation 1 (i.e. the
Crank-Nicolson formula) cannot be applied at that point. A solution to this
problem was taken from Crank® by using a Lagrange interpolation. The
resulting set of equations was solved by an improved Gauss algorithm to
step over zero elements, As before, the fit of this theoretical solution to the
experimental c(z,r,1) values yielded the best values for DD and K.

1V, RESULTS AND DISCUSSION
4.1 Drug release from a matrix

Fig 4a shows the theoretical concentration-distance profile within a
cylindrical thick matrix whose radius equals its height (i.e. rth = 1). The
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Figure 4. Drug retease from a cylindrically-shaped matrix, a) Theoretical concentration-

distance profile within a thick matrix (rih = 1; D, t/h' = 0.04; K =

= 7). b) Theoretical

concentration-distance profile within a thin matrix (1 ho= 10, Dt/ HY = 004; K = 1) ¢}
Theoretical release profiles from a thin matrix (rh = 10) for linear (o) and mlei-

dimensional (e} diffusion.

d) Typical experimental release profile (coordinates) for

clenbuterol from purified Eudragit N30D-mairix (8% w/w drug loading) together with curve

of best fit to mudti-dimensional model.
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vertical axis denotes the drug concentration relative to its initial value,
o(r,2,t)/¢(r,2,0), and the x/y plane defines the axis or height of the matrix
and its radius. As the diffusion problem is rotationally symmetric, this
representation is sufficient to describe the drug concentration profile within
the whole matrix. The profile is determined by the grid in Figure 3a and is
represented by 8 numerical grid points along the height and 6 along the
radius. The latter are further divided in 4 grid points lying within the area of
release, and 2 grid points representing the edge area of the matrix by which
it is held within the diffusion cell. There is a marked concentration gradient
along the cylinder axis, which is that taken into account with the linear
model of Figure 1b. The concentration also decreases, however, in the radial
direction adjacent to the acceptor, from the outermost point of the radius
(i.e. in the edge) towards the centre of the matrix. This illustrates the
existence of a mass flux out of the edge arca that is not considered when
evaluating experimental data with the linear model. The magnitude of this
flux out of the edge is diminished for a thiner matrix where the ratio r:h is,
say, 10 (Figure 4b). The edge region is now depleted less, owing to the
longer diffusional pathway existing along the extended radial axis compared
with the short pathway slong the height.

TABLE 1
FITTED DIFFUSIVITIES (D) FOR CLENBUTEROL RELEASE FROM A PURIFIED

EUDRAGIT NE3OD-MATRIX (r:h = 200) OBTAINED FROM LINEAR (1D) AND
MULTE-DIMENSIONAL (3D) MODELS

drug loading n pox 10+t [(‘szfs‘)}
6 % 4 1% 0.58 % 0.087
3D 0.56 £ 0.074
@ * «
8 % 4 1D 0.93 * 0.071

3D 0.91 % 0.071

10 % 4 DY 1.57 + 0.091
3D 1.53 t 0.103
U * ~
12 % 4 1D 2.81 + 0.427
3D 2.76 + 0.426
16 % 4 DT 3.70 & 0.30

3D 3.44 % 0.286

20 % 4 1p* 2.36 ¢ 0.522
30 1.80 + 0.413

& -
taken from ref 9.
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The theoretical release profile in the acceptor, m,(t), strongly depends
on the relative size of the release area available. If the complete area is
available for release (i.e. no edge cxis‘;evs)” then a linear model is exact,
whereas a reduction in the release area due to the existence of an edge
necessitates application of the mul U d mensional model. Figure 4c¢ %hewx
how the two theoretical release profiles differ for rth = 10, the amount of

dug released being greater if the existence of the edge is recognised. Fitting
of the release pmhkv for multi-dimensional release to a linear model must,
therefore, lead to erroneous values for diffusivity. The diffusivity determined

will be larger than its true value, as the release profile for the linear release
process is always lower than that for the t‘tm -dimensional one.

An example of :xpcnmu)ml release coordinates, m (t)bm, for

clenbuterol from the purified Eudragit NE30D-matrix is shown in Figure 4d,
together with the curve of best fit to the multi-dimensional model. The fit
appears visually good. Table 1 compares the values for diffusivity obtained
from this fit with those obtained imm a fit to the linear model. The
differences are small in this case, since a thin matrix was used for the
experiment (r:h = 200). The mndmmn drawn from Figure 4c is, however,
confirmed experimentally, that a high diffusivity is obtained when evaluating
data with a linear model. The apparent concentration dependence of the
diffusivity seen here has been noted before !

4.2  Drug permeation through a membrane

An example of a theoretical concentration-distance profile within a
thick (r:h = 1) cylindrical membrane is given in Figure 5a for short times.
The drug is taken up from the donor into the membrane at z = H and
released into the acceptor at z = 0. The drug concentration at z = H
increases at all grid points, including those of the edge which have no direct
contact with the donor, illustrating clearly the edge effect. The drug
concentration at the grid points lying in direct contact with the donor are the
largest seen and are all equal as a result of Equation 9. The concentration
decreases in a curvelinear fashion within the membrane in the direction
towards the acceptor. With advancing time a pseudo-steady state is reached
(Figure 5b), as designated by the establishment of an almost linear
concentration-distance profile from the donor towards the acceptor.

Theoretical mass-time profiles in the acceptor are shown in Figure 5¢
for both linear and multi-dimensional diffusion. The profile for lincar
diffusion is higher at short times, whereas the subsequent pseudo- -steady
state flux is mghu for the multi-dimensional case. The edge surrounding the
diffusional area in contact with the donor takes up a part of the diffusing
drug at early times (¢f. Figure 5a). Fewer mu}ewie“ will, therefore, diffuse
directly through the membrane and arrive in the acceptor, extending the lag
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Figure 8. Drug permeation through a cylindrically-shaped membrane. «) Theoretical

concentration-distance profile within a thick membrane (rh = 1; D ¢ / H o= 004 K = 1)
Jor short time. b) Thearetical concentration-distance profile within a thick membrane (r:h =
LDty H? = 0.4; K = 1). ¢} Theoretical permeation profiles through thick (r:h = 1)
membrane for linear and pudti-dimensional diffusion. d) Typical experimental permeation
profile (coordinates) for clenbuterol through thick (rh = 0.42) silicone membrane together

with curve of best fit to multi-dimensional model.
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time. Indeed, the two curves in Figure Sc show different lag-times; that for
the curve resulting from 3-dimensional diffusion is twice as long. Once the
lag-phase is past, the edge of the membrane now provides a source of
additional drug to the release area. The grid point lying in contact with the
acceptor and directly adjacent to r, (cf. Figure 3b) receives drug from three
neighbours, instead of only one in the case of a linear model. This increases
the flux of drug out of the membrane into the acceptor at later times (cf.
Figure 5b). When evaluating experimental permeation data using a linear
model, the longer lag-time arising from multi-dimensional diffusion will lead
to an underestimation in diffusivity. This is the opposite effect to that seen
with drug release from a matrix (¢f. Figure 4c) and can be confirmed from
the experimental permeation results obtained here. Thus, Figure 5d shows
an example of the coordinates of m (t),  for clenbuterol permeation
through the thick polysiloxane membrane ér:h = (1.42), together with the
best-fitting solution to the multi-dimensional model. The values from this fit
for diffusivity, partition coefficient, and pseudo-steady state flux (Table 2)
differ to those obtained from a fit to the linear model. Diffusivity is indeed
smaller for the linear model and flux greater, as predicted from Figure 5c.

TABLE 2

FITTED DIFFUSIVITIES (), PARTITION COEFFICIENTS (K), AND FLUXKES (1)
FOR CLENBUTEROL PERMEATION THROUGH A THICK SILICONE MEMBRANE
(r:h = 0.42) OBTAINED FROM LINEAR (1D) AND
MULTE-DIMENSIONAL (3D) MODELS

model n L b K I

x10’ [em®/s] [pgrom 2xs™ 1
1D 3 2,496 4+ 0,117 0,168 & 0.019 3.611 % 0.082
3D 3 3,245 b 0. 349 0.136 & 0.022 4,058 + 0,114

The magnitude of the error in measured diffusivity and flux can be
related to the geometry of the membrane. The latter can conveniently be
defined by two factors based on the geometry shown in Figure 2. The first
relates the area of the edge region not in direct contact with donor or
acceptor to the total area of the matrix or membrane: 100 (r_ - r)/r; and the
second the thickness of the matrix or membrane, H, to its total radius, r:
100 H/r,. The values for the theoretical pseudo-steady state flux and the
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lag-time were determined from simulated multi-dimension permeation
profiles, and the %-deviation from a linear simulation calculated. Figure 6a
shows the %-deviation in flux from the value without edge effect, 100x(J,,-
I o)/, as a function of increasing outer radius (i.e. greater edge area),
100x(r -r) /1, for increasing ratios of H/r, and a partition coefficient of 0.1,
The deviations vary between -5 and 30%. The shape of these curves is
determined by two effects. With an increase in outer radius, r,, the flux
initially increases owing to the additional diffusional flux from the edge
region (¢f. Figure 5b). This finding is in agreement with Barrer’s previous
analysis under steady state conditions’® Further increase in r_ then decreases
the flux, an effect not seen with the steady state analysis. This is caused by
the increasing volume of the matrix, which leads to greater amounts of drug
heing retained within the membrane under non-sink conditions. Since only a
finite amount of drug is present within the system, the concentration
gradient is lowered, and the flux decreases. The differences seen between
the “thick’ (H/r =1} and 'thin’ membranes (H/r =0.25) in Figure 6a shows
how the latter are less liable to error when evaluating permeation data with
a linear model, in agreement with Barrer’s steady state analysis® Increasing
the partition coefficient to K=1 (Figure 6b) increases the amount of drug
retained within the membrane. As a result, the curves fall off earlier than
those in the Figure 6a. By raising the partition coefficient further to K=10
(Figure 6¢), the depression of the flux is even stronger, so that the curves
decrease from the origin.

with the flux, there are two discernible effects. With increasing outer radius
of the membrane, r, uptake of drug within the edge area leads to longer lag-
times. A subsequent decrease is, however, again caused by the increasing
volume of the membrane. This leads to a faster decrease in the donor
concentration, with the curves reaching their point of inflexion earlier. The
time-lag is thereby shortened, with deviations of up to 250% occuring. This
partitioning effect which depresses the lag-time at high membrane volumes
is again more pronounced when the partition coefficient is increased to K =
1 (Figure 7b). The curves fall off earlier, and the deviations in the lag-time
are smaller, With a further increase in the partition coefficient to K = 10
(Figure 7c), the curves fall off even earlier, and the deviations are further
diminished.

Figures 6 and 7 can be regarded as error nomograms, which give the
errors in flux and lag-time (and hence diffusivity) arising from the evaluation
of permeation data with a linear model. For known diffusion cell geometry
and values of 1:h, the errors to be expected can be directly read off. The
strong influence of the partition coefficient clearly cannot be disregarded.
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4.3  Uptake into a thick agarose gel matrix

A theoretical concentration-distance profile within the gel after short
time is shown in Figure 8a. The symmetric cell yields a profile symmetric to
the symmetry axis of the grid. At this early time, the diffusant reaches but
few of the grid points not directly adjacent to the donor. The concentration
in the edge area is also increasing, illustrating the existence of multi-
dimensional diffusion. Figure 8a also shows how at a later time (italics), the
diffusant extends throughout almost the whole cell. Apart from the
concentration gradient existing along the vertical axis of the gel that arises
from linear diffusion, a concentration gradient along the horizontal axis can
also clearly be seen. This demonstrates the existence of both linear and
radial diffusion within the gel. The decreasing concentration at the
donor/gel interface reflects the non-sink boundary condition prevailing
there.

The existence of multi-dimensional diffusion can be seen nicely in
Figure 8¢, where a time-series of digitalized photographs taken of the cell
during the experiment with methylene blue is shown. The dye diffuses
linearly and radially into the gel, with the edge area also taking up dyestuff.
The curvature of the dyestuff front arises from the concave shape of the gel
surface. The concentration profile within the gel calculated from these
digitalized pictures by picture processing for the example of 7.72 h is shown
in Figure 8b. Those values at the grid points in the centre of the cell were
fitted to the multi-dimensional model in Figure 3¢ to yield the theoretical
profile shown in italics in the same figure. The theoretical and experimental
values are in good agreement with one another, a Chi® test showing that
there is no difference between both curves (a = 0.05). A fitted diffusivity of
3.35 x 10° + 0.18 x 10° cm? s was obtained, together with a fitted partition
coefficient of 118 + 0.2 (n = 3). Digital picture processing thus represents a
simple and exact method for determining diffusivity (and partition
coefficient) within solid bodies. The diffusant must be coloured, although
fluorescent marked substances could also be used. The calculation can be
made simpler by measuring linear diffusion within a long glass capillary,
allowing use of the applicable analytical solution to Fick’s Second Law.
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Figure 8, Uptake of methylene blue into agarose gel. a) Theoretical concentration-distance
profile within gel after short time (D = I x 10 b em? 57t = 10,000 5) and long time (italics)
(D= 1x10° em® 5L 1 = 500,000 5). b) Experimental concentration-disiance profile after 8
I together with profile of best fit to multi-dimensional model (italics). ¢} Sequence of
digitalised pictures within agarose gel (1:0 hy 2:0.72 by 3:1. T3 by £:3.73 by 5:7.72 by 6:21.7 b
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