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Introduction

"Virtually every life process involves peptides in some way"1a

Life is only possible if there is a high level of regulation to control every event in every living

cell at any time. This regulation is achieved through the ability of the molecules of life to

recognise and identify each other. A typical cell contains a number of molecules (receptors)

exposed to the environment and in communication with it. Other molecules in the

environment contain specific components called ligands.

Figure 1. Molecular recognition at the cell surface. Cartoon reproduced from Sigma
Chemical & Co.1b

Receptor-ligand interactions are recognised as the fundamental governing processes in

biology and medicine, as they are responsible for transmitting informations about events

inside and outside the cell and for prompting appropriate responses (Figure 1). Human

diseases can be ultimately associated with receptor-ligand interactions, such as the altered

function of a mutated receptor gene or the tropism of a virus for a cell surface.

The strong interaction between a ligand and its receptor depends on their complementarity in

shape, surface potential and other non-covalent forces (hydrogen-bonds and hydrophobicity).

Many ligands are peptides (examples are given in Table 1), and in this case the recognition

requirements can be summarised in only three points: the primary, secondary, and tertiary

ligand structure.
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Table 1. A few examples of biologically active peptides.

Name Sequence Biological properties

Insuline

Angiotensine II (human)

Somatostatin

DRVYIHPF

AGCKNFFWKTFTSC

                         GIVEQCCTSIC

SLYQLENYCNFVNQHLCGSH

LVEALYLVCGERGFFYYPKT

Increases blood pressure 
(hypertensive agent).

Inhibits secretion of insulin, 
glucagon and gastrin.

Regulate glucose metabolism 
in tissues.

Endomorphine-2 TPFF-NH2
Endogenous ligand at the
µ-opiate receptor. Analgesic.

Bombesin

Endogenous 
neurotransmitter in many
animals including mammals. 
Affects vascular and other
smooth muscle, gastric
secretion and renal
circulation and function.

Pyr-QRLGNQWAVGHLM-NH2

The central role played by peptides in the organism makes them a major target of

investigation in pharmacology and drug design, and indeed a variety of peptide-based drugs

are currently developed as therapeutics in the treatment of cancer,2a pain management,2b viral

infections,2c and other diseases.2d However, the peculiar chemical and physical properties of

peptides introduce additional difficulties over small-molecule drugs for their adoption as

therapeutics in clinical practice. At least two basic issues have to be addressed in the

development of a pharmacologically active peptide:

• the poor oral bio-availability due to the chemical degradation in the stomach and intestines,

as well as the low absorption rate in the intestinal system. Moreover, peptides have often a

short systemic half-life, because they are rapidly hydrolysed by proteolytic enzymes in

blood and tissues. A further obstacle to the delivery of peptide drugs in the organism is

constituted by the blood-brain-barrier.1c

• the complex elucidation of the conformation-activity relationship that is the key-point to be

addressed in order to explain the mechanism of the biological action and eventually design

analogues with improved pharmacological activity.

Many strategies have been developed in order to improve the systemic availability and

stability of peptide drugs in the organism. For example, their inclusion into biodegradable



Introduction 3

polymer micro-beads or their embedment into liposomes allows oral administration and

controlled rate delivery of the drug.3a-b

A further promising approach to improve the stability of peptide drugs is the introduction of

residues not recognised by peptidases in the primary peptides sequence. Insertion of

non-natural residues in the primary sequence constitutes also a powerful tool for the

inspection of peptides structure. In fact, the introduction of conformation stabilising building

blocks can prevent the mutual exchange of conformers and possibly “freeze“ the biologically

active structure, which can be subsequently investigated by established spectroscopic

techniques. Moreover, the synthesis of structurally defined building blocks which can be

inserted as non-natural residues in a peptide, opens the exciting possibility of inducing a

targeted modification into the secondary structure of a native peptide, thereby modulating

their biological properties and activity.

Compounds that are able to mimic the critical features of the molecular recognition process of

the parent peptide and thereby block or reproduce its action are named peptidomimetics.

I.1 αααα-Amino acids analogues as building blocks for peptidomimetics

A number of building blocks not belonging to the 20 proteinogenic amino acids have been

devised as replacement for α-amino acids in a natural peptide sequence (Figure 2).

Figur

α-peptides
(native sequence)

 Isostere of the peptide bond

H
N

R
X

O R

 β-amino acids

H
N

O

 Other natural amino acids

             

H
N

R

O

 N-Methyl and α,α-dialkyl amino acids

OMe O
 D-amino acids

O

e 2. Some types of building blocks for amino acids substitution in the natural sequence.4a,b

H
N

R

N

R

H
N
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Such units can stabilise and/or induce secondary structure motives in peptides, due to the lack

of side chains (glycine, β-alanine), due to their chirality (D-amino acids), or due to the

prolongation of the peptide back-bone (β-amino acids) or to some constraining features which

can rigidify the peptide structure (α,α-dialkyl and cyclic amino acids). The application of

some of these building blocks as unnatural constituents of peptides will be described in the

following sections, in particular greater attention will be devoted to the effect of cyclopropane

containing units.

I.1.1 α-Amino acids

The replacement of an amino acid of the original bioactive sequence with another natural

amino acid is the most obvious way to investigate a peptide active conformation.4c

Among the 20 natural amino acids, in particular the incorporation of glycine and proline has a

strong effect on peptides structure. Glycine, due to the lack of chirality at the α-carbon and

the absence of a side chain, adopts conformations that are inaccessible to the other amino

acids. Glycine is commonly found in β-sheets4c (Figure 3) or in turns (Figure 4) while it is

known to terminate helices.4d

Figure 3. Parallel and antiparallel β-sheets.

Proline,4c in direct contrast to glycine, involves an additional constraint on the backbone

caused by its cyclic structure. It can fit neither into helices nor into β-sheets because it has no

NH available to take part in the hydrogen-bonding network. Proline is able, however, to act as

turn inducing element4e due to its cyclic nature and to its unique capability to tolerate cis as

well as trans peptide bonds.
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ϕ (i+1) ψ (i+1) ϕ (i+2)
Type I -60 -30 -90
Type II -60 120 80
Type III -60 -30 -60

Figure 4. Turns: the type of turn is determined by the ϕ (rotation around the
ψ (rotation around the Cα-C=O bond) dihedral angles.

D-α-amino acids increase the proteolytic stability of peptides, and therefore

role in drug design. Moreover, D-amino acids favour reverse turns (Figure

helices.5a Their unique ability is to induce a particular type of β-turn, so cal

mirror image, so called type II’ depending on whether it is found at the r

corner of the turn (i.e. position i+2 or i+1). In contrast, the combination of t

can induce so called type I β-turns.5b The ability to stabilise type II’ β-tur

interest since it does not often occur in L-peptides but can be decisive 

recognition of some peptides toward their receptors. An example is the

peptides, containing the binding sequence Arg-Gly-Asp, toward αvβ3-integr

human tumour metastasis and in angiogenesis.5c

I.1.2 N- Methyl and α,α-dialkyl amino acids

N-Methyl amino acids are commonly found in naturally occurring peptide

are generally not recognised by proteases since the lack of the NH in th

alters the hydrogen bonding pattern. Like proline, they also tolerate cis pe

can be used as effective reverse-turn constraints when they are placed 

position of a turn, especially when D-proline is occurring in the preceding po

γ-turn β-turn
type I

β-turn
type II

γ-turnγ-turn
 β-turn
type III
ψ (i+2)
0
0

-30

 Cα-N bond) and

 play an important

 4) but destabilise

led type II, and its

ight or at the left

wo D-amino acids

ns is of particular

for the molecular

 affinity of RGD

ines, implicated in

 antibiotics. They

e backbone chain

ptide bonds. They

at the i+1 or i+2

sition.5d
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Figure 5. α- and 310-helices.

Prominent among the α,α-dialkyl amino acids is amino iso butyric acid (Aib) commonly

found in a family of natural antibiotics produced by microbial sources. Tetrasubstitution of

the α-carbon atom generates severe steric hindrance, therefore, as a consequence of the

Torpe-Ingold effect,6 the folding of Aib containing peptides in 310-, α-helices (Figure 5) and

β-turns (Figure 7) is favoured compared to the extended structures.7a,b Analogous results were

obtained with other types of α,α-dialkyl glycines.7c-e

I.1.2.1 α-Cyclopropyl amino acids

Among the α,α-disubstituted amino acids some cycloaliphatic residues4a were investigated. A

particular role is played by 1-aminocyclopropane carboxylic acid (α-ACC) 1 (Figure 6).

CO2HH2N

1

CO2HH2N

2

CO2HH2N

3

N
H

H2N

NH

Figure 6. Naturally occurring α-ACCs.

α-ACC 1 is a natural amino acid which was first isolated from cider apples and perry pears

and was identified as an intermediate in the biosynthesis of ethylene.7e,g Besides α-ACC 1,
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many analogues could be isolated from plants: Coronatine 2 and Carnosadine 3 are only two

examples (Figure 6) and many other cyclopropane containing amino acids not occurring in

nature were later synthesised.7a-b

Theoretical calculations8a-c showed that α-ACC, due to the additional constrain introduced by

the cyclopropane ring, behaves quite differently from Aib since it favours folding of the

peptide chain by formation of a C7-helix or γ-turn8a-d (Figure 7). Peptides consisting of three

or four α-ACC units have a propensity to fold into distorted type I β-bends and irregular

310-helices.8e-g

N
H

HN

O

O

HN

NHHN

O

OO

Figure 7. Aib favours β-turns, α-ACC γ-turns.

Many bioactive peptides containing α-ACC 1 have been so far synthesised: the aspartame

analogue Asp-ACC-OnPr, which has 250-300 times higher sweetness potency than sucrose;

N-benzoyl-ACC-Phe-OH and N-benzoyl-ACC-Pro-OH, which showed time-dependent

inhibition of carboxypeptidase A; ACC7-oxytocin, which has lower bioactivity than oxytocin,

are only a few examples.8h

I.1.3 Peptide bond isosters

Many amide bond isosters have been devised (in Figure 8 only few examples are shown).

These analogues resemble the peptide bond to varying degrees, but they are more resistant to

proteolytic cleavage and, furthermore, they display improved passive diffusion across

biological membranes.4a,b

H
N

O

O

O OH

amide ester alkene hydroxy ethylene moiety

Figure 8. Amide bond isosters.

β-turn (C10 ring) γ-turn (C7 ring)
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Depsipeptides are homologues of peptides in which some of the backbone amide linkages are

replaced by ester bonds. The ester bond, among the amide bond isosters, is the one which can

particularly well mimic the conformational properties of the parent amide bond: both groups

are planar due to the electronic resonance, and although the ester bond lacks the proton of the

amide NH to build hydrogen bonds, they are able to form loops. This feature can be useful to

investigate the conformation preferences of short peptides avoiding the complication to find

out which of the many NHs is hydrogen bonded.9a,b

Trans disubstituted alkene units can mimic trans configurated peptide bonds but are inert to

peptidases. They are known to promote β-turns and β-hairpins,10a,b and are able to play an

unusual role as hydrogen-bond acceptors.10b

Among the hydroxy ethylene amide bond isosters, the dipeptide mimics 4a and 4b

(Scheme 1) are an interesting example of the ability of cyclopropane derivatives to control the

backbone folding due to their constrained ring and to the forced cis- or trans- relationship

between the substituents.11a-d

N
H

H
N

O

O
R1

R2

O

HO
N
H

R1

R2

O

R2

OHH
N

R1

C replacement

4a

4b

Scheme 1. The dipeptide mimics 4a and 4b.

The trans 4a proved to stabilise extended conformations in α-peptides, an important, although

difficult task to accomplish, since structural elements mimicking β-strands are not so

extensively investigated.11a,d The cis 4b was designed to initiate a reverse turn which,

however, was not formed in the solid state.11d Nevertheless both dipeptide mimics and related

derivatives displayed interesting pharmacological properties as inhibitors of

farnesyltransferase, as enkephalin analogues and as inhibitors of HIV-1 protease.11a,c,d
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I.1.4 β-amino acids and β-peptides

β-amino acids are the higher homologues of α-amino acids having an additional methylene

group which does not lead to decreased capability of folding but rather to new stable

secondary structures occurring in much shorter oligomers than in α-peptides.12a β-amino acids

can be Cα as well as Cβ substituted (and for each, obviously, L and D configurations are

possible) thus providing a wide range of possible stereochemical combinations.12b As well as

α-peptides, β-peptides are also able to fold into helical, sheet- and turn-like structures.

The most common secondary structures in β-peptides are helices, left (L) and right (R)

handed, with various hydrogen bonding patterns (a brief overview is given in Table 2).12a,c,d In

contrast to α-peptides requiring 12 to 15 residues to form stable helices in organic protic

solvents, for β-peptides already six residues are sufficient.12a,b,e Some features in β-helices

resemble those of α-helices: constrain on the side chain (due to the inclusion of the Cα-Cβ

bond within a ring) favours the helix folding12f while incorporation of β-alanine (higher

analogue of glycine) breaks the helices.12g

Table 2. Helical conformations in β-peptides. Helices 12/10/12 occur in mixed β-peptides
containing Cα- and Cβ- monosubstituted β-amino acids.

hydrogen bonding  pattern helix type

L+2, R+2

L-3, R-3

12/10/12

O N
H

HN O

NHN
H

O

C10

C12

O
H
N

HN
O

NN
H

O

C12

H

O
C12

i i+2

i i-3

Alternating C10 and C12

hydrogen bond pattern

N

HN

O N
H

O

O

O
H

C14
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The formation of sheet-like secondary structures is more difficult, however, great progress has

already been accomplished toward this aim. Antiparallel β-sheet like arrangements were

obtained by introduction of typical turn inducing moieties: α-depsipeptides (D-Pro-Lac13a),

cyclisation,13b or β-nipecotic acid dimer.13c Parallel β-sheet like arrangement are on the other

hand rarely encountered.13d

Besides all the β-amino acids which have been synthesised until now, β-alanine (5) deserves

particular mentioning being an achiral β-amino acid which occurs in animal and plant

kingdom.14a

β-Alanine lacks a side chain and therefore permits the folding of β-alanine containing

peptides in a large number of well defined three-dimensional structures ranging from

extended to folded β-alanine conformation (Figure 9).14b

HN

O
HN Oαβ

µ

αβ
µ

extended conformation folded conformation
5 5

Figure 9. Extended and folded conformation of β-alanine are characterised by a value of the
µ dihedral angle of ±180±20° and ±60±20° respectively.

The folded conformation of β-alanine has been observed in cyclic peptides7a,15a-i where

β-alanine promotes β-turns15b-d,g-h or γ-turns.15e,f Nevertheless β-alanine has low propensity to

be positioned at the corner of these turned structures unless other conformational constraints

exist.15i In linear peptides on the other hand, the most favourable conformation is the extended

one.16a,b Therefore β-alanine seems to have no intrinsic preference for the folded

conformation but can surprisingly stabilise peptide conformations by mimicking fragments of

various secondary structures, i.e. α-helix, β- and γ-turns.17a-d

I.1.4.1 β-ACCs

The effect of geminal substitution is interesting not only in α-peptides but also in

β-peptides:18a the 1-(aminoethyl)-cyclopropanecarboxylic acid 6 (Figure 10), the β-analogue

of α-ACC 1, displays a completely new folding pattern,18b namely a stair-like structure 7

constituted of C8 hydrogen bonded rings. The synthesis of 8 (the (1-aminocyclopropyl) acetic
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acid) and of its derivatives is already known18d-f but neither its oligomers nor otherwise 8

containing peptides have been yet synthesised.

HO2C
NH2

H2N
CO2H

OHN

O N
H

C8

6 7 8

Figure 10. Geminal β-ACC.

Another way to introduce the cyclopropyl ring constrain into an amino acid is shown with the

β-ACC 9 (Figure 11), a β-alanine analogue in which the rotation around the µ dihedral angle

is not possible (fixed folded conformation) and the relationship between the amino and

carboxy function is determined by the stereochemistry at the two stereocentres. As it has been

illustrated so far, constrained α- and β- amino acids are efficient building blocks to rigidify

peptides conformation and to induce their folding, and 9 in particular has attracted

considerable attention as a potential turn inducer.19a-d

NH2

HO2C

NHR1

R2O2C R3

R1= CO2 Et, CO2-Napht, Cbz, Boc

R2= Me, Bn, Et
R3= Me, H

9 10

NHBoc

R1O2C CO2R2

R1= Bn, R2= Me
R1= Me, R2= Bn

11
12

Figure 11. β-ACC 9 and related compounds 10, 11 and 12.

Unfortunately 9 and its derivatives are difficult to prepare due to the 1,2 donor-acceptor

disubstitution which leads to rapid ring opening20 in the absence of an electron withdrawing

group on the amino function. Moreover, the control of the stereochemistry on the centres at

the cyclopropane ring is an additional challenge.19a Therefore, only few syntheses of

compounds with a cis-β-ACC substructure of type 9 (10) (Figure 11) have been

developed.19a-h Despite many attempts toward this aim,19b-d only one general synthetic strategy

is known that permits the introduction of β-ACC derivatives into a peptide chain21a-d in

diastereomerically as well as enantiomerically pure form.21d This strategy makes use of the

building blocks 11 and 12, which can be obtained in five steps from N-Boc pyrrole (13),21d-g
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having the N-Boc/CO2Bn cis (11) or trans (12) to each other (Scheme 2). The additional

carboxy group present in 11 and 12 allows, moreover, to introduce other functionalities

imitating α-amino acids side chains.22

NHBoc

BnO2C CO2Me

N
BocNHBoc

BnO2C CO2Me

11 1213

Peptide
incorporation

Peptide
incorporation

Scheme 2. Cis β-ACC 11 and trans β-ACC 12.

I.1.4.2 β-Amino acids and α-peptides

The interest in the role of β-amino acids with respect to conformational studies of peptides, is

not limited to their oligomers, the so called β-peptides, but also applies to their effect on α-

peptides. The backbone and the hydrogen bonding pattern of a peptide will be considerably

modified upon incorporation of a β-amino acid.23a,b This may affect the overall conformation

and the pharmacological properties of biologically active peptides. A successful example in

this regard is the substitution of proline with its β-analogue, the 2-amino cyclopentane

carboxylic acid (14), in morphecitine (15), one of the most selective agonists for the opioid

µ-receptor (Figure 12).24a-b

HO2C NH2 H2N
N

HO

O
N
H

O
N

O

14

Ph

NH2

O

Tyr-Pro-Phe-Pro-NH2

15

Figure 12. 2-Aminocyclopentane carboxylic acid 14 and morphecitine 15.

Apart from being useful tools to investigate the structure of α-peptides, β-amino acids have

been used also in cyclic RGD peptides and their activity as agonists of blood platelet

aggregation has been examined.23a,b It is believed that β-amino acids in cyclic peptides act as
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pseudo γ-turn mimetics, thus giving the chance to regulate the orientation of the

pharmacophoric groups.23a

I.2 Aim of this work

Compounds 11 and 12 are highly constrained cyclic β-amino acids, a property which

promises interesting effects on the conformation of their derivatives.

The introduction of the β-ACC 11 in Neuropeptide Y analogues resulted in increased

selectivity25,† and bioactivity towards the different NPY receptors. Hence, the influence of 11

on the structure of short α-peptides has been addressed in the present work. The synthesis and

the conformational studies on 11 derivatives (Scheme 3) will be presented.

           
Schem

The β-

each c

conditi

time. T

strateg

the β-

experim

therefo

solid p

             
† In coll

CO2Me
                                                                                      
e 3. β-ACC as possible folding-inducer in α-peptides.

ACC containing α-peptides have been synthesised in solution, which allows to control

oupling step, monitor the presence of side products and optimise the reaction

ons. Nevertheless solid phase synthesis would produce longer peptides within shorter

he most efficient and practicable solid phase synthesis is performed with the Fmoc

y, but it has been already demonstrated that Fmoc is not a suitable protecting group for

ACC because of the deprotection conditions.26 In contrast, preliminary acylation

ents on the N-allyloxycarbonyl (Alloc) protected β-ACC gave encouraging results,26

re the peptide coupling of the N-Alloc β-ACC (16a and 17) both in solution and on the

hase has also been developed in the present work (Scheme 4).

                                             
aboration with the research group of Prof. A. Beck-Sickinger, University of Leipzig. See Chapter 5.

N
H

O H
N

O

Folding ?
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N
H

O

O
OR2

O

O R1

N
H

OR2

O

O OR1

O
PGHN

R3

R1 = OMe, R2 =Bn

R1 = R2 =Me

OH
PGHN

O

R3

synthesis in solution

synthesis on solid phaseO
H2N

O

CH2Ph

16a

17

18

19

Scheme 4. Coupling of the N-Alloc β-ACC derivatives: 16a in solution and 17 on the solid
phase.
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Chapter 1

1.1 Synthesis of peptides with one ββββ-ACC unit

1.1.1 Coupling of the β-ACC at the N-terminus

The cis and trans β-ACC 11 and 12, respectively, were synthesised in five steps from

Boc-pyrrole either in racemic21a-d or enantiomerically pure form.21d

The coupling at the β-ACC N-terminus requires a particular protocol since the free amine on

the cyclopropyl ring 9 is not tolerated in the presence of an electron withdrawing group in

β-position which leads to ring opening products of the type 20a and 20b (Scheme 1).21a-d

NH2

HO

O

NH2
+

HO

O-

NH2

HO

O

9 20a 20b

Scheme 1. Ring opening at the N-unprotected β-ACC 9.

The protocol of choice21a-d to accomplish the coupling of β-ACC derivatives such as 11 is

based on the tert-butoxycarbonyl deprotection by treatment with a saturated solution of HCl

in ethyl acetate. The resulting racemic β-ACC ammonium salt (±)-21 or the enantiomerically

pure (+)-21 and (-)-21 (derived from (+)-11 having the RRS configuration and from (-)-11

having the SSR one) are stable (Scheme 2).

NHBoc

BnO2C CO2Me

NH3
+

BnO2C CO2Me

Cl-
3M HCl 
in ethyl acetate

3 h, 0 °C

(±)-11 (±)-21

NHBoc

BnO2C CO2Me

(+)-11 (RRS)

NHBoc

BnO2C CO2Me

(-)-11 (SSR)

NH3
+

BnO2C CO2Me

Cl-

(+)-21 (RRS)

NH3
+

BnO2C CO2Me

Cl-

(-)-21 (SSR)

Scheme 2. Deprotection of the β-ACC at the N-terminus.
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The salts 21 can then be liberated by the addition of a mild base in the presence of the

preactivated amino acid or acid chloride to arrive at the corresponding coupling products 22

(Scheme 3). Under these conditions no ring opening products are formed but, depending on

the reagents used in the coupling step, epimerisation at the cyclopropane ring leading to 23,

was observed (Scheme 3). The mechanism of this epimerisation and which particular

stereocentre is involved is not as yet completely understood, but experimental evidence

suggests that the cyclopropane stereocentre bearing the amino function could be labile.27

21

X R

O

1. EDC/HOBt/CH2Cl2

2. Pyridine

HN

BnO2C CO2Me

R

O

main product

22

HN

BnO2C CO2Me

R

O

epimer

23

+
NH3

+

BnO2C CO2Me

Cl-

Scheme 3. General coupling at the β-ACC N-terminus.

The coupling of the ammonium salt (±)-21 in dry CH2Cl2 with acetyl chloride in the presence

of triethyl amine afforded the N-acetyl-β-ACC (±)-24 in high yields and without

epimerisation (Scheme 4).

NHBoc

BnO2C CO2Me

HN

BnO2C CO2Me

O1. 3M HCl

3 h, 0 °C

(±)-11

in ethyl acetate

2. Acetyl chloride (1.8 eq.)
Triethyl amine (3.2 eq.)
CH2Cl2, 18 h

0 °C→r.t.

97 %

(±)-24

Scheme 4. Coupling of (±)-11 with acetyl chloride.

Analogously, N-protected amino acids can be coupled with 11 or 12 to dipeptides 25a-f and

26 under similar conditions (Table 1).
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Table 1. Dipeptides containing the β-ACC building block (11 or 12).

HN

BnO2C CO2Me

O
NR1PG

R2

NHBoc

BnO2C CO2Me

1. 3M HCl
in ethyl acetate

2. Activated amino acid

11 25a-f

HN

MeO2C CO2Bn

O
NHBocNHBoc

MeO2C CO2Bn

1. 3M HCl
in ethyl acetate

2. Activated amino acid

(±)−12 (±)-26

R2 Activating reagentsa) Epimerisation Yield

Me

Me

CH2Ph

R1

H

H

MeMe

PG

Boc

Boc

Boc

Fmoc

CH2CO2
tBu Fmoc

H Fmoc

H

H

H

MeH Fmoc

ββββ-ACC

(±)-11

(±)-11

H FmocH

(+)-11

(±)-11

(±)-11

(±)-11

(+)-11

(-)-11

a.a. eq.

1.5

1.5

1.5

1.7

1.2

1.2

1.5

1.5

_

_ 95 %

77 %

CH2CO2
tBu FmocH (±)-11 1.2 20 %

 _ 72 %

66 %

_ 90 %

10 % 88 %

3 % 90 %

4 % 90 %

12 % 95 %

Productb)

(±)-25a

(±)-25a

(+)-25b

(±)-25c

(±)-25d

(±)-25e

(±)-25e

(+)-25f

(-)-25f

MeH Boc (±)-12 1.5 _ 88 % (±)-26

A

B

B

A

B

A

C

B

B

A

Entry

1

2

3

4

5

6

7

8

9

10

a) A: EDC (1.5 eq.), HOBt (1.5 eq.), NEt3 (1.1 eq.); B: EDC (2 eq.), Py (2 eq.); C: EDC (2 eq.), HOBt (2 eq.), 
NEt3 (1.1 eq.). b) (+) and (-) do not signify the optical rotation of the dipeptides, but rather the optical
rotation of the β-ACC unit incorporated.

The use of HOBt should prevent the racemisation of the amino acid to be coupled and the

reaction should be more efficient leading to better yields (Table 1, entry 1). It was observed,

on the other hand, that in some cases the preactivation with HOBt leads to epimerisation (5-

20%) of the β-ACC (entries 1, 4 and 6), which is suppressed or decreased in its absence

(entries 2, 3, 5, 8-9). This effect seems to be caused by the larger steric hindrance of the
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amino acid hydroxy-benzotriazol ester compared to the amino acid-EDC isourea. In the case

of 25e (entry 6) the steric bulk of the amino acid (Fmoc protected at the N-terminus and tBu

protected at the side chain) increased not only the epimerisation but decreased also the yield

in the presence of HOBt. Surprisingly, the β-ACC 12 could be coupled with Boc-alanine

without epimerisation despite activation with HOBt. In this case another effect must be

considered, i.e. the steric bulk of the group cis to the reacting amino function. In 11 a benzyl

ester will result in bigger steric hindrance compared to 12, in which a methyl ester is in the cis

position.

It is possible to completely separate the two diastereomers of 25a by recrystallisation from

ethyl acetate/hexanes. The stereochemistry of the two isomers was determined by converting

the enantiomerically pure (+)-11 to (+)-25a and comparing the 1H NMR spectrum of (+)-25a

with the spectra of the two diastereomers isolated by recrystallisation as described above.

Separation of β-ACC containing dipeptides by recrystallisation was possible only with 25a.

All attempts to resolve the diastereomeric mixture of other dipeptides (even 26, the trans

analogue of 25a) resulted only in the enrichment of one diastereomer.

Further coupling (under the EDC/HOBt activating conditions) at the N-terminus of some of

the dipeptides listed in Table 1 afforded the corresponding tripeptides without epimerisation

problems (Table 2).

The tripeptide (-)-27a exhibits the same particular behaviour of (+)-25a toward

recrystallisation: when a mixture of (+)-27a and (-)-27a is recrystallised from

CH2Cl2/hexanes, (-)-27a only recrystallises.
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Table 2. Tripeptides containing the β-ACC building block 11 or 12.

HN

BnO2C CO2Me

O
NHBoc HN

BnO2C CO2Me

O H
N

O
NHBoc

R

(±)-26 (±)-28

(+)- and (-)-27b

(+)- and (-)-27a

a

(+)- and (-)-25a

(+)- and (-)-25a

HN

MeO2C CO2Bn

O
NHBoc

HN

MeO2C CO2Bn

O H
N

O
NHBoca

Yield

CH2Ph

H

H

Dipeptide

(+)-25a

(-)-25a

(+)-25a

(-)-25a

(±)-26 94 %

92 %

94 %

91 %

93 %

Product

(+)-27a

(-)-27a

(+)-27b

(-)-27b

(±)-28

CH2Ph

CH2Ph

Entry

1

2

3

4

5

a) Coupling procedure: i. 3 M HCl in ethyl acetate, 3 h, 0 °C.
ii. Amino acid (1.5 eq.), EDC (1.5 eq.), HOBt (1.5 eq.), NEt3 
(1.1 eq.), CH2Cl2, 18h, 0 °C→r.t..

R

1.1.2 Deprotection of the β-ACC C-terminus

The deprotection of the benzyl ester position at the C-terminus of the β-ACC ring to arrive at

the free acid can be achieved by hydrogenolysis in methanol with Pd/C and a pentane solution

of cyclohexadiene as the hydrogen source.21d The reaction proceeds overnight at room

temperature in high yields for the N-acetyl β-ACC 24 as well as for the N-Boc protected

derivatives 25a, 25c, 27a-b and 28 (Scheme 5).
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NHR

BnO2C CO2Me

NHR

HO2C CO2Me

Pd/C, cyclohexadiene
MeOH, r.t., 12 h

95-99 %

R = Ac

R = AlaNHBoc

R = AlaNMeBoc

R = Ala-PheNHBoc

R = Ala-GlyNHBoc

R = Ala-PheNHBoc

(±)-24

(+)- and (-)-25a
(±)-25c

(+)- and (-)-27a

(+)- and (-)-27b

(±)-28

(±)-29

(+)- and (-)-30a
(±)-30c

(+)- and (-)-31a

(+)- and (-)-31b

(±)-32

NHR

MeO2C CO2Bn

NHR

MeO2C CO2H

Pd/C, cyclohexadiene
MeOH, r.t., 12 h

96 %

Scheme 5. Hydrogenolysis of the benzyl ester on the N-acetyl or N-Boc β-ACC derivatives.

Under the same reaction conditions N-Fmoc protected β-ACC derivatives (25b, 25e and 25f)

gave lower yields or not pure products (25d and 25e), and the problem was particularly severe

for 25b (Scheme 6).

HN

BnO2C CO2Me

O

HN

HO2C CO2Me

O
Pd/C, cyclohexadiene
MeOH, r.t., overnight

NHFmoc

R

NHFmoc

R

R = Me
R = CH2Ph

R = CH2CO2
tBu

R = H

99 %

86 %
71 %

40 %(+)-25b
(±)-25d
(±)-25e
(+)-25f

 (+)-30b
(±)-30d
(±)-30e
 (+)-30f

HN

HO2C CO2Me

O
NH2

33

 (-)-25f R = H  62 %  (-)-30f

Scheme 6. Hydrogenolysis of the benzyl ester on the N-Fmoc β-ACC derivatives.

The hydrogenation of 25b required a longer reaction time than the other compounds, in fact,

after 18 h, the starting material was not yet completely consumed but 48 h were necessary to
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bring the reaction to completion (Table 3, entry 1). After filtration of the reaction mixture

over a celite pad, 30b was isolated together with the Fmoc deprotected dipeptide 33. It is

known that the Fmoc group undergoes hydrogenolysis but generally at a lower rate than

O-benzyl systems.28 In contrast, under the hydrogenolysis conditions described, the Fmoc

cleavage occurs together with the benzyl cleavage. The reaction of 25b was followed by TLC

and the work up was done as soon as the starting material spot disappeared, nevertheless, 33

was found. Hydrogenation of 25b at 1 atm of H2, in methanol with Pd/C resulted in only 42 %

yield of 30b along with partial Fmoc deprotection (Table 3, entry 2).

Table 3. Various hydrogenolysis conditions tested on 25b.

Entry Hydrogen source Solvent Time Yield of 30b

1

2

3

4

H2 (1atm)

HCO2H (85 %)

MeOH

MeOH

18 h

Product

2 h

Note

TLC monitoring  
difficult because of 
the high percentage 
of HCO2H

HCO2H (30 %)

HCO2H (20 %)5

HCO2H (6 %)

cyclohexadiene MeOH 48 h 40 % 30b + 33

6

MeOH/Benzene
1:1

MeOH/Benzene
1:1

MeOH/Benzene

33_

1:2
85 %2 h

1.5 h 98 % 30b

30b

42 % 30b + 33

30b1 h 94 %

Hydrogenolysis of a benzyl ester in the presence of a N-Fmoc group can be also achieved in

a 85 % solution of HCO2H in methanol with Pd/C.29 These conditions proved to be too

drastic for 25b: only Fmoc deprotection was observed. Therefore, different concentrations

of HCO2H were used to find the optimal methanol/HCO2H ratio that would only affect the

hydrogenolysis of the benzyl ester. By decreasing the HCO2H concentration another

problem arose: the low solubility of 25b in methanol, therefore mixtures of methanol and

benzene were used (Table 2, entries 4-6). The best results could be achieved for the

conditions shown at entry 4.
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1.1.3 Coupling at the β-ACC C-terminus

The coupling at the β-ACC C-terminus was performed under EDC/HOBt coupling conditions

(Table 4), but the β-ACC derivatives were not preactivated to prevent a possible

epimerisation of its benzotriazol-ester in the absence of the coupling partner.

When a secondary amine was coupled (leading to products 34, 35c and 36b), epimerisation

occurred to an extent ranging between 10 and 25 %. This coupling seems also to be sensitive

to the steric hindrance of the partner, which reacts with the β-ACC derivatives. Only in the

case of 34, the epimer could be isolated by chromatography column and from the coupling

constants at the cyclopropyl ring CHs (suggesting the presence of one proton trans related to

the others) it can be reasonably stated that the epimerised centre is that bearing the amino

function.

Table 4. Coupling at the β-ACC C-terminus. Reaction conditions: EDC/HOBt (1.5 eq.),
amine (as ammonium salt, 1.5 eq), triethylamine (1.5 eq.), dry CH2Cl2, r.t., 18 h.

HN

HO2C CO2Me

O
HN

CO2Me

O

N

O
(±)-29

HN

HO2C CO2Me

O HN

CO2Me

O

N

O

R1

(±)-29

R2

R3O

O

R1= R2= H, R3= Me
R1= H, R2= Me, R3= Bn(±)-35b

(±)-35a

R1= R2= Me, R3= Bn(±)-35c

(±)-34

N
H

CO2H

CO2Me

(+)- and (-)-30a R1= H(+)-36a and (-)-36a
R1= Me(+)-36b and (-)-36b

O
BocHN N

H

MeO2C
O

BocHN N

O

CO2Bn
R1

HNEt2

Starting  material Amine Product

R3O2C NHR1

R2

BnO2C NHR1
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The presence of an isomeric by-product in the coupling of 29 and 30a with a N-methyl amino

acid could have been also caused by rotamers, generated at the N-methyl-C=O peptide bond.

Nevertheless this possibility was excluded by NMR experiments performed on 35c in

DMSO-d6 between r.t. and 140 °C, in which no coalescence was observed.

The coupling of the β-ACC acids 31a-b and 32 (Table 5) with a dipeptide instead of an amino

acid proceeded in high yields (85-98 %) without epimerisation, suggesting that the

epimerisation determining factor is not the overall dimension of the amino partner but the

steric hindrance directly at the reactive amino function.

Table 5. Coupling at the β-ACC acids C-terminus. Reaction conditions: EDC/HOBt (1.5
eq.), dipeptide amine (as ammonium salt, 1.5 eq.), triethylamine (1.5 eq.), dry
CH2Cl2, r.t., 18 h.

N
H

CO2H

CO2Me
OH

N

O
BocHN

R1

N
H

CO2Me
OH

N

O
BocHN

R1
H
N

O
N
H

O

CO2R2

R1

N
H

CO2H

CO2Me
OH

N

O
BocHN N

H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Bn

R1= CH2Ph

R1= H

(+)-31a and (-)-31a

(+)-31b and (-)-31b R2= Me

R2= Bn

(±)-32 (±)-38

(+)-37a and (-)-37a

(+)-37b and (-)-37b

Acid Amine Product

PhH2C PhH2C CH2Ph

CO2R2H
N

O
H2N

R1

CO2Bn
H
N

O
H2N

CH2Ph

Compound (±)-38 is soluble only in DMSO, a solvent with a high hydrogen-bonding

capability, which could disrupt the peptide conformation. Therefore DMSO is not suitable for

structural investigations and (±)-38 was not further taken into account.

The pentapeptides 37a, although not easily soluble in CH2Cl2 or MeOH, but only in a mixture

of both solvents, were further investigated in their protected (37a) and unprotected (39) form

(Scheme 7).



24 Chapter 1

N
H

CO2Me
OH

N

O
BocHN

PhH2C H
N

O
N
H

O

CO2Bn

CH2Ph

N
H

CO2Me
OH

N

O

+H3N

PhH2C H
N

O
N
H

O

CO2H

CH2Ph

HCl 3 M in ethyl acetate

cyclohexadiene
Pd/C, MeOH
18 h, r.t.

3 h, 0 °C

(+)-37a

(-)-37a

(+)-39

(-)-39

Cl-

1.

2.

Scheme 7. The deprotection of the pentapeptides 37a was achieved under acidic conditions to
liberate the amino function and by hydrogenolysis to release the free acid.

1.2 Synthesis of multiple ββββ-ACCs containing peptides

The epimerisation at the β-ACC ring becomes particularly severe when the coupling is

performed at the cyclopropane carboxy function with a partner containing another β-ACC

unit following the reactive residue (Scheme 8).

N
H

CO2Me

CO2H

O
PGHN N

H

CO2Me
O

R

O

H2N Epimerisation

Scheme 8. Epimerisation occurs in particular when both coupling partners contain a β-ACC unit.
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It was always possible to separate the products from their epimers by column

chromatography, but the epimers were never isolated pure, therefore, there are no

experimental data to support any hypothesis on which stereocentre epimerises.

Interestingly, the coupling of the tripeptides 36a with the β-ACC acids 30a proceeded in good

yields (93-96 %) although 15 % epimerisation occurred. In contrast, the coupling of the

β-ACC (+)-25a with (+)-30b, afforded consistently lower yields (71 %) and 22 %

epimerisation (Scheme 9).

N
H

CO2Me

CO2H

O
GPHN

N
H

CO2Me
O

R

O

BocHN
N
H

CO2Me
O

GPHN
H
N

O
N
H

O
CO2Me

R

O

HCl 3 M in
ethyl acetate

(+)-30a

(-)-30a

(+)-30b

(+)-36a

(-)-36a

(+)-25a

(+)-40 96 %

(-)-40 97 %

(+)-41 71 %

15 % epim.

15 % epim.

22 % epim.

R = AlaOBn

R = AlaOBn

R = OBn

PG = Boc

PG = Boc

PG = Fmoc

ii.

i.

EDC/HOBt
Py

Scheme 9. Synthesis of peptides containing multiple β-ACCs.

Other reaction conditions were tried to improve the yield of (+)-41 (Table 6), but no

substantial yield enhancement was observed.

Table 6. Reaction conditions for the coupling of (+)-25a and (+)-30b to afford (+)-41.

EDC/HOBt (1.5 eq.)
Py (1.5 eq.) 71 % 22 %

HBTU (2 eq.)
DIPEA (3 eq.)

EDC (2 eq.)
Py (1.5 eq.)

55 % 15 %

68 % 12 %

Reagents Yield Epimerisation
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Activation of (+)-30b with HOBt resulted in the best yield but also in the highest amount of

epimerisation. Less epimerisation was observed with HBTU as the activating agent, but at the

cost of a lower yield. The best compromise between yield and degree of epimerisation was

found with the EDC as the sole activation agent.

The free acid (+)-42 (Scheme 10) was obtained by hydrogenolysis of (+)-41 under the same

conditions used for the Fmoc-protected β-ACC dipeptides.

N
H

CO2Me
O

FmocHN
H
N

O
N
H

O
CO2Me

N
H

CO2Me
O

FmocHN
H
N

O
N
H

O

CO2H

CO2Me

CO2Bn

HCO2H 16 %

MeOH/benzene 1:1
2.5 h, r.t.

(+)-41

(+)-42

99 %

Pd/C

Scheme 10. Hydrogenolysis of the benzyl ester of tetrapeptide (+)-41.

Compounds (+)-40 and (-)-40 were completely deprotected under the same conditions used

for (+)-37a and (-)-37a to arrive at the corresponding ammonium salts (+)-43 and (-)-43

(Scheme 11).
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N
H

CO2Me
O

BocHN
H
N

O
N
H

O
CO2Me

N
H

CO2Me
O

+H3N
H
N

O
N
H

O
CO2Me

(+)-40 and (-)-40

(+)-43 and (-)-43

H
N

O

CO2Bn

H
N

O

CO2HCl-

1. HCl 3 M in ethyl acetate

2. cyclohexadiene
Pd/C, MeOH
18 h, r.t.

3 h, 0 °C

95 %

Scheme 11. Deprotection of pentapeptides (+)-40 and (-)-40.

The acid (+)-42 was subsequently coupled with the ammonium chloride (+)-44 to afford the

hexapeptide (+)-45 (Scheme 12). The coupling worked in only 48 % yield but epimerisation

had occurred to a lower extent compared to the previous couplings (Scheme 9).

N
H

CO2Me
O

FmocHN
H
N

O
N
H

O

CO2H

CO2Me

(+)-42

CO2Me

N
H

CO2Bn

O
+H3N(+)-25a +

HCl 3 M in
ethyl acetate

(+)-44

N
H

CO2Me
O

FmocHN
H
N

O
N
H

O
CO2Me

H
N

O
N
H

O

CO2Bn

CO2Me

(+)-45

EDC (2 eq.), Py (2 eq.)
CH2Cl2, r.t., 18 h
48 % (5 % epimer)

Cl-

Scheme 12. Synthesis of the hexamer (+)-45.



28 Chapter 1

Finally the hexapeptide (+)-45 was deprotected at the C-terminus to obtain the free acid

(+)-46 (Scheme 13) whose conformation is currently being investigated (see Chapter 5).

N
H

CO2Me
O

FmocHN
H
N

O
N
H

O
CO2Me

H
N

O
N
H

O

CO2H

CO2Me

(+)-45

(+)-46

HCO2H/MeOH 1:1
Pd/C
5 h, r.t.

88 %

Scheme 13. Hydrogenolysis of hexapeptide (+)-45.
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Chapter 2

2.1 Introduction

The three-dimensional structure of peptides and proteins is governed by several factors,

among them, non-covalent forces such as hydrogen bonding, hydrophobic interactions,

electrostatic interactions and van der Waals forces. Hydrogen bonding is one of the most

important interactions related to protein folding. Although the energy associated to a

hydrogen-bond is small compared to a covalent bond, a complex hydrogen-bonding network

can have a great influence on protein structure.30a

The formation of secondary structural elements is mainly guided by hydrogen-bonding

patterns. α-Helices are constituted of repeating i←i+4 hydrogen bonds (the residue i acts as

hydrogen bond donor involving its amide N-H, the residue i+4 acts as hydrogen bond

acceptor involving its amide C=O). β-Sheets are stabilised by hydrogen bonds between two

strands which can be aligned in the same (parallel sheets) or in opposite (antiparallel) N→C

direction. These two types of secondary structure are regular and consist of a repetitive motif.

There are other regular but not repetitive secondary structures: β- and γ-turns, in which the

polypeptide chain reverses its overall direction (therefore they are also called reverse-turns)

allowing for example the antiparallel β-sheet formation. Reverse turns play an important role

in molecular recognition: in proteins the interaction with other molecules takes place on

surfaces densely populated by turns which can expose and orient the pharmacophore to the

receptor.31a-c

The three-dimensional arrangement of the polypeptide chain stabilised by a i←i+3 hydrogen

bond (forming a ten membered ring, also designated C10) is called β-turn (Figure 1a).

Figure 1. a: type I β-turn. b: direct γ-turn. c: Greek

O O

b

N
H

H
N

N
HO

ω ψ ϕ

c
a
 letters correspo
nding to dihedral angles.
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There are also β-turns in which no hydrogen-bond occurs to hold together the chain direction

inversion, so called “open reverse turn”. A sequence of β-turns regularly following each other

forms a 310 helix.31a There are many different types of β-turns (the most common are type I, II

and III right handed and type I’, II’, III’ left handed, see Figure 4, Introduction) characterised

by specific values of the dihedral angles ϕ and ψ (Figure 1c). γ-Turns, on the other hand,

involve only three amino acids instead of four, and are stabilised by a i←i+2 hydrogen bond

(Figure 1b).

The importance of turns for the structure of proteins and their biological activity has increased

the interest to discover possibilities to induce their formation.

Among many others, the cyclopropane building block is supposed to be able to force turns

formation.11a-d The potential structure inducing effect of β-ACC 9 has been already

investigated by Molecular Modelling by Rao et al..19d The N-acetyl methyl amide derivative

47 was found to have a global minimum stabilised by a 8-membered hydrogen-bonded ring

(C8, Figure 2), while a local minimum (Figure 2) is stabilised by a hydrogen-bonded

6-membered ring (C6) and is 1.2 kcal/mol less stable than the C8 conformation.

O H
N

HN O
N

H O
NHMe

O
C8 C6

47 47

N
H O

NMe2

O

48

N
H O

NEt2
O

?

CO2Me

34

H2N CO2H

9

Figure 2. Hydrogen bonding patterns. C6 and C8: six- or eight- membered ring closed by a
hydrogen bond .

Unfortunately it is not yet possible to synthesise derivatives of 9 such as 47, but its close

analogue (±)-11 has been already successfully built into peptide sequences.21c The β-ACC

(±)-11, as well as 9, can be regarded as a conformationally restricted β-alanine 5 (Figure 3) in

which the folded conformation (Figure 9, Introduction) is blocked.

BocHN CO2Bn

CO2Me

H2N CO2H

(±)-11

β-alanine  5

Figure 3. β-Alanine (5) and β-ACC ((±)-11).
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The C6 hydrogen-bonded conformation is, on the other hand, not significantly populated in

the analogue derivative of β-alanine 48 (Figure 2).16b

The preferred conformations of 11 derivatives were investigated starting from (±)-34 (Figure

2) as model compound having only one possible hydrogen-bond. The results allowed to verify

the molecular modelling calculation performed on 47 and to compare the IR results with those

obtained on 48.

2.2 IR spectroscopy

In spite of some secondary structures lacking of hydrogen-bonding stabilisation31a-c hydrogen

bond detection remains a powerful tool to investigate the structure of peptides and proteins.

IR spectroscopy is particularly useful to examine intramolecular hydrogen-bonded and non

hydrogen-bonded states. The equilibration between these two states is slow on the IR time

scale, therefore distinct bands for hydrogen-bonded and non-hydrogen-bonded NHs can be

observed. In a non polar solvent non hydrogen-bonded NHs absorb usually above 3400 cm-1,

while the hydrogen-bonded ones absorb below 3400 cm-1.32a-b

The most suitable solvents to perform IR investigation in the amide A region (3500-

3200 cm-1) are CH2Cl2 and CHCl3. These solvents have relatively low polarities (ε: 9.1 and

4.8 at r.t., respectively) and do not interact and/or disrupt hydrogen bonds. Acetonitrile is

significantly more polar than either of the chlorocarbons, moreover the nitrile group is a

moderate hydrogen-bond acceptor.32b DMSO, finally, is a powerful hydrogen-bond acceptor,

therefore only the strongest intramolecular hydrogen-bonds persist in its solutions.

The concentration of the compounds under investigation is another factor to take into account.

At high concentration, in fact, intermolecular hydrogen bonds can occur, therefore a

calibration is necessary to determine the suitable concentration for the detection of

intramolecular hydrogen-bonds. The calibration was performed by NMR spectroscopy on

(±)-35a at 1 mM, 5 mM, 10 mM and 50 mM concentrations in CDCl3 (Figure 4). The

resonance of the NH protons is sensitive to hydrogen bonding: a proton resonates at lower

field when hydrogen-bonded compared to its non bonded state. At 1 mM, 5 mM and 10 mM

concentrations the resonance of the two NHs remains almost the same, while at 50 mM

concentration NH-2 (the number following a functional group symbol identifies the residue

counted starting from the N-terminus) shifts by 0.4 ppm down field due to the formation of a

new intermolecular hydrogen bond. Interestingly NH-1 does not shift also at 50 mM

concentration suggesting to be already intramolecularly hydrogen-bonded.
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(ppm)
6.106.206.306.406.506.606.706.806.907.007.107.207.307.40

     

HN

O

CO2Me
H
N

O

MeO2C

(±)-35a

1

2

Figure 4. NH resonances for (±)-35a at various concentrations in CDCl3 (400 MHz).

Further calibration experiments were done by means of IR spectroscopy on (±)-35a

(Figure 5a) to confirm the NMR results and on 49 (Figure 5b) to evaluate the same problem

on longer peptides.
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H

CO2Bn

O
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As already demonstrated by NMR spectroscopy, (±)-35a experiences more extensive

hydrogen bonding at 50 mM than at 1mM concentration, on the other hand the pentapeptide

49 displays a significant enhancement of the hydrogen-bonding extent above 5 mM

concentration. Nevertheless, it has been demonstrated that 1 mM concentration is suitable to

detect intramolecular hydrogen-bonds without intermolecular contribution.

2.2.1 N-acetyl β-ACC derivatives

The carbamate and N-acetyl derivatives of β-ACC (±)-11 were first analysed (Table 1) and

the IR data were combined with molecular modelling calculation to get a first insight on the

potential hydrogen bonding pattern. A conformational search was performed with the

program Titan,33a in which the methods developed by Osawa and Montecarlo33b,34 have been

merged into a single simulated-annealing algorithm. The force field used was MMFF94

(Merck Molecular Force Field) parameterised especially for organic molecules and

biopolymers.33a,c For each calculation the peptide bond dihedral angles were constrained to

180°. Only the minima occurring within 3 kcal/mol from the first minimum were taken into

account. Hydrogen bonds were attributed for H--O distances shorter than 2.5 Å and N-H--O

angles larger than 110°.10a-b The calculations were performed on (-)-11 as well as on (+)-11

derivatives, but when the hydrogen bonding pattern resulted to be the same, only one

enantiomer/diastereomer is depicted in the following discussion. It should be stressed,

however, that such molecular modelling calculations were performed in vacuum, therefore

they do not take into account the solvent contribution, moreover the gain in energy due to the

hydrogen bonds is probably overestimated.

Often more than one hydrogen-bonding pattern is possible in the molecules investigated. The

discussion on each possibility should therefore take into account, besides the experimental

data, two other factors: the aptitude of the hydrogen-bond acceptor (tertiary amides >

secondary amides > esters ≥ carbamates > ketones)35a-e and the N-H--O angle which should be

larger than 100° and ideally as close to 180° as possible.30a-b

The β-ACC (±)-11 itself as well as (±)-17 does not exist in any hydrogen-bonded

conformation (N-H stretching occurring at 3422 and 3415 cm-1 respectively). In this case two

factors contribute to disfavour the formation of the hydrogen bond: the mild hydrogen-bond

acceptor capability of the ester carbonyl and the constraint N-H--O geometry (around 120°,

Figure 7 for compound (±)-34). As soon as a keto function is introduced (compound (±)-50)

affording a better hydrogen-bond geometry, about 50 % hydrogen-bond is observed
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(3344 cm-1 absorption). The keto group is a weaker hydrogen bond acceptor than the ester but

in this case the N-H--O angle is 150°, significantly close to linearity (Figure 6).

To confirm this hypothesis, molecular dynamics calculations were performed. The first

minimum calculated on (+)-50 uses the keto group as hydrogen-bond acceptor. The hydrogen

bond closes the conformation in a nine membered (C9) ring (Figure 6).

               

CO2MeN

O O
O

Ph

H

O
O

(+)-50

Figure 6. Lowest energy conformation for (+)-50.

To enhance the hydrogen donor and acceptor ability of the amino and carboxy functionalities

respectively, the acetylamino diethyl amide β-ACC (±)-34 (Figure 7) was investigated, being

in close analogy to the β-alanine derivative 48 (Figure 2). The IR spectrum of 48 (1 mM in

CH2Cl2) displays only one absorption at 3440 cm-1 at room temperature and at 3436 cm-1 at

205 K, 48, therefore, does not experience any hydrogen-bond, it exists prevalently in the

extended conformation.16b Compound (±)-34, in contrast, exists predominantly in the

hydrogen-bonded conformation (main N-H absorption at 3364 cm-1 and only a shoulder at

3423 cm-1).
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In this case the strong hydrogen-bond acceptor capability of a tertiary amide carbonyl

overcomes the not optimal N-H--O geometry. This result was confirmed by molecular

modelling calculations suggesting that the most populated conformation is the hydrogen-

bonded C6 shown in Figure 8.

Figure 8. Conformational minimum for (

Surprisingly the C6 conformation is no

structure of (±)-34 no intramolecular hy

intermolecular one, connecting the NH

function of another symmetry related mo

middle). The dimers crystall packing is sh

Figure 9. Left: crystall structure of (±)-34. 

2 Å

°
127
+)-34.

 longer favoured in the solid state. In the X-ray

drogen-bond is found (Figure 9, left) but rather an

 of a molecule with the sp2 oxygen of the amide

lecule leading to the formation of dimers (Figure 9,

own in Figure 9, right side.

Middle: Hydrogen-bonded dimer. Right: Crystall cell.



36 Chapter 2

The glycine derivative (±)-35a shows three different absorptions in the N-H stretching region

(3385, 3420 and 3428 cm-1), two corresponding to non hydrogen-bonded and one to

hydrogen-bonded values (Table 1). Since (±)-35a displays three absorptions of the same

intensity but has only two NHs, it is clear that hydrogen-bonded conformations exchange with

linear, non hydrogen-bonded ones.

Figure 10. (+)-35a: (a) First ener
minimum, C9-hydrogen

The energy minima for (+)-35a w

minimum (Erel = 0.0 kcal/mol) fou

second minimum (Erel = 1.49 kcal/m

hydrogen acceptor function is the 

In the alanine derivative (±)-35b 

observed at 3416 and 3383 cm-1. 

conformation equilibrating at r.t. 

one predominantly populated C8-

(+)-35a in Figure 10a and a C6 as 

H

C8

a

     

gy minimum, C8-hydrogen bonded ring. (b) Second energy
-bonded ring.

ere investigated by a conformational search. The lowest

nd contains a C8-hydrogen bonded ring (Figure 10a), the

ol) has a C9-hydrogen-bonded ring (Figure 10b) where the

ester carbonyl.

two N-H absorptions of almost the same intensity can be

It seems as if there is at least one hydrogen bond in each

in CH2Cl2. A conformational search on (+)-35b resulted in

conformation (Erel = 0.0 kcal/mol) like the one shown for

second, but not significant, minimum (Erel = 2.51 kcal/mol).

CO2Me
N

N O
H

O

O

MeO

C9

C8

C9

b
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Table 1. IR absorption in the amide A region. HB: hydrogen bonded.

CO2BnBocHN

CO2Me

CO2CH2COPhBocHN

CO2Me

CO2BnN
H

CO2Me

non HB N-H HB N-H

3422

3415 3344

3415

33643423 
(shoulder)

3428 3385

3416 3383

3373

3420

O

N
H

CO2Me
O

NEt2

O

N
H

CO2Me
O H

N

O

CO2Me

N
H

CO2Me
O H

N

O

CO2Bn

N
H

CO2Me
O Me

N

O

CO2Bn

(cm-1) (cm-1)

(±)-11

(±)-50

(±)-24

(±)-34

(±)-35a

(±)-35b

(±)-35c

The N-methyl alanine derivative (±)-35c has only one absorption in the amide A IR region at

3373 cm-1. The only N-H on (±)-35c should be therefore hydrogen-bonded. A tertiary amide

carbonyl as hydrogen-bond acceptor is in fact a very good partner for hydrogen bonding.

Two possible hydrogen-bonding patterns were found for (+)-35c by a conformational search:

the first minimum is a C6 conformation (Erel = 0.0 kcal/mol); the second minimum (Erel = 0.13

kcal/mol) has an unusual hydrogen bond between the NH-1 and the π electrons of the phenyl

ring (Figure 11). Hydrogen bonds to π-acceptors have already been widely investigated.36a-g
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In proteins, on the other hand, they are rare since they are half as strong as a normal

N-H--O=C hydrogen bond,36h-i therefore this second minimum should be considered with

caution.
Figure 11. (+)-35c: Second energy minimum. For reason
cyclopropane ring is not displayed.

2.2.2 NMR: chemical shifts variations
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of reduced temperature coefficients ∆δ/∆T) has been more rarely measured in non protic and

relatively non polar solvents the such as CD2Cl2 and CDCl3.16b,37a-c Temperature enhancement in

these solvents will result in a large chemical shift change for NHs involved in hydrogen-bonds,

which are no longer stable at higher kinetic energy values. Hydrogen-bonded NHs display a little

chemical shift change when their environment remains constant against temperature (i.e. the

hydrogen bond is not disrupted) and the same happens to completely solvent exposed NHs. There

is an exception to this last situation: small ∆δ/∆T values can be observed also in amide protons

equilibrating between hydrogen-bonded and non-hydrogen-bonded states when the enthalpy

difference between them is small.32a Conformation exchange unfortunately makes the

interpretation of the results obtained difficult, because the NHs involved in a hydrogen bond could

be different in different conformations. The H/D exchange experiment compares the time

requested by different NHs in a molecule to disappear from a 1H NMR spectrum in deuterated

solvents (commonly D2O or CD3OD).31a In fact hydrogen-bonded NHs exchange their proton

with deuterium slower than solvent exposed ones. When the hydrogen-bonds are not strong

enough to survive in methanol (protic solvent, high polar) the same result can be obtained in an

aprotic, apolar solvent such as CD2Cl2 or CDCl3 by addition of a small quantity of CD3OD.37c

The ∆δ/∆T values for (±)-34 and (±)-35a were measured in CDCl3 at 1 mM concentration

between 263 and 318 K (Figure 12).

Figure 12. Chemical shift temperature
NH-1; # (±) 35a NH-2.
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compatible with both strong hydrogen-bonded and non hydrogen-bonded states, while the

second value is indicative for a relative labile hydrogen-bond.

The H/D exchange for (±)-35a was measured in 0.2 M CD3OD in CDCl3 (Figure 13), but in

this solvent mixture after 60 h both NHs experienced 64 % deuterium exchange. Then the

solvent mixture was brought to 0.4 M CD3OD and after 21 h the NH-2 signal disappeared

while NH-1 exchanged 83 % of its proton with deuterium.

Finally, another factor suggests, for (±)-35a, NH-1 rather than NH-2 to be involved in a

hydrogen-bond: NH-1 resonates at lower field than the NH of (±)-17 (7.02 and 6.64 ppm

respectively) which is definitely non-hydrogen-bonded. The chemical shift of hydrogen-

bonded protons is, in general, higher than that of non-hydrogen-bonded ones.

NMR data would, therefore, support the hypothesis that (±)-35a exchanges between a C9

hydrogen-bonded (involving NH-1) and a linear, non-hydrogen-bonded, conformation.

(ppm)
6.556.606.656.706.756.806.856.906.957.007.057.107.157.207.25

Figure 13. (±)-35a H/D exchange. (a) CDCl3. (b) After 60 h in CD3OD 0.2 M in CDCl3. (c)
After 60 h in CD3OD 0.2 M in CDCl3 and 21 h in CD3OD 0.4 M in CDCl3.

No additional informations could be obtained by NMR spectroscopy for the conformational

preferences of (±)-35b, since the NH signals are hidden under the aromatic CH ones. The C8

conformation (for (+)-35a, Figure 10) remains nevertheless most probable as suggested by the

conformational search. Compound (±)-35c has only one NH group, therefore, NMR

experiments would be not indicative for the elaboration of its conformation.

2.2.3 Oligopeptides containing β-ACC as the C-terminal amino acid

Several peptides were synthesised to gain further insight into the structural influence of the

β-ACC building block at the C-terminus (Table 2).

The dipeptides 25a and 25b show about 50% hydrogen-bonding, while 25c has only one

absorption at 3391 cm-1, its conformations are therefore all hydrogen-bonded.

a

b

c
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Table 2. Derivatives of the β-ACC 11 and 12 at the N-terminus.

CO2BnN
H

CO2Me

non HB N-H HB N-H

3430

3429 3392

3415 3342
(shoulder)

3416 3350 
(shoulder)

3415

O

CO2BnN
H

CO2Me

3366

3391

BocHN

CO2BnN
H

CO2Me
O

BocHN

CO2BnN
H

CO2Me
OMe

N

OH
N

O
BocHN

PhH2C

CO2BnN
H

CO2Me
OH

N

O
BocHN

PhH2C

CO2BnN
H

CO2Me
OH

N

O
BocHN

Boc

(cm-1) (cm-1)

(+)-25a

(±)-25b

(±)-25c

(+)-27a

(±)-28

(+)-28b

CO2BnN
H

CO2Me

3431
O

3365BocHN (-)-25a

3417 3343 
(shoulder)CO2BnN

H

CO2Me
OH

N

O
BocHN

PhH2C
(-)-27a

3416
CO2BnN

H

CO2Me
OH

N

O
BocHN

(-)-28b

Molecular modelling conformational searches were carried out in support of the experimental

data obtained. The first minimum for (+)-25a and (+)-25c resulted a C7-hydrogen-bonded ring

corresponding to a γ-turn centred on the alanine residue (Figure 14a). The following minima

found had higher energy values and often involved the sp3 rather than the sp2 oxygen atom of

the ester group (an example is given in Figure 14b for (+)-25a). Usually esters, amides and

carbamates act as hydrogen-bond acceptors at the sp2 oxygen atom, therefore these higher

energy minima should be carefully regarded.35e
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Figure 14. (+)-25a: (a) Global energy minimum, γ-turn (Erel = 0.0 kcal/mol). (b) Local energy
minimum (Erel = 1.82 kcal/mol), type C6’ hydrogen-bonded ring. For reasons of
clarity the Boc and phenyl groups are not displayed.

The conformational minima calculated for both 25b isomers suggest, in spite of (+)-25a, the

C6 (Erel = 0.0 kcal/mol) rather than the γ-turn conformation (Erel = 0.84 kcal/mol) to be

favourite.

The tripeptides (+)-27a, (-)-27a and (±)-28 show only a shoulder corresponding to hydrogen-

bonded NH. A linear, non hydrogen-bonded conformation is probably predominant. In the

absence of any hydrogen-bond, the linear conformation is the only one possible for both 27b

isomers.

2.2.4 Oligopeptides containing the β-ACC as the central residue

More complex derivatives having the β-ACC building block in the middle are shown in

Table 3. Compound 49 is the reference pentapeptide containing only natural amino acids. For

these more complex products molecular modelling calculations led to a large number of

possible conformations. NMR investigations on some of these products will be illustrated in

Chapter 4.

a b

CO2Me

N
H

HN
O

O

BuO

O

BnO

γ

C6'

1

2
t
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Table 3. Tri- and penta- peptides containing the β-ACC as the central unit.

non HB N-H HB N-H

BocHN
H
N

O

O

N
H

H
N

N
H

Ph

O

O

CO2Bn

Ph

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Bn

PhPh

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Bn

PhPh

CO2Me

N
H

O
BocHN

Me
N

O

CO2Bn

CO2Me

N
H

O
BocHN

H
N

O

CO2Bn

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Me

3412 3309

3416 3335

3420 3364

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Me

3426 3367

3415 3334

3419 3361

3426 3354

non HB/HB

2:1

1:1

1:4

2:3

2:5

2:3

>3:2

(cm-1) (cm-1)

(+)-36a

(-)-36b

(+)-37a

(-)-37a

(+)-37b

49

(-)-37b

(at  r.t.)

CO2Me

N
H

O
BocHN

H
N

O

CO2Bn 3426 3367 2:1(-)-36a

CO2Me

N
H

O
BocHN

Me
N

O

CO2Bn 3426 3354 1:1(+)-36b

The ratio between the hydrogen-bonded (HB) and the non hydrogen-bonded (non HB) NHs

(Table 3) was obtained by a gaussian fit based on a non linear simplex Nelder-Meade

algorithm.38 In Figure 15 the deconvolution of the IR amide A region is showed for (+)-37a

and (-)-37a.
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more hydrogen-bonded structure at lower temperatures. This feature was not observed in any

other of the investigated compounds.

2.2.5 Oligopeptides containing multiple β-ACCs

Finally peptides containing two or three β-ACC building blocks were examined (Table 4).

Table 4. Penta- and hexa- peptides containing two or three β-ACC building blocks.

N
H

CO2Me
OH

N

O

H
N

O

CO2Bn
N
H

CO2Me
O

BocHN

N
H

CO2Me
OH

N

O

H
N

O

CO2Bn
N
H

CO2Me
O

BocHN

N
H

O H
N

O
N
HNH

O
CO2Me CO2Me

CO2Bn
O

MeO2C N
H

O
NHFmoc

non HB N-H HB N-H non HB/HB

N
H

CO2Me
OH

N

O
N
H

CO2Me
O

BocHN
CO2Bn

3421 3362 2:3

3419 3350 1:4

3418 3360 1:1

3399 3301 1:5

(-)-40

(+)-41

(+)-45

(cm-1) (cm-1)

(+)-40

As observed before, (+)-11 promotes in (+)-40 and (+)-41 less hydrogen-bonding than (-)-11

in (-)-40. In contrast, in (+)-45, the presence of three β-ACC (+)-11 building blocks seems to

exert a hydrogen-bonding enhancing effect. Five of the six NHs are hydrogen-bonded and the

wavenumber of the sixth (3399 cm-1) cannot be unambiguously attributed to a non hydrogen-

bonded state. This feature suggests the presence of a regular secondary structure such as a

helix, where each NH binds to the corresponding C=O at a definite residue distance.
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2.3 IR spectra in acetonitrile

Acetonitrile is a suitable non protic solvent for circular dichroism (CD) spectroscopy, while

CH2Cl2 and CHCl3 are not. This is due to the self-absorption of the solvent which starts below

190 nm (acetonitrile), 205 nm (CH2Cl2) and 220 nm (CHCl3). As it will be illustrated later on,

it is very important to be able to measure the CD spectrum of a peptide below 200 nm.

Acetonitrile is a weak hydrogen-bond acceptor, therefore it could disrupt the hydrogen-bonds

which resulted stable in CH2Cl2. In acetonitrile the solvent exposed NHs (engaged in a

hydrogen-bond with the solvent) are expected to give a band between 3370 and 3400 cm-1,12f

intramolecularly hydrogen-bonded NHs should absorb at the same wavelength as in CH2Cl2.

The main difficulty in the interpretation of IR spectra measured in acetonitrile has been the

broadness of the NH signals which made difficult to guess how many peaks were really

present and at which wavelength.

Table 5. Comparison between the NH absorptions in CH2Cl2 and acetonitrile.

CH2Cl2 Acetonitrile

(±)-11 3422 3409, 3376

(±)-34 3364 3368

(+)-27a 3417, 3343 3356

(+)-36a 3426, 3367 3362

(+)-37a 3412, 3309 3360

(cm-1) (cm-1)

The first compound investigated was (±)-11 (Table 5), which should serve as reference for the

non hydrogen-bonded NHs in acetonitrile. Two peaks were observed at 3409 and 3376 cm-1,

the second absorption belonging to solvent hydrogen-bonded NH. Compound (±)-34 gave, on

the other hand, only one absorption at 3368 cm-1. This value is only 4 cm-1 higher than in

CH2Cl2, therefore it seems like (±)-34 is keeping its C6 conformation. On the other hand the

absorption of (±)-34 in acetonitrile is also at a border value between hydrogen-bonded and

solvated NHs. Compound (+)-27a shows only one absorption at 3356 cm-1, i.e. at lower

values than normal ones for solvated NH in acetonitrile, nevertheless a higher hydrogen-

bonding extent in acetonitrile than in dichlormethane does not seem reasonable. The same

could be observed on (+)-36a which shows only one absorption at 3362 cm-1 and apparently
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there are no more solvated NHs. Compound (+)-37a has only one broad absorption at

3360 cm-1, 50 cm-1 higher than the hydrogen-bonded NH signal in CH2Cl2, probably the

hydrogen-bonded NHs signal overlaps the non hydrogen-bonded one.

Acetonitrile does not seem to be the solvent of choice for hydrogen-bonding investigations on

these peptides, in fact the solvated NH signal could coincide with the intramolecularly

hydrogen-bonded one (they both show a band around 3360-3390 cm-1).

2.4 Conclusions

The results obtained by IR spectroscopy on relatively small derivatives of the β-ACC (±)-11

and (±)-12 prove the capability of this building block to induce interesting hydrogen-bonding

patterns, among them the C6 and C8 conformations which were already predicted by

molecular modelling.19d The C6 ring is thought to induce and stabilise β-turn-like

conformations in α-peptides containing a β-amino acid.38 Nevertheless, the C6 conformation

seems to be stabilised only by the presence of a tertiary amide as hydrogen-bond acceptor

((±)-34 and (±)-35c), but becomes less favourable in longer peptides where better hydrogen-

bonding geometries can be achieved in other conformations. Moreover, C6 conformations

seem to arrange the N- and C-termini into opposite directions in a sort of extended chain

conformation (Figure 8) as a direct consequence of the dihedral angles requested to build the

corresponding C6 hydrogen-bond. This would disfavour the formation of turn-like

conformations in the β-ACC ((±)-11) derivatives. On the contrary, a hydrogen-bonded C8 ring

would force the N- and C-termini close to each other, favouring a reverse turn like

conformation. In dipeptides having the β-ACC unit at the C-terminus, a γ-turn conformation

is preferred. Depending on its orientation, a γ-turn can allow the formation of other hydrogen-

bonds supporting additional folding.

An influence of the β-ACC chirality on the hydrogen-bonding extent of its derivatives was

observed only on pentapeptides. On (+)-37a, (+)-37b and (+)-40, (+)-11 promotes less

extensive hydrogen-bonding than (-)-11 on (-)-37a, (-)-37b and (-)-40. In contrast, three

(+)-11 units are able to induce up to 80 % hydrogen-bonding.
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Chapter 3

3.1 Circular Dichroism: an introduction

Circular dichroism (CD) spectroscopy is a powerful tool to detect the secondary structure of

proteins and peptides.31a-c,40 It is based on the property of asymmetric chromophores (or

symmetric chromophores in asymmetric environments) to absorb differently right- and left-

circular polarised light. Upon entrance into the absorbing sample, the two circular polarised

components, R and L, of the plane-polarised light have the same intensity and phase. If one

component has been absorbed to a grater degree than the other, the electric vector of the light

describes no longer a circle, but an ellipse (Figure 1). When leaving the cell, the new

elliptically polarised light is described by the angle θ, called ellipticity, which is proportional

to the difference in absorption of the two original circular rays. CD spectra are commonly

expressed in molar ellipticity (degree cm2 dmol-1) or mean residue ellipticity ([θ]R). In the

latter case the molar ellipticity is divided by the number of residues forming the peptide,

which allows direct comparison of the CD spectra of differently sized peptides.

Figure 1. Origin of the CD signal.

The peptide bond is the main chromophore in peptides and proteins, besides the aromatic side

chains. It is surrounded by an asymmetric environment due to the stereocentres of the amino

acids but mainly due to the three-dimensional arrangement of the peptide backbone (ϕ and ψ

dihedral angles, see Figure 1, Chapter 2). Therefore the CD absorption of the peptide bond is

highly sensitive to the peptide secondary structure.

Photon
beam

Right- and left- circular
polarised light

Optically active
sample

Preferential
absorption of right
hand polarisation

CD signal
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The range of frequencies where the peptide bond absorption can be observed is between 180

and 300 nm. The lowest energy transition of the peptide chromophore occurs between 210

and 220 nm and reflects the n→π* transition involving non-bonding electrons of the carbonyl

group. The second transition is observed around 190 nm and describes the π→π* involving

the π electrons of the carbonyl group. The intensity and energy of these transitions depend on

the ϕ and ψ dihedral angles, thus relates to the secondary structure. In the case of a typical

α-helix CD spectrum, the π→π* transition is split into two components, the parallel- and the

perpendicular-polarised component with respect to the helical axis (Figure 2).

Figure 2. Typical α-helix and random coil CD spectra.

The CD spectrum is a weighed average of all conformers equilibrating in solution, therefore

the typical CD pattern of a secondary structure can be observed only when the structure is

reasonably populated. Nevertheless, the CD method is a fast application for the inspection of

the conformational features of a peptide, whether any structural elements are present or not.

Depending on the CD results, it can be interesting to further investigate the structure of a

peptide with other spectroscopic methods.
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3.1.1 CD and β-turns

The application of CD spectroscopy to the identification of peptides and proteins secondary

structure is already well known.31a-c,40 The main secondary structures (α-helices, β-sheets,

310–helices) have been extensively investigated and characterised. Turns have also been

widely studied,31c but there are many difficulties to interpret their CD spectra. As already

pointed out in the previous chapter, there are many types of turns, depending on the number

of residues involved (β- and γ-turns) and on their three-dimensional arrangement (determined

by the ψ and ϕ dihedral angles).

Table 1. Classification of β-turns CD spectra observed on linear peptides.31c

Class Definition Conformation

A

B

C

C´

D

U

Negative band near 216 nm.
Stroger positive band
  between 195 and 200 nm.
Negative band near 175 nm.

Weak negative band 
  between 220 and 230 nm.
Stronger positive band
  between 200 and 210 nm.
Strong negative band predicted
 between 180 and 190 nm.

α-Helix like CD spectrum

α-Helix like CD spectrum
  with low intensity,
  blue shifted bands

Positive shoulder above 220 nm.
Positive band at 200 nm.
Negative band below 190 nm.

Low intensity, redshifted
  class B spectrum

Weak negative band or shoulder
  between 215 and 230 nm.
Strong negative band near or below
  200 nm.

β-sheet

β-turn type II

β-turns type I, II and II´

β-turns type I and III

L-a.a.-D-a.a. or L-a.a.-Gly
  sequence type II β-turns

β-turns

aperiodic (unordered,
  random coil or irregular)

To achieve a pure turn CD spectrum, a short peptide is required that exists predominantly in

only one turn type. Moreover, the CD spectrum can be unambiguously assigned to a specific

turn type only when other data give strong evidence for it (X-ray, NMR, IR). Unfortunately,
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short peptides are often a mixture of conformers equilibrating in solution, therefore a

classification of CD spectra for each turn type can be achieved on cyclic peptides (where the

conformational degrees of freedom are reduced) or on linear peptides containing strong turn-

inducing sequences (i.e. one proline residue).31c Based on such investigation, typical CD

patterns can be assigned to the different β-turns (Table 1). It should be stressed, however, that

a particular CD pattern may correspond to more than one type of β-turn, and that the

classification is achieved by statistical investigations, therefore a particular turn type may also

have a not typical CD spectrum.

3.1.2 Choice of the solvent

Because of the π→π* absorption frequency, the choice of the solvent is limited to those

which absorb below 190 nm. Chloroform and dichlormethane are not suitable for CD

spectroscopy because they absorb above 200 nm. This makes it difficult to correlate the

informations obtained by IR spectroscopy in dichlormethane with those obtained by CD in

other solvents. When IR spectra are measured in other solvents, only the C=O stretching

absorption region gives informations on the peptide structure. However, in this case, detection

of turns is difficult since no information on the hydrogen-bonding extent is obtainable.41a-b

Acetonitrile allows measurements above 195 nm in a 1 mm cell and above 190 nm in a

0.1 mm cell. It is a suitable non-protic solvent for CD measurements, but it is a weak

hydrogen-bond acceptor, therefore it is not easy to correlate the hydrogen-bond extent

detected in dichlormethane by IR spectroscopy with the CD observed in acetonitrile.

Suitable solvents, besides water, are alcohols such as methanol (absorption below 195 nm in a

1 mm cell and below 185 in a 0.1 mm cell) and particularly trifluoroethanol (TFE, absorption

below 190 nm in a 1 mm cell and below 180 nm in a 0.1 mm cell). TFE is known to have a

structure-stabilising effect, particularly on α-helices.42 Compared to the non fluorinated

analogue, TFE is 3-4 times more acidic, and therefore a good hydrogen-bond donor, but a

poor hydrogen-bond acceptor (Figure 3). While water may disrupt hydrogen bonds and

destabilise secondary structures, TFE, with its unique hydrogen-bonding properties, forms a

bifurcated hydrogen-bond with the carbonyl oxygen without disrupting the intramolecular

hydrogen-bond (Figure 3). The hydrogen-bonding network stabilising a secondary structure

remains therefore intact in TFE.
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Figure 3. TFE: hydrogen-bonding ability and interaction mode with hydrogen-bonds in
peptides compared to water.

Moreover, the high hydrophobicity of the CF3 group allows TFE molecules to interact with

hydrophobic side chains enhancing the hydrophobicity of the molecule which could favour a

particular secondary structure.

Hexafluoroacetone (HFA) is also used in CD spectroscopy. The effect of this solvent on the

peptide secondary structure is not clear, as it can cause loss of structure43a-e as well as induce

and stabilise it.43f-g HFA is used in its hydrate form which has enhanced hydrogen-bond donor

and poor acceptor ability at the oxygen. Moreover, the two trifluoromethyl groups contribute

to the high hydrophobicity of this solvent and its water repelling properties (Figure 4, left).

HFA in its hydrate form is thought to coat the peptide surface with the trifluoromethyl groups

displacing the hydrogen-bond disrupting water molecules. On the other hand, its OH groups

enhance the peptide solubility in water (Figure 4, right).

F3C CF3

O
F3C CF3

HO OH2O

water repelling groups
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F3C

OH

OH

F3C

F3C
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CF3

CF3

HO

HO

CF3

CF3

HO

HO

peptide backbone

Figure 4. Left: HFA hydrogen-bonding properties. Right: mode of interaction with the
peptide backbone resulting in structure stabilisation.
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If the interaction with a peptide follows this scheme, HFA should stabilise its structure. On

the other hand the peptide secondary structure could be broken if hexafluoroacetone builds

stable hydrogen bonds with its backbone.43b

3.1.3 Sample concentration

The concentration of the sample, besides the choice of the solvent, is another determining

factor to achieve a good CD spectrum. When the sample absorbs too much light in a certain

UV region, the high tension (HT) voltage of the photomultiplier will be too high and the

measurements are therefore not reliable. The optimal concentration to observe a good CD

spectrum should not give HT values above 800 V. For the peptides investigated in the present

work, a concentration around 10-3 M (in 0.1 mm cell) was found to give the best CD quality.

3.1.4 Contribution of aromatic groups

The UV spectra of the aromatic amino acids (phenylalanine, tyrosine and tryptophan) include

bands in the near UV region (240-300 nm) as well as in the peptide bond region (185-240

nm). The absorption of the aromatic side chains at lower wavelengths can interfere with the

secondary structure estimation if the chromophores are kept in an asymmetric environment

produced by the secondary structure of the peptide.31c In fact aromatic side chains tend to give

rise to positive absorptions in the 215-230 nm region.44
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3.2 CD spectra of ββββ-ACC containing peptides

In Figure 5 the CD spectrum of the building blocks (+)-11 and (-)-11 is shown. As expected,

being enantiomers they display mirror image CD pattern having an intense

maximum/minimum at 203 nm.
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Figure 5. CD spectra of (+)- and (-)-11 in methanol.
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Figure 7. CD spectra of (+)-27b and (-)-27b in methanol.

The structure-inducing effect of the β-ACC building block (11) can be better appreciated on

tripeptides having 11 as the central residue, where it can exert a greater conformation-

directing effect.
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methanol, due to the partial overlap of the n→π* with the π→π* transition. In acetonitrile a

red-shift of the band was observed as well as the presence of a weak shoulder at 217 nm.
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Figure 9. CD spectra of (-)-36a in various solvents.

The CD pattern of (-)-36a (Figure 9) shows high solvent-dependence: in HFA it is a typical

class B spectrum, having a maximum at 212 nm and a minimum at 185 nm. The CD profile in

TFE is similar, but the maximum is much less intensive. In methanol and acetonitrile the

n→π* and the parallel π→π* transitions are red-shifted (220 and 200 nm respectively) these

spectra are characteristic for class D turns.

The N-methylation of the C-terminal alanine leads to a completely different CD spectrum

compared to (+)-36a (Figure 10). In each solvent (+)-36b displays a helix-like spectrum with

two negative bands at 222 and 201 nm and a positive one (visible only in TFE) at 183 nm.
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The CD pattern of (-)-36b does not depend on the solvent used and has a minimum at 230 nm

(Figure 11), typical for γ-turns.31c, 46 Molecular modelling calculations (conformational search

with the program Titan) confirmed these data, giving the γ-turn centred on alanine-1 as the

most populated (Figure 12).
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Compound (+)-37a, analogous of (+)-37b but containing two phenylalanines instead of

glycines, shows always class C spectra (228 nm / θR –5000, 210 nm / θR –12000, 190 nm /

θR +4500 in TFE), where the n→π* transition results red shifted compared to the α-helix

typical values, 222 nm (Figure 15). Such effect, although not typical, is not unusual in class C

spectra.45b However, this red-shift could be also explained as a γ-turn CD contribution (230

nm). In fact, the amino acids adjacent to the β-ACC unit often prefer a γ-turn arrangement

(see Chapter 2). The main feature of (+)-37a CD spectra is that they are not solvent

dependent, suggesting a significant conformational stability of the peptide.
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(θR 10000 instead of 20000). In methanol, the CD absorption between the two minima is

positive, as already observed for (-)-37a. The CD spectrum in HFA has a maximum at 216 nm

and a shoulder near 200 nm, suggesting the presence of β-turns (Figure 18).
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Figure 18. CD spectra of (-)-39 in various solvents.

As already observed for the pair (+)-37a/(+)-39, an inversion of the ratio of the transition

intensity at 211 vs. 225 nm is observed between the protected and deprotected form of (-)-37a

in TFE.
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Compound (-)-40 and the corresponding unprotected pentapeptide (-)-43, show CD spectra

with the same profile in the same solvents (Figure 19, only (-)-40 is shown), but the intensity

is about 40% reduced in the case of the protected form. In acetonitrile (not used for (-)-43)

and in TFE the pentapeptide is unordered (negative strong band at 183 nm). The broad

positive band at 216 nm observed in HFA indicate the presence of β-turns. The same CD

profile was found for the pentapeptide (-)-39 containing only one β-ACC unit. In methanol a

class C type CD spectrum is observed.

The peptides containing two or three (+)-β-ACC units ((+)-41, (+)-42, (+)-40, (+)-43, (+)-45,

(+)-46) display very similar CD patterns, constant in acetonitrile, methanol and TFE (Table

2). In every case a broad minimum around 205 nm was observed, probably including the

n→π* and the parallel π→π* transitions, while the perpendicular π→π* absorption falls

around 185 nm, often weaker than the parallel component. Such spectra can be attributed to

class C.
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Table 2. CD pattern in TFE of compounds containing more than one (+)-β-ACC unit.
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O
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3.3 Discussion

In this chapter the CD spectra of various derivatives of (-)-11 and (+)-11 have been shown.

They proved to be often structured already at the tripeptide level displaying β-turn-like CD

patterns.

A significant difference could be observed in the CD spectra of compounds differing only for

the β-ACC configuration: the peptides containing (-)-11 were unordered in several cases

((-)-36a, (-)-37b, (-)-40, (-)-43) while the derivatives of (+)-11  were more structured.

Moreover, the derivatives of (-)-11 were very sensitive to any change in solvent, often

exhibiting a solvent-induced conformation. HFA contributed to stabilise class B, D or C´ CD

patterns, which seems to be due to its “teflon coating” effect.43f-g In some spectra positive

components around 220 nm were observed, probably due to the contribution of the

phenylalanine aromatic side chain. In contrast, the structure of peptides containing (+)-11 was

weakly or not at all solvent dependent and a positive contribution around 220 nm of the

phenylalanine side chain was rarely observed ((+)-39) and, however, not as strong as on (-)-11

derivatives. This could be explained by a predominant contribution of the peptide back-bone

in this region, thus suggesting a well defined conformation. Finally, (-)-11 containing peptides

show CD spectra similar to those of the α-peptide 49. In some solvents they displayed β-turns

(class D) spectra and/or phenylalanine aromatic contribution. Similarities between (-)-11

derivatives and 49 were already found on the hydrogen bonding extent measured by IR

spectroscopy (Chapter 2). On the other hand, α-helix-like (class C) spectra were generally

observed for derivatives of (+)-11.

Compounds containing multiple (+)-11 displayed considerably constant CD patterns, without

any solvent dependence. In the previous chapter it was suggested, on the base of the IR

spectrum, that (+)-45 could have a helix-like conformation. Based on the CD investigation, it

can be stated that a helical turn conformation may be already present at the tetramer stage, i.e.

(+)-41, suggesting that the introduction of two units of (+)-11 is a powerful tool to induce and

stabilise secondary structure elements in short peptides.



Chapter 4 67

Chapter 4

4.1 General introduction

Several methods are available nowadays to determine the solution structure of peptides, e.g.

circular dichroism (CD) and IR-spectroscopy. However, only NMR data may deliver

structural information at atomic resolution. In addition, NMR allows to describe

conformational equilibria in solution. While a complete structure determination based upon

the methodology developed by Wüthrich and coworkers48 offers the most comprehensive

picture, a number of spectroscopic parameters exist to estimate whether a particular peptide is

uniquely folded in solution or not.31a-b

Hydrogen-bonds can be identified by measuring for the amide proton signals: a) the reduced

temperature coefficients (∆δ/∆T), b) the solvent or concentration-dependence of the chemical

shifts and c) the H/D exchange rate. As already pointed out in Chapter 2, all these methods are

based upon the assumption that a hydrogen-bonded NH is less sensitive with respect to

perturbations of environment variables (temperature, solvent, concentration...) than a fully

solvent exposed amide proton. Substantial difficulties for interpretation in such experiments

arise when conformational averaging occurs. Furthermore, solvent inaccessible NHs will

experience little temperature or solvent chemical shift dependence similar to hydrogen-

bonded NHs.31a-b

Since regular secondary structures are determined by well-defined ϕ and ψ dihedral angles,

additional informations about the structure can be derived from a measurement of the

magnitude of the scalar 3JHN,Hα coupling constants which have typical values for the common

secondary structural elements.

Finally, the most useful information can be obtained from the nuclear Overhauser effect

(NOE). A nucleus can relax through several mechanisms, and for protons the dipole-dipole

magnetisation transfer with adjacent protons (closer than 5 Å)49a-b is the most efficient. The

NOE is proportional to 1/r6 (r = distance between the two interacting nuclei), allowing to

determine spatial proximities of protons which may then be translated into a

three-dimensional model. The two dimensional NMR experiment that provides information

about the NOE between protons is called NOESY. The NOE can be positive or negative

depending on the frequency of overall tumbling of the molecule. It is positive for small

molecules and negative for large ones. For peptides of 10-20 residues the NOE in aqueous

solution can be very small. To avoid this problem the ROESY (rotating frame NOESY)
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experiment has been developed. Therein, the signal decay occurs in the spin-locked state and

the rotating frame NOE is always positive.

The principle of the reduced temperature coefficients in aprotic, apolar solvents have already

been illustrated in Chapter 2. In the current chapter ∆δ/∆T values have been measured also in

protic (CD3OH) or good hydrogen-bond acceptor (pyridine-d5) solvents. The effect of such

solvents on strongly or partially hydrogen-bonded NHs is the same as in CD2Cl2 or CDCl3

(small vs. large variation of the chemical shift). However, in protic solvents, hydrogen-bonds

are formed between the NHs and the solvent and the temperature dependence of the latter

allows to distinguish them from intermolecular H-bonds.

4.2 The structure of ββββ-ACC derivatives investigated by high resolution NMR

4.2.1 Temperature coefficients

Although temperature coefficients have to be treated cautiously, they may be used to identify

possible hydrogen bonding sites in the presence of further structural information. Values more

positive than -6 ppb/K have been interpreted in literature to indicate that the corresponding

amide proton is involved into a hydrogen bond in aqueous systems50a and similar values have

been used by Seebach50b and Gellman50c for solutions in CD3OH. For the peptides that have

been structurally characterised in more detail by 2D NMR,† the temperature coefficients were

measured in CD3OH.

For the peptides that have been mainly characterised by IR and CD spectroscopy other

solvents like pyridine or chloroform were used to solve problems such as occurrence of the

NH signals in the aromatic region, low solubility of the peptides or broadening of the signals

probably due to conformers exchange. However, in the investigation of (+)-37a and (-)-37b,

the use of pyridine-d5 always resulted in high ∆δ/∆T values, thus proving the absence of

hydrogen bonds in this solvent. The measurements performed in CDCl3 ((+)-37b, (-)-37a and

(-)-40) and in CD3OH ((+)-40) often showed temperature coefficients with border values for

hydrogen-bonding, but in the absence of further 2D NMR investigations they are not

sufficient to prove the presence of hydrogen-bonds.

Detailed NMR studies were performed on peptides (+)-39, (-)-39, (+)-43 or (-)-43 containing

one or two β-ACC units (Table 1).

                                                          
† In collaboration with Dr. O. Zerbe, Department of Pharmacy, ETH Institute, Zürich, Switzerland.
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Table 1. (+)-39 (top left) and (-)-39 (top right), (+)-43 (bottom left) and (-)-43 (bottom right)
temperature coefficients measured at 500 MHz between 280 and 301 K, 10 mM in
CD3OH.
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H
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O
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Cl-

2

3

4

5

Amide NH ∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)

Chemical shift (ppm)
at 280 K

Chemical shift (ppm)
at 280 K

NH-2
NH-3
NH-4
NH-5

-7.7
-7.7
-6.0
-9.4

8.74
8.39
8.62
8.08

-6.0
-6.7
-7.3
-7.8

8.75
8.23
8.81
8.07

∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)

N
H

CO2Me
OH

N

O

H
N

O

CO2H
N
H

CO2Me
O

+H3N

(-)-43

2

3

4

5

N
H

CO2Me
OH

N

O

H
N

O

CO2H
N
H

CO2Me
O

+H3N

(+)-43

2

3

4

5Cl- Cl-

Amide NH Chemical shift (ppm)
at 280 K

Chemical shift (ppm)
at 280 K

NH-2
NH-3
NH-4
NH-5

-6.7
-6.7
-6.1
-6.9

8.69
8.78
8.40
8.81

-4.0
-7.0
-4.7
-7.3

8.38
8.69
8.00
8.92

∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)

∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)

For the peptides (+)-39, (-)-39 and (+)-43 none of the values is low enough to unambiguously

identify participation in hydrogen bonding. However, for (-)-43 the amide protons of ACC-2

and ACC-4 display temperature coefficients indicative for hydrogen bonding.

When comparing the chemical shift of protons at the same position in the corresponding two

diastereomers it is striking that the largest differences for the amide protons are encountered

for residues ACC-2 and ACC-4 of (+)-43 and (-)-43. Moreover, the temperature coefficients

for the amide protons of only these two residues are significantly lowered in (-)-43. Since the

involvement in a hydrogen bond would lead to a change in the chemical shift, these

differences would be compatible with the findings from the temperature coefficients showing

that only one of the two diastereomers of 43 forms hydrogen bonds.
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Initially, the proton data were taken at concentrations of 10 mM in CD3OH. At that high

concentration aggregation has to be considered and therefore we repeated the measurements

with 2 mM solutions for the two diastereomers of 39 and 43 (Table 2 and Table 3).

Table 2. (+)-39 (left) and (-)-39 (right) temperature coefficients measured at 500 MHz
between 280 and 301 K, 2 mM in CD3OH.

Amide NH Chemical shift (ppm)
at 280 K

Chemical shift (ppm)a)

at 280 K

NH-2
NH-3
NH-4
NH-5

-7.4
-7.3
-5.8
-7.5

8.73
8.37
8.62
7.94

-
-6.4
-6.7
-7.0

-
8.23
8.81
8.04

a) NH-2 exchanges rapidly with the solvent already at 280 K.

(+)-39 (-)-39

∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)

∆∆∆∆δδδδ/∆∆∆∆T a)

(ppb/K)

The values of the temperature coefficients for (+)-39 at the two concentrations are very

similar except for NH-5 (-9.4 and –7.5 ppb/K respectively). For this amide proton additionally

the chemical shift experienced the most dramatic change. In total, these data may indicate that

dimer association takes place involving NH-5 for (+)-39. For the corresponding diastereomer

(-)-39 the resonance of the amide proton of NH-5 displays similar ∆δ/∆T at both

concentrations and the change in chemical shift is small. Furthermore, for both diastereomers

the resonance of NH-2 is significantly broadened at 2 mM but not at 10 mM concentrations.

This may also be due to exchange-broadening arising from monomer-dimer equilibria.

Table 3. (+)-43 (left) and (-)-43 (right) temperature coefficients measured at 500 MHz
between 280 and 301 K, 2 mM in CD3OH.

Amide NH Chemical shift (ppm)
at 280 K

Chemical shift (ppm)
at 280 K

NH-2
NH-3
NH-4
NH-5

-6.7
-6.1
-5.3
-6.2

8.66
8.78
8.39
8.79

-3.9
-6.7
-3.9
-6.7

8.37
8.68
8.01
8.90

(+)-43 (-)-43

∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)

∆∆∆∆δδδδ/∆∆∆∆T
(ppb/K)
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The concentration dependence of the temperature coefficients for the two-ACC residues

containing peptides (+)-43 and (-)-43 was also measured (Table 3). In essence, the

temperature dependence for the two diastereomers is similar at both concentrations.

Furthermore, the chemical shifts of the amide protons do not vary significantly with changes

in concentration so that dimerisation effect seems to play a much less pronounced role.

4.2.2 Chemical shift assignment derived from 2D NMR data

A more detailed picture of the solution conformation of peptides at atomic resolution can be

gained from 2D NMR data. In a first step of the analysis, the sequence-specific resonance

assignment has to be determined for all observable protons. In a second step, NOESY

crosspeaks have to be completely assigned and the volume integrals translated into distance

restraints. These restraints are then used in a molecular dynamics simulation to derive the

structure in solution.

For the resonance assignment the combination of a DQF-COSY,51a-b a 80 ms TOCSY51c-d and

a 500 ms ROESY51e-f experiments was used. Whereas the DQF-COSY displays crosspeaks

for protons that are scalarly coupled, the TOCSY includes all (scalar) correlations with other

protons that are in the same spin-system (Figure 1).

N

RHNOC CO2Me

H R

Hβ Hγ
Hα

R
N CONHR

H
βH3C Hα

β-ACC alanine

Figure 1. Correlations with NH proton visible in TOCSY for β-ACC and alanine

The spin-systems were identified from TOCSY and linked via sequential Hα/HN ROEs. The

side chain assignment was then performed by combined use of the DQF-COSY and TOCSY

data (Figure 2).
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Figure 2. (+)-39 COSY (left) and TOCSY (right) spectra taken at 500 MHz, 280 K, 10 mM in
CD3OH. a=α, b=β and g=γ.

After identification of the spin systems of the amino acids, their sequence positions were

determined from the ROESY spectrum (Figure 3).

Neighbouring amino acids usually display CHαi/NHi+1 cross peaks. For the β-ACC amino

acid it was not possible to find a CHα (β-ACC)/NH (β-ACC+1) cross peak because in a β-

amino acid the CHα is too far away from the NH of the following residue. Instead, a CHβ (β-

ACC)/NH (Ala-4) was found.



Chapter 4 73

(ppm) 8.80 8.60 8.40 8.20 8.00
4.8

4.4

4.0

3.6

3.2

2.8

(ppm)

Figure 3. (+)-39 ROESY NH/CHα region showing the NHi/CHαi+1 cross peaks connectivity.
Spectrum measured at 500 MHz, 280 K, 10 mM in CD3OH.

The analysis of the spectra yielded the assignments illustrated in Table 4.

Table 4. Assignments of the signal in the 1H NMR spectrum of (+)-39 and (-)-39, (+)-43 and (-)-43,
500 MHz, 280 K, 10 mM in CD3OH.

(-)-39 HN Hα Hβ Others

Phe-1 - 4.13 2.94, 3.44 δH 7.30, 7.30
εH 7.35, 7.35
ζH -

Ala-2 8.75 4.43 1.31

γH 2.24β-ACC-3 8.23 3.53 2.50
Me 3.71

Ala-4 8.81 4.29 1.24
Phe-5 8.07 4.61 3.11, 3.23 δH 7.26, 7.26

εH 7.21, 7.21
ζH -

(+)-39 HN Hα Hβ Others

Phe-1 - 4.08 3.00, 3.30 δH 7.30, 7.30
εH 7.34, 7.34
ζH -

Ala-2 8.74 4.31 1.31
γH 2.41β-ACC-3 8.39 3.59 2.47
Me 3.73

Ala-4 8.62 4.24 1.19
Phe-5 8.01 4.58 2.98, 3.18 δH 7.18, 7.18

εH 7.22, 7.22
ζH -

(-)-43 HN Hα Hβ Others

Ala-1 - 3.92 1.48

β-ACC-2 8.38 3.42 2.47 γH 2.38

Ala-3 8.69 4.25 1.34

Me 3.71

β-ACC-4 8.00 3.56 2.54

Ala-5 8.92 4.36 1.43

γH 2.34
Me 3.71

(+)-43 HN Hα Hβ Others

Ala-1 - 3.85

β-ACC-2 8.69 3.51 2.53 γH 2.47

Ala-3 8.78 4.18 1.30

Me ?

β-ACC-4 8.40 3.73 2.48

Ala-5 8.81 4.40 1.39

γH 2.34
Me ?

1.38
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4.2.3 Structure calculation from NOE data

After integration of the peaks, the corresponding interproton distances were calibrated from

the volume integrals by DYANA, a program dedicated to NMR structure calculation.52 The

volume (V) of the peak corresponding to a NOE between two protons is proportional to the

sixth power of their distance (r):

V = k/r6

were k is a calibration constant. A known distance between two protons may serve to calibrate

k, then all the other distances can be calculated. In the current calculations k was derived

according to the known distance for the cyclopropylic Hα/Hβ of 2.4-2.5 Å.

4.2.3.1 The solution structures of pentapeptides containing one β-ACC unit

The number of restraints per residue and the number of long-range restraints indicate how

well a structure is defined. For the peptides (+)-39 and (-)-39, both values were comparably

high for a small peptide.
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Figure 4. (+)-39 (top) and (-)-39 (bottom) distance restraints. Left: for each residue white =
intraresidual; pale grey = i-i+1; dark grey = long range. Right: restraints for the
whole molecule vs. the distance between the interacting residues.
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For (+)-39 as well as for (-)-39 a relatively large number of long range (≥ i-i+2) restraints

were found suggesting that the two peptides are at least partially well structured. An important

difference observed between (+)-39 and (-)-39 (Figure 4) distance restraints is that (+)-39 has

no i-i+4 long range restraints (i.e. between the first and the last residue), while (-)-39 has two

of them (Figure 5).
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Figure 5. (-)-39: two ROESY expansions showing the two i-i+4 NOEs. a = α, d = δ, e = ε, Q
indicates the pseudoatoms.

The non-sequential distance restraints used in the calculations for (+)-39 and (-)-39 are shown

in Table 5.
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Table 5. Non-sequential distance restraints for (+)-39 and (-)-39.

QD(1)-HG
QD(1)-HA(4)
QD(1)-QB(4)
QD(1)-HN(5)
QD(1)-HA(5)
QE(1)-HA(3)
QB(2)-HA(5)       
QB(2)-HB2(5)     
QB(2)-HB3(5)
QB(2)-QD(5)
QB(2)-QE(5)
HB(3)-HN(5)
HB(3)-QD(5)
HB(3)-QE(5)
HG(3)-QE(5)

HB2(1)-HA(4)
HB3(1)-HN(3)
HB3(1)-HA(4)
QD(1)-HN(3)
QD(1)-HA(3)
QD(1)-HB(3)
QE(1)-HG(3)
QE(1)-HA(4)
QE(1)-QB(4)
HN(2)-HN(5)
HA(2)-QD(5)
HN(3)-HN(5)
HN(3)-QD(5)
HA(3)-QD(5)
HA(3)-QE(5)

(-)-39

HB(3)-QE(5)
HG(3)-QD(5)

HB3(1)-HN(3)
HB3(1)-HA(4)
QD(1)-HN(3)
QD(1)-HA(3)
QD(1)-HG(3)
QD(1)-HA(4)
QD(1)-QB(4)
QE(1)-HA(3)
HG(3)-QE(5)
QE(1)-HG(3)
QE(1)-QB(4)
HA(2)-QD(5)
QB(2)-HA(4)
QB(2)-QD(5)
HB(3)-QD(5)

(+)-39

Then, 40 randomized conformations were generated by DYANA and minimised in a

simulated annealing protocol by molecular dynamics in torsion angle space. DYANA uses the

NMR restraints as an additional energy contribution to the force field potential used in the

simulated annealing. This ensures that the final minimised structures are compatible with the

NMR restraints. Besides distance restraints, dihedral angles restraints can be implemented in

the DYANA calculation. Unfortunately, all the peptides investigated had 3JHN,Hα around 7 Hz,

which is the typical value for rotational averaged backbone angles.31a-b The peptide bond

(dihedral angle ω) is normally fixed to 180°, the standard value in peptide and proteins except

for N-methyl amino acids and proline.

After the calculation, the target functions (that reflects how well NOEs and the standard

force-field parameters are satisfied) among the best 20 conformations should be reasonably

small but not too similar. After superimposition of the backbone atoms of well-structured

parts the root mean square deviation (RMSD) among the best 20 conformations should be

< 0.5 Å for the backbone and < 1 Å for the side chains, and there should be no consistent

restraint violations.
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For (+)-39 and (-)-39 the RMSD for the backbone among the best 20 structures calculated

was good (0.59 Å and 0.63 Å, respectively) as it can be observed in Figure 6 for (+)-39. Only

few and not significant violations were found (Table 6) and the mean target function was

0.16  ± 4.10 * 10-2 for (+)-39 and 7.06 * 10-2 ± 4.37 * 10-3 for (-)-39.

Table 6. Distance restraints violations for (+)-39 and (-)-39.

Constraint mean  violation number of 
violated    structures

2Qβ/3Hβ

3Hα/4Hα

3Hβ/4HN

0.09

0.21

0.07

2

18

2

(+)-39

(-)-39

0.23 203Hα/3Hβ

One violation, however occurred on (+)-39: the sequential ROE between the alpha-protons

from β-ACC-3 and Ala-4 indicate that a portion of conformers displays a cis-peptide bond

between these two residues. Such a NOE between 3-CHα and 4-CHα would be possible if the

corresponding 3/4 peptide bond would be cis, because only in this case the corresponding

proton-proton distance would be below 5 Å (Figure 7). Cis-peptide bonds are rarely

encountered in peptides. However, for a Xxx-Pro peptide bond there is usually a low (< 10 %)

amount of the cis conformer. Whereas the cis-trans isomerisation for the Xxx-Pro bond is

Figure 6. Superimposition of the best 20 conformations calculated for (+)-39 visualised in the
program MOLMOL. Side chains are omitted for reasons of clarity.
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slow on the NMR time scale, the absence of a second set of peaks due to the cis form

indicates that the interconversion is fast for a Xxx-ACC peptide bond.

NHR

H
H

O

N

NHR

H
H

O

N

trans cis

3
4

3

O

R

H

HH
4

O

R

H

Figure 7. Distance between 3-CHα and 4-CHα in the trans and cis configuration of the 3/4
peptide bond. The carbomethoxy group on the β-ACC is omitted for reasons of clarity.

The conformations minimised by DYANA can be visualised and elaborated by MOLMOL,53

a program devoted to manipulate the three-dimensional structure of biological

macromolecules. On both peptides the influence of the cyclopropane-amino acid is to revert

the chain direction by a sharp turn. The main difference between the two diastereomers lies in

the relative orientation of the N- and C-termini (Figure 8).

NH

NH
NH NH

CO2Me

NH

NH

CO2Me

(+)-39 (-)-39

NH3
+

Ph

HO2C

Ph
+H3N

PhHN

HN

HO2C
O

O

O

O

Ph

O O

O

O
Cl-

Cl-
Figure 8. Lowest energy structure for (+)-39 (left) and (-)-39 (right) visualised in the program
MOLMOL.
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Compound (+)-39 has an opened turned structure (Figure 8) sharper than (-)-39, where the

backbone of residues 1 and 5 extends into opposite directions giving the structure a distorted

Ω  shape. On the other hand, (-)-39 has a real turn like pattern with an helical outlook (Figure

8). Worth to note that the alanine side chains orientation in the sharper (+)-39 turn (i.e. the

side chains belonging to the direct neighbours of the β-ACC) are directed perpendicularly to

the loop plane, while in (-)-39 the alanine side chains lie on the turn plane and are directed

outside it.

Small linear peptides are usually unstructured or exists as mixtures of conformers. Particular

care must therefore be taken in order to prove that the conformers derived from the DYANA

calculations are indeed physically relevant and do not represent artefacts from the structure

calculation. It is clear that the presented structures are in exchange with differently folded

conformers as evident from the 3JHN,Hα scalar couplings. However, the NMR data bear

evidence that they exist in solution to a large extent. In fact, the NOEs have been calibrated so

that the fixed distance between Hα and Hβ of ACC corresponds to the correct value. All

NOEs have been assigned and used in the structure calculation. The target function was

reasonably low indicating that all NOEs (except the sequential Hα/Hα NOE) can be fitted

onto a single structure. Nevertheless, for a structured peptide in fast exchange with an

unstructured (random coil) form, the ROEs may still be compatible with a single structure

(but need not necessarily be). This situation was encountered for both diastereomers of 39 and

for (-)-43 (paragraph 4.2.3.2). On the other hand, when two or more conformational distinct

species are in exchange, large violations in the structure calculations are expected, since the

ROEs can not be fitted onto a single structure. This was indeed observed for (+)-43

(paragraph 4.2.3.2).

Another question is whether the structural difference between the two diastereomers is really

significant or due to a particular, wrongly assigned NOE in one of the two molecules. It was

therefore checked, how many NOEs support the structures and whether these NOEs may be

differently assigned. One of the two 1-CH2β (Phe)→4-CHα (Ala) NOEs is strong in (-)-39,

while the other 1-CH2β (Phe)→4-CHα (Ala) is weak. Both NOEs are weak in (+)-39.

Furthermore, the correlations encountered between the methyl group of Ala-2 and the

methylene group of Phe-5 (2-CH3β (Ala)→5-CH2β (Phe)) is only seen in (-)-39. Both NOE

support the type of turn that is found in the structure calculation for (+)-39. The NOEs occur

in non-crowded regions of the spectrum and cannot be differently assigned. In contrast, (+)-39

displays a 2-CH3β (Ala)→4-CHα (Ala) NOE not visible in the other diastereomer.
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No hydrogen-bonds were found in the ensemble of NMR-derived structures, compatible with

the data gained from the temperature coefficients that could not reveal their presence.

Finally, a ROESY at 2 mM concentration of (+)-39 was recorded in order to exclude that the

observed ROEs are intermolecular. In fact, in section 4.2.1, it has been noted that the

temperature coefficient of NH-5 of (+)-39 changed from -9.4 ppb at 10 mM concentration to

-7.5 ppb at 2 mM. Such effect can be due to a change in the state of aggregation. However,

the chemical shifts at 2 mM and 10 mM concentration are very similar and essentially the

same. Moreover, the same ROEs were observed upon dilution indicating that the structure is

concentration-independent. In particular, long-range contacts (i-i+3) such as

2-CHα (Ala)→5-CQδ (Phe) (Q = pseudo hydrogen atom) were visible at both concentrations.

Spectra of all peptides in aqueous solution (10 mM, pH = 3.1, acetate buffer) have been also

recorded. The signal dispersion was slightly poorer in that solvent for both diastereomers of

39 and many structurally important long-range ROEs were placed in overlapped regions of

the spectra. The clearly observed ROEs are similar in strength and hence, the peptides are

expected to have similar structures in water and in methanol. However, due to the problems in

assignment and integration in overlapping regions, no structure calculations were performed

for that solvent system.

4.2.3.2 The solution structures of peptides containing two β-ACC units

For the peptides (+)-43 and (-)-43 the number of distance restraints found in the NOESY

spectrum is large as in the previous case. As already observed for the diastereomer pair (-)-39

and (+)-39, (-)-43 presents i-i+4 restraints which are absent in (+)-43 (Figure 9).

0 1 2 3 4
0

4

8

12

16

20

N
um

be
r o

f c
on

st
ra

in
ts

Residue number
0 1 2 3 4

0

5

10

15

20

25

30

Residue number

Figure 9. Number of distance restraints for the whole molecule vs. the distance between the
interacting residues. Left: (+)-43; right: (-)-43.



Chapter 4 81

The upper limit (non-sequential) restraints used for the DYANA calculations are listed in

Table 7.

Table 7. Non-sequential distance restraints for (+)-43 and (-)-43.

QB(1)-HA(3)
HA(2)-HA(4)
HB(2)-HN(4)
HB(2)-HA(4)
HB(2)-HA(5)
HG(2)-HA(5)
QB(3)-HA(5)

QB(1)-HA(4)
QB(19-HG(4)
HN(2)-HN(4)
HN(2)-HA(5)
HA(2)-HA(5)
HA(2)-QB(5)
HB2-HN(4)

HA(1)-HA(4)
HA(1)-HB(4)
HA(1)-HG(4)
HA(1)-HN(5)
HA(1)-HA(5)
QB(1)-HA(3)
QB(1)-HN(4)
HB(2)-HA(5)

(+)-43 (-)-43

The restrained molecular dynamics calculations performed by DYANA on (-)-43 gave

reasonable results, with a low mean target function (0.18 ± 0.18) and few violations of the

restraints. The RMSD for the backbone was higher than for (-)-39 (1.48 Å). However, there

are fewer protons in 43 than in 39, due to the absence of the phenylalanine side chains,

thereby reducing the number of cross peaks used to define the peptide structure. The

calculations converged to a helix-like structure tighter than that found for (-)-39 (Figure 10).

When looking at the primary sequence of 43 it is obvious that the molecule contains two

Ala-ACC-Ala segments. In (-)-39 this segment produced a turn. Fusing two of these segments

together would produce a helical-type fold similar to the structure calculated for (-)-43. Based

on the occurrence of the same 1→5 cross peaks on (-)-40 (the corresponding Boc/Bn

protected pentapeptide), this structure could also apply to (-)-40.

Figure 10. Lowest energy structure for (-)-43 visualised in the program MOLMOL.
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Applying the suitable MOLMOL option, no hydrogen bond could be found in (-)-43 structure.

In contrast, the reduced temperature coefficients indicate that NH-2 and NH-4 are probably

hydrogen bonded while the ∆δ/∆T values measured for (+)-43 are all typical for solvated NHs

(Table 1).

Looking for additional hydrogen-bonds compatible with the observed reduced temperature

coefficients, the best 20 conformations of (-)-43 were minimised with the program Spartan. In

each minimised structure a hydrogen bond closing a 13-membered ring between 2-NH (ACC)

and 4-C=O (ACC) was observed (Figure 11). The H--O distance was 2.6 Å before and 1.6 Å

after minimisation, the N-H--O angle was 86° before 137° after minimisation. Moreover, a γ-

turn centred on alanine-3 (hydrogen bond between 4-NH (ACC) and 2-C=O (ACC)),

obtainable by simple rotation of about 15° of the ϕ angle of the alanine-3, yielded a hydrogen

bond. The H--O distance was 2.6 Å before and 2.2 Å after minimisation, the N-H--O angle

was 96° before 145° after minimisation. The minimisation led to considerable energy

decrease compared to the starting conformations calculated by DYANA, but did not alter the

overall shape of (-)-43 structure. These data would confirm the ∆δ/∆T values measured for (-

)-43. However, since the calculation were performed in vacuum, solvation of amide functions

is absent and hydrogen-bonded structures are likely to be overestimated. In solution

interconversion between structures containing the corresponding hydrogen-bonds and

solvated forms most likely exist.

Figure 11. First DY
Ala-1 an

Å H
N

HN

O

OMeO2C

CO Me

3

4

145°/2.2 
ANA structure a
d Ala-5 are nor d

1.6 Å

HN 2

NH
O

NH3
+

O

1

2

5

137°
fter minimisation with the program Spartan. Side chains,
isplayed for reasons of clarity.

CO2H

(-)-43

Cl-



Chapter 4 83

Unfortunately, the calculations performed on (+)-43 did not converge to a distinct structure

and the target function calculated by DYANA was still high, indicating that more than one

conformer is significantly populated. Many restraint violations were found, in all the best 20

structures. Particularly one of them was severe, the 4CHα/5CHα (Table 8). As already

illustrated for (+)-39 (Figure 7), such NOE is indicative for a cis peptide bond between the 4th

and the 5th residue.

Table 8. Distance restraints violations on (+)-43.

Constraint mean  violation number of 
violated    structures

1Qβ/3Hα
2Hα/4Hα

4Hβ/5HN

(+)-43

2Hβ/4Hα
2Hβ/5Hα
4Hα/5Hα

0.69
0.68
0.86
0.53
1.67
0.43

20
20
20
20
20
20

Indeed the DYANA calculations are usually performed with the ω angle constrained to 180°.

Therefore the DYANA computations were repeated on (+)-39, (-)-39, (+)-43 and (-)-43

allowing ω to adopt values of zero or 180°. Table 9 indicates how often a cis bond is

encountered in the 20 lowest energy conformers.

On (+)-39, (-)-39 and (-)-43 few cis bonds were found, and occur principally in the highest

energy conformations. On the other hand, in (+)-43 a 4/5 cis bond occurred in any of 20

lowest structures and a 3/4 cis bond, although present in only 11 structures, was found in the

first 7 conformations (Table 9).

The DYANA calculations on (+)-43 were repeated with the 4/5 peptide bond fixed at 0°.

Unfortunately, although the violation 4CHα/5CHα disappeared, new strong violations

occurred. It is obvious that at least two conformations rapidly exchange in solution, one of

them has probably a cis peptide bond between the 4th and the 5th residue. Hence, the ensemble

of observed NOEs may not be fitted onto a single structure, and the calculations should

therefore be evaluated with great care.
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Table 9. Cis peptide bond occurrences in DYANA conformers.
# : indicates the presence of a cis peptide bond in the nth conformation.

1     5        10       5        20

1/2 0      #5#

2/3 #
3/4 #

4/5 #    ####

1/2 ####      ##5  ##

2/3 5    ## 0##   5   ### 0

3/4 ####5##         ##5#

4/5 ####5####0####5#### 0

Conformationscis peptide bond

(-)-43

(+)-43

1     5        10       5        20

###0###  5      ##0

#  ##  #

5#   #   0

1/2

3/4

4/5

1/2 #  5#    #

2/3 #
3/4 #    ## 0

4/5 ##

Conformationscis peptide bond

(+)-39

(-)-39

In this chapter it could be shown that short α-peptides containing one or two β-ACC units

have surprisingly well-defined structures in CD3OH. The constrained β-amino acid is capable

to induce turn-like structures: (-)-11 influence drives the turn toward a helix evolution ((-)-39

and (-)-43), while the (+)-11 generates in (+)-39 a Ω loop like divergence of the N- and

C-termini. Surprisingly, neither (+)-39 nor (-)-39 structures are hold together by any hydrogen

bond, in contrast, (-)-43 presents two hydrogen bonds. The presence of two (-)-β-ACC units

has a stronger stabilising effect on the peptide conformation. No convergence was obtained on

the (+)-43 structure calculations although a large number of distance constraints was found.
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Chapter 5

Neuropeptide Y (NPY) is a 36 amino acid polypeptide hormone and neurotransmitter and is

expressed in the central and peripheral nervous system. NPY is involved in the regulation of

food intake, peripheral vascular resistance, sexual functioning, anxiety and stress response.54

Five different G protein coupled receptors (Y1, Y2, Y4, Y5 and y6) have been isolated,55 but

the exact role played by each of them in the various NPY activated bioprocesses is still object

of investigations. The identification of the biologically active NPY conformations is another

difficult but important target to achieve. NPY is a polypeptide having an α-helical structure

between the 15th and the 31st amino acid but the C-terminus (residues 32-36), which mainly

interacts with the receptor binding site, has no regular structure (Figure 1).56 The synthesis of

NPY analogues with a stabilised secondary structure at the C-terminus can clarify the role of

the NPY receptors and the bioactive conformation of NPY. If the analogue fits into only one

receptor, only the bioprocesses correlated to this receptor will be activated. On the other hand,

if the affinity of an analogue is higher than that of the natural sequence, its conformation

should be very close to the bioactive one.

                                 
Figure 1. Three-dimensional model of NPY derived from pancreatic polypeptide (PP) crystal

structure.

In collaboration with the research group of Prof. A. Beck-Sickinger dipeptides containing the

β-ACC residue were built into the NPY (or truncated NPY) sequence at the position 32 and/or
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34, the only choice at the C-terminus, since arginines at position 33 and 35 proved to be

essential for binding (Scheme 1).

CO2Me

N
H

CO2H

O
FmocHN

R

solid phase synthesis30

YR
R

IL

36

34

32

N

NPY analogues

Scheme 1. Synthesis of NPY analogues starting from β-ACC containing dipeptides 30.

In Table 1 the investigated57 NPY analogues containing the Ile-β-ACC,58 Arg-β-ACC58 and

Gly-β-ACC ((+)-30f, see Chapter 1) dipeptides are shown.† They are all truncated NPY

analogues (12 or 14 peptides) whose activity toward Y1, Y2 and Y5 receptors was compared

with the natural truncated sequence (cR35, Table 1).

As already pointed out in previous studies25 the influence of (+)-11 on the bioactivity of the

NPY analogues is positive, leading to biologically active ligands selective toward Y1, while

its enantiomer (-)-11 leads to inactive ligands.

In the series presented here (Table 1) once more the inefficacy of (-)-11 to produce active

ligands upon its incorporation into NPY analogues can be observed (cf. bV19 and bV20). The

(+)-11 building block incorpored at position 34 (cT5) seems to induce a good Y1 selectivity

while at position 32 (cQ33) no binding at all is encountered. This effect is unexpected since

the corresponding not truncated NPY analogues ([R/S-ACC32]-NPY, Table 1) gave good

binding values toward Y5.25 Therefore the dipeptide Gly-ACC ((+)-30f) was built in the 28-29

and 31-32 position (cR39). With glycine a greater degree of freedom was introduced aiming

to favour the formation of a β-turn interacting with the receptor. Unfortunately, the ligand

cR39 gave no relevant affinity to NPY receptors. On the other hand, two (+)-11 residues in

the 32 and 34 position bind very efficiently to Y1 and moderately to Y5. The selectivity and

affinity of these truncated NPY analogues are distinctively higher than the truncated natural

sequence (cR35).

In the positions 32 and 34 proline (cR43) and β-HGln (cT9) were also introduced to verify

whether the effect observed with β-ACC derivatives is only due to the presence of a cyclic

amino acid like proline or to the β-amino acid additional methylene group (β-HGln). In both

                                                          
† Solid phase synthesis and biological tests performed by Norman Koglin, research group of Prof. A.
Beck-Sickinger, Leipzig.
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cases (cT9 and cR43) no binding was observed thus confirming that the influence of β-ACC

on the structure and biological activity of the NPY analogues is due to its specific structural

features.

Table 1. Bioactivity of truncated NPY-analogues on the human (h) Y1- and Y2-receptors and
on rat (r) Y5-receptor. Substitutions on the natural sequence are bold.

!!!!!!" : (RRR)-β-ACC, # : (SSS)-β-ACC, q: β-HGln.
               - = 0-25 %, + = 25-50 %, ++ = > 50 % change in specific binding.

Code Sequence hY1 hY2 rY5

NPY YPSKPDNPGEDAPAEDLARYYSALRHYINLITRQRY-NH2

cR35 Ac-RHYINLITRQRY-NH2

++ ++ ++

- + -

bV19

Ac-RHYINLITR""""R"RY-NH2

Ac-RHYINLITR####R#RY-NH2

Ac-RHYINLI""""R"RY-NH2

bV20

cP8

Ac-RHYINLITR""""RY-NH2

H-RHYINLI""""RQRY-NH2

Ac-RHYG""""LG"RQRY-NH2

cT5

cQ33

cR39

Ac-RHYINLITRqRY-NH2

Ac-RHYINLIPRPRY-NH2

cT9

cR43

- - -

++ - +

++ - +

++ - -

- - -

- - -

- - +

- - -

[R/S-ACC32]-NPY YPSKPDNPGEDAPAEDLARYYSALRHYINLI >1000 >1000 43a)""""####

a) IC50 [nM]. Synthesis and biological tests by Dr. Chiara Cabrele.25

 RQRY-NH2

These results confirm that the (+)-11 building block exerts a significant influence on the

structure of α-peptides, particularly if two (+)-β-ACC units are present at position 32 and 34.

Interestingly the CD spectra of cP8 in buffer with or without the addition of TFE (30 %) are

identical and have a minimum around 206 nm. The same minimum and behaviour toward

TFE was observed in the present work on the peptides containing two or three (+)-β-ACC

units. On the contrary, with cT5 as well as with (+)-37a and (+)-39 (incorporating only one

(+)-11 unit) some helix-induction was observed upon addition of TFE. This suggests that the

structure-inducing effect of (+)-11 is manifested already on short peptides (5-6 residues) and

leads to the same kind of structure as that of longer peptides.

The peptides (+)-42 and (+)-46 containing two and three β-ACC units respectively, have been

synthesised as building blocks for other NPY analogues, but not yet built in the sequence and

biologically tested.
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Chapter 6

The interesting results on the structural properties of β-ACC containing peptides rise the

problem that the synthesis of longer peptides is not practicable in solution. A method which

allows the coupling of the β-ACC on the solid phase should be developed.

The solid phase synthesis can be performed by two alternative protecting group (PG)

strategies: Boc (temporary PG)/Bzl (permanent PG) and Fmoc (temporary PG)/ tBu

(permanent PG). The Boc strategy implies the use of Merrifield linker (Figure 1) requiring

liquid HF for the cleavage from the resin, highly acidic conditions which need a specialised

apparatus and catalyse several possible rearrangements. In contrast, in the Fmoc strategy the

cleavage of the peptide from the resin occurs under milder acidic conditions (TFA 50 % in

CH2Cl2 for the Wang linker), therefore Fmoc protection is widely used. Another kind of

linker has been developed to introduce extremely mild cleaving conditions, it is called

SasrinTM (super acid labile resin), it is highly labile to acids (1% TFA in CH2Cl2) and

therefore suitable for combinatorial chemistry and in peptide synthesis, for example, it allows

the cleavage of side chain protected peptides.

Cl O
OH

O
OH

O-

Merrifield linker
(HF)

Wang linker
(50 % TFA)

Sasrin linker
(1 % TFA)

Figure 1. Various types of linkers for solid phase synthesis (cleaving conditions).

To make use of the β-ACC on acid labile resins, a N-protecting group is requested to be

cleaved under neutral or weakly basic conditions. The protecting group should also allow in

situ deprotection/coupling to prevent ring opening. The N-Fmoc protected β-ACC has been

already synthesised but the coupling with acyl chlorides was unsuccessful, resulting only in

ring-opening products.26

Among the many other N-protecting groups known in the peptide chemistry, the allyl

carbamate (Alloc) seemed to be the most promising for the β-ACC unit. In fact, the

deprotection is achieved under non-acidic conditions by catalytic amounts of palladium (0) in

the presence of a nucleophile acting as allyl scavenger to avoid allylation at the free amine

after deprotection to give 52 (Scheme 2).59a N-Alloc-β-ACC 16a is already known, it can be

synthesised in high yield and without epimerisation and it has been coupled with various acyl



Chapter 6 89

chlorides giving 50 up to 70 % yields.26 Compound 16b could be obtained under the same

conditions.

CO2R1

BocHN CO2R2

1. HCl/ethyl acetate

2. AllocCl, pyridine

85-90 %

CO2R1

N
H

CO2R2O

O

11 16aR1= Me, R2= Bn

12 R1= Bn, R2= Me 16b

Scheme 1. Synthesis of N-Alloc β-ACCs (16a and 16b).

6.1 Tandem deprotection/coupling of N-Alloc protected amino acids in solution

In the present work the reaction conditions for one pot deprotection/coupling of 16a to amino

acids (Boc and Fmoc protected) has been optimised in solution and applied to the solid phase.

The choice of the allyl scavenger has been a critical point. In fact, non acidic deprotection

conditions are requested for the Fmoc strategy and strong nucleophile scavengers

(β-dicarbonyl compounds59a or secondary amines59b-f) capable to react with the preactivated

amino acids are also not suitable. Only two categories of allyl scavengers fit these

requirements: tertiary amines and some hydrides (Scheme 2).

Among the tertiary amines which have been reported as allyl scavengers there are pyridine,60

triethylamine,60 and N-methylmorpholine, but the latter is normally used in the presence of an

acid (HCl or acetic acid).59a Pyridine and triethylamine have been rarely used in Alloc

deprotection and, moreover, with low yields.60

Among the hydrides tributyltin hydride, sodium borohydride and phenylsilane have been

successfully applied as allyl scavengers to the Alloc-peptide synthesis. The use of a hydride as

allyl scavenger requires an acidic treatment after deprotection to isolate the free amine (53),

while direct coupling with activated amino acids avoids the employment of acids (Scheme 2,

b). Using tributyltin hydride the yields are good to excellent but the reactant is highly

toxic.61a,b Sodium borohydride leads to significant amounts of the N-allylated amine (52,

Scheme 2, a) in the only deprotection step, while in the one pot deprotection/coupling

procedure it gives high yields (68-84 %) of 54 (Scheme 2). The deprotection/coupling

protocol can be successfully applied to EDC/HOBt activated amino acids but fails with

pentafluorophenyl activated amino acids which are reduced by NaBH4 to the corresponding

amino alcohols.61c The most efficient allyl scavenger, widely used in peptide chemistry, is
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phenylsilane. It has been used to obtain free amines and for one pot deprotection/coupling

with excellent yields, in solution as well as on solid phase. For the one pot

deprotection/coupling protocol, many carboxy activated species (pentafluorphenyl esters, N-

hydroxysuccinimmide esters, acyl fluorides and N-urethane-N-carboxy anhydrides) but so far

no EDC/HOBt preactivated amino acids were used.61d-g
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-
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53 54

RNH2 or RNHCOR1

53 5451 HX or R1 X

O

Pd[PPh3]4

CO2

52

a

bb

or

ORHN
O

NHR+CO2

Scheme 2. Cycle of the palladium (0) catalyst in Alloc deprotection reactions: a) N-allylation side
reaction; b) in the presence of nucleophiles or hydride donors as allyl scavengers.

The first attempt to couple 16a to an activated amino acid was performed with PhSiH3.

Compound 16a was coupled with Fmoc-alanine in high yields (90 %) but, unfortunately, also

5 % ring opening was observed (Table 2, entry 7), which made the purification of the product

a difficult task. Moreover, the use of phenylsilane (as any hydride) is complicated by the

requirement of rigorously anhydrous conditions and by some difficulties in its storage for a

prolonged period.

Therefore, the efficiency of pyridine as allyl scavenger was investigated. The coupling of

N-Alloc natural amino acids was performed as test reaction (Table 1). Indeed, the dipeptides

56 were obtained in high yields (94-99 %) and N-Boc as well as N-Fmoc protected amino
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acids were found to be compatible with the reaction conditions. Nevertheless, the reactions

proceeded slowly (Table 1, entry 1) making 20  mol % of palladium (0) catalyst necessary to

stay within acceptable reaction times (Table 1, entries 2-4).

Among the amines used as allyl scavengers pyridine is the less basic and the less nucleophilic

(pKa (piperidine, triethyl- and diethylamine) > 10; pKa (morpholine) = 8.7; pKa (pyridine) =

5.3). DABCO is a tertiary amine which has not yet been used as allyl scavenger in Alloc

deprotection reactions, it is a stronger base (pKa = 8.9)62a than pyridine and a good

nucleophile.62b Indeed, the rate of the deprotection/coupling reactions performed with

DABCO as allyl scavenger (Table 1, entries 5-8) dramatically accelerated, giving rise to

56a-e after a reaction time of only 10-20 minutes when 10 mol % of palladium (0) were

employed.

Table 1. Peptide coupling of Alloc protected amino acids with preactivated Boc and Fmoc
amino acids.

entry

1

2

3

4

5

6

HN NHO

O

CO2R1R

Pd[PPh3]4
Base

EDC/HOBt

CH2Cl2

CO2R1R

PGHN
O

R2

55 56

eq. activated a.a. basea) time

 CHMe2

yieldPd[PPh3]4

3

3

1.5

Py

1.5

10

20

20

20

Py

Py

Py

15 h

1.5 h

1.5 h

1.5 h

94

99

94

98

7

8

3

3

3

1.5

10

10

10

10

10 min

10 min

20 min

20 min

99

99

97

87

R R1 R2 PG

Me Bn Me Boc

Me Bn Bn Boc

Me Bn Me Fmoc

Me Me Fmoc

Me Bn Me Boc

Me Bn Bn Boc

 CHMe2 Me Me Boc

 CHMe2 Me Me Fmoc

56a

56b

56c

56d

56a

56b

56e

56d

DABCO

DABCO

DABCO

DABCO

[mol %] [%]

a) 20 eq. of pyridine or 5 eq. of DABCO were employed.

amino acid
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Most notably, under these reaction conditions N-Fmoc protected amino acids (Table 1, entries

3, 4 and 8) are tolerated as coupling partners, so that the synthesis of peptide fragments with

the Fmoc strategy is possible.

Both pyridine and DABCO deprotection/coupling protocols were applicable to 16a: the

dipeptides 25 could be obtained in high yields (92-97 %) (Table 2). Again the use of DABCO

resulted in considerable shortened reaction times, but another advantage of this procedure in

comparison to the use of pyridine became apparent: although ring opening side products

formation could be suppressed in both cases, epimerisation was observed to a substantial extent

(up to 20 %) when pyridine was employed. In contrast, epimerisation was minimal (< 3 %)

when DABCO was used, indicating that this reagent is not responsible solely for the cleavage of

the allyl group but might also activate the HOBt ester of the amino acid used as the coupling

partner. Again, N-Boc and N-Fmoc protected amino acids could be used as substrates.

Table 2. Peptide coupling of 16a with preactivated Boc and Fmoc amino acids.

entry

1

2

3

4

eq. activated a.a. scavengera) time yieldPd[PPh3]4

3

3

3

1.5

20

10

10

10

2 h

15 h

15 min

15 min

93

95

96

93

N
H

CO2Bn

CO2Me

Pd[PPh3]4
Scavenger

EDC/HOBt

CH2Cl2

16a 25a-b and 25g-h

R PG

5 H Boc 3 10 92

6 Me Boc 3 10 15 min 97

Me Boc

H Boc

Bn Boc

Me Fmoc

Py

Py

15 min

25g

25a

25h

25b

25g

25a

O

O

N
H

CO2Bn

CO2Me
O

PGHN

R

7 Me Fmoc 25b 1.5 10 15 min 90 b)

b) Contaminated with 5 % ring opening product.

DABCO

DABCO

DABCO

DABCO

PhSiH3

[mol %] [%]

a) 10 eq. of pyridine or 5 eq. of DABCO or PhSiH3 were employed.

amino acid
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6.2 Suppression of DKP formation by DABCO protocol

Several residue- or sequence-specific side reactions can occur during the solid phase peptide

synthesis (SPPS). One of the most important is the formation of diketopiperazines (DKP, 59)

as side products in peptide chemistry (Scheme 3).63a Due to the presence of particular

sequences prone to DKP formation, when the terminal amino group is liberated (58) an

intramolecular aminolysis at the i-1 peptide bond occurs with formation of the corresponding

cyclic dipeptide (DKP) and interruption of the chain elongation.63b

X
H
N

NHPG

O

O

X = OR or NHR

R

R
X

H
N

NH2

O

OR

R

N
H

H
N O

O R

R

57 58 59
DKP

N-deprotection
intramolecular

aminolysis

Scheme 3. DKP side-reaction.

Sequences containing amino acids able to reverse the chain direction, and thus bringing in 58

the free amino group near to the i-1 peptide bond, are particularly prone to DKP formation.

Proline and N-methyl amino acids can adopt cis peptide bond conformations, glycine favours

any type of turn, due to the lack of a side chain. These amino acids in either the first or the

second position of the elongating chain produce substantial amounts of DKP during the

deprotection step. The cyclisation can be hardly avoided when a strong turn forming sequence

involves the first and the second residue of the peptide. A combination of a D- and a L-amino

acids is very unfavourable and the presence of two adjacent prolines is particularly

troublesome.

On the solid phase the DKP problem is relevant at the third coupling cycle, because the ester

bond between the peptide and the linker is prone to intramolecular aminolysis.

Various solutions have been proposed to avoid this undesired side-reaction: the use of a

sterically hindered linkers (trytil-resins)63b preventing a nucleophilic attack at the ester bond;

the use of the Boc/Bzl specially designed coupling protocols involving in situ neutralisation63b

and some other particular Fmoc/tBu protocols. Nevertheless, these solution can be applied to

solve specific problems but are not of general use. Moreover, the incorporation of a Pro-Pro

sequence in a peptide remains a difficult task which is often resolved by the incorporation of

the second and third amino acid as the protected dipeptide 61 (Scheme 4).
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X = OR or NHR

intramolecular
aminolysis

N

O

N

O
NHPG

O
X

R

NH

O
X

N

OO
NHPG

R

HO

H
NN

O
O

X

N

N O

O

PG
N

O

HO

+

coupling

55 61 62

63 64 65

i.
ii.

coupling
deprotection

Convergent synthesis

X = OR or NHR

NH

O
X

55

+

Sequential synthesis

no DKP

DKP

Scheme 4. Convergent synthesis (top) to prevent DKP formation (bottom) in the presence of
the Pro-Pro sequence.

An efficient way to suppress DKP formation in solution and on the solid phase is the

entrapment of the free amine in situ by acylation prior to intramolecular aminolysis. An early

example is the Cbz deprotection/coupling in the presence of Pd/C and activated Boc- or

Teoc-amino acids.64 This strategy is not very efficient since it is not compatible with Fmoc

chemistry and makes use of a heterogeneous catalyst, which would not be washed out during

the solid phase synthesis.

The Alloc-protection followed by the Pd (0)/PhSiH3 tandem deprotection/coupling reaction

already proved to prevent DKP formation.61f Therefore the efficiency of the

deprotection/coupling protocol using DABCO as allyl scavenger was tested. The coupling of

a peptide containing two prolines at the N-terminus with a further amino acid is one of the

most DKP sensitive sequences, thus the dipeptide 66 chain elongation was taken as a

representative example (Table 3).

Indeed, the coupling successfully afforded the tripeptides 67 in high yields and short reaction

times, moreover, no DKP 65 was observed.
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Table 3. Suppression of DKP formation with the Alloc/DABCO tandem deprotection/
coupling protocol.

entry

1

2

3

time yield

94

activated a.a.

N-Boc-Gly-OH

N-Fmoc-Ala-OH

N-Fmoc-Pro-OH

15 min.

15 min.

30 min.

90

96

coupling product

BnO-Pro-Pro-Gly-NHBoc

BnO-Pro-Pro-Ala-NHFmoc

BnO-Pro-Pro-Pro-NFmoc

66 67

67a

67b

67c

a) Reaction conditions: Pd[PPh3]4 (10 mol %), DABCO (5 eq.), EDC/HOBt/amino acid (3 eq.),
CH2Cl2, room temperature.

a)

N

O
N

O O

BnO2C
N

O
N

O

BnO2C
N
PG

R2
R1

[%]

6.3 Application of the DABCO protocol to the solid phase synthesis

The efficiency of the DABCO protocol was then tested on the solid phase.

The first problem which arises is the synthesis of the free acids 68 or 69 (Scheme 5) to be

coupled on the resin. The strategy so far employed to arrive at free carboxylic acids of the

β-ACC structure has been the hydrogenolysis of the corresponding benzyl esters such as 24 or

25. However, the hydrogenolysis of the benzyl ester would also affect the Alloc protecting

group. At the present there is only one synthesis developed affording selectively 68 and 69,

but it requires many steps on the N-Boc pyrrole 13 (Scheme 5).65

NHAlloc

HO2C CO2R2

Boc
N

13

68

NHAlloc

R1O2C CO2H

69

Scheme 5. Synthesis of N-Alloc β-ACC free acids 68 and 69.
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Another efficient possibility to arrive at 68 or 69 acids would be to cleave one of the two ester

groups on 16 selectively by enzymatic hydrolysis. The enzymatic resolution of racemic

cyclopropanes bearing two methyl ester groups has been already successfully carried out.66

The enantiomeric mixture of the cyclopropanated Boc-pyrrole 13 has been also enzymatically

resolved,21d while no success was obtained on the enantiomeric mixture of 11 analogue

having two methyl ester functions. Nevertheless, only a regioselective hydrolysis of 16a is

required to achieve the synthesis of 68a or 69a. Such a strategy would permit to obtain the

free acids in only two steps starting from the well known and efficient synthesis of 11 and 12.

Three different β-ACC derivatives (16a-b and 70) were hydrolysed by treatment with PLE-E1

(Pig Liver Esterase), to investigate the dependence of the enzymatic regioselectivity on the

ester nature and on its stereochemistry (Scheme 6). It could be observed that the benzyl and

the phenacetyl (Phac) esters are more efficiently hydrolysed compared to the methyl ester,

probably due to the better interaction of the more lipophylic aromatic group with the enzyme

binding site. On the other hand the stereochemistry plays also an important role, in fact, the

benzyl ester group is more extensively hydrolysed when it occurs in the trans position with

respect to the amino group (cf. 16a and 16b).

NHPG

R1O2C CO2R2

NHPG

HO2C CO2R2

NHPG

R1O2C CO2H

PLE-E1R1= Bn, R2= Me, PG = Alloc 68a 69a

R1= Phac, R2= Me, PG = Boc PLE-E1 71 72

R1= Me, R2= Bn, PG = Alloc PLE-E1 68b 69b

16a

16b

70

2:1

5:1

1:8

+

Phosphate buffer
pH 7.4

70-80 %

Scheme 6. Enzymatic hydrolysis of β-ACC derivatives 16a, 70 and 16b.

The hydrolysis of 70 and 16b gave the best enrichment in only one free acid (the cis and trans

respectively as racemate); 69b could be isolated pure by recrystallisation and was then

employed as building block in the solid phase synthesis.
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OH O O

O
HO

N
HO

O H
N

Ph
O

NHFmoc

73 74

7576

Wang resin

Ala-Fmoc Ala-Phe-Alloc

Ala-Phe-Ala-Fmoc

a b

d

c

Scheme 7. a: Fmoc-Ala-OH/DIC/HOBt (3 eq.), DMAP (0.1 eq.), DMF. b: i. piperidine/DMF.
ii. Alloc-Phe-OH/DIC/HOBt (3 eq.), DMF. c: Fmoc-Ala-OH/EDC/HOBt (15 eq.),
Pd[PPh3]4 (0.2 eq.), DABCO (18 eq.),CH2Cl2,  2 h, r.t.. d: TFA/CH2Cl2 2:1. Yield: 99 %.

First, the Alloc deprotection/coupling protocol with DABCO as allyl scavenger was brought

on the solid phase for the synthesis of a non critical sequence to prove its applicability

(Scheme 7). The tripeptide Fmoc-Ala-Phe-Ala 76 was obtained in high yields confirming the

quality of the coupling method also on the solid phase.

The coupling conditions were then optimised and applied to the troublesome synthesis of the

sequence Fmoc-Ala-Pro-Pro-OH (80) and of a tripeptide containing the β-ACC 69b (Scheme

8). For a direct comparison of the results, the reactions on the solid phase were performed

with both DABCO and phenylsilane protocols. DABCO resulted of comparable efficiency

with phenylsilane, affording high yields and short reaction times. The advantage of DABCO

on phenylsilane is the stability of the reagent to moisture67 which allows an easy application

to the automated synthesis.
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OH O
N
HO

O

c

Wang resin
NHAlloc

CO2Me

Ph

O
N
HO

O H
N

CO2Me

Ph

O
NHFmoc

HO
N
HO

O H
N

CO2Me

Ph

O
NHFmoc

DABCO protocol 85 % f)

PhSiH3 protocol 83 % f)

O Pro-Pro-Alloc

O Pro-Pro-Ala-Fmoc

Pro-Pro-Ala-Fmoc

DABCO protocol 99 % e)

PhSiH3 protocol 99 % e)

17

19

77

78

79

80

d

a

b

c

b

Scheme 8. a: i. Fmoc-Pro-OH/DIC/HOBt (3 eq.), DMAP (0.1 eq.), DMF. Loading 0.85
mmol/g. ii. piperidine/DMF. iii. Alloc-Pro-OH/DIC/HOBt (3 eq.), DMF. b:
Fmoc-Ala-OH/EDC/HOBt (6 eq.), Pd[PPh3]4 (0.2 eq.), Allyl scavenger (12 eq.),
CH2Cl2, 2 h, r.t.. c: TFA/CH2Cl2 2:1. d: i. Fmoc-Phe-OH/DIC/HOBt (3 eq.),
DMAP (0.1 eq.), DMF. Loading 0.6 mmol/g. ii. piperidine/DMF. iii.
69b/DIC/HOBt (1.5 eq.), DMF. e: Without further purification after cleavage
from the resin. f: The product was purified by column chromatography after
cleavage from the resin.

In conclusion the coupling of the N-Alloc protected β-ACCs was developed and optimised in

solution (16a) and on the solid phase (69b). A new tandem deprotection/coupling protocol

was applied on N-Alloc protected amino acids (or peptides) making use of Pd(0) as catalyst,

DABCO as allyl scavenger and EDC/HOBt preactivated Boc- and Fmoc-amino acids. This

protocol affords good to excellent yields within short reaction times. DABCO was found to be

an allyl scavenger as effective as phenylsilane, but cheaper, easier to store and to employ.
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Summary

In this work the synthesis of α-peptides containing the β-ACC building blocks (+)-11 and

(-)-11 was developed and their structure was investigated by IR, CD and NMR spectroscopy.

The synthesis of β-ACC containing peptides was achieved in solution by Boc/Bn protection

strategy (Scheme 1).

CO2Me

CO2BnBocHN

CO2Me

CO2BnN
H

O
R1HN

R2

CO2Me

N
H

O
R1HN

R2

H
N

O
XR4

O

R3

X = O or N
(+)-11 (+)-25 (+)-81

a b

CO2Me

CO2BnBocHN

CO2Me

CO2BnN
H

O
R1HN

R2

CO2Me

N
H

O
R1HN

R2

H
N

O
XR4

O

R3

X = O or N
(-)-11 (-)-25 (-)-81

a b

Scheme 1. a: i. HCl/ethyl acetate. ii. N-protected amino acid/EDC/HOBt, pyridine. b: i. Pd/C,
cyclohexadiene or formic acid. ii. EDC/HOBt, C-protected amino acid, pyridine.

By means of IR spectroscopy, the extent of the hydrogen-bonding network in derivatives of

β-ACC 11 could be estimated. Molecular modelling calculations assisted to give reasonable

hypotheses for the location of the hydrogen-bonds, however, only calculation in vacuum have

been carried out, therefore the hydrogen-bond contribution is overestimated. It could be

proved that the β-ACC unit can force hydrogen-bonded sharp turns forming 6-membered

(C6), 7-membered (C7), 8-membered (C8) or 9-membered (C9) rings.
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The 6-membered conformation is the most constrained (Figure 1). It has been encountered

only in 34 and 35c (Figure 2) with only the cyclopropyl NH free for binding and containing a

tertiary amide group at the β-ACC C-terminus, which makes the carboxyl amide group a

particularly good hydrogen-bond acceptor. If other hydrogen-bonding patterns were possible,

C8 and C9 rings resulted to be more stable (Figure 2). Moreover, the presence of an amino

acid at the β-ACC N-terminus seems to favour a γ-turn structure.

(+)-50

C9
O

O

NH
CO2Me

O

O
O

Ph

C8

(+)-35b

H
N

H
N

O
CO2Me

O
BnO

O

CO2Me

N
H

HN
O

O

BuO

O

BnO

γ

(+)-25a

O

N
H

CO2Me

NMe

C6

O

CO2Bn

(+)-35c

t

Figure 2. C8 hydrogen bonded structure calculated for (+)-35b, C9 for (+)-50 and γ-turn for
(+)-25a.

The mixture of the two diastereomers of the dipeptide Boc-Ala-β-ACC-OBn (25a) could be

resolved by recrystallisation allowing an easy access to dia- and enantiomerically pure

peptides containing the unit Ala-β-ACC. Circular dichroism (CD) measurements for

oligomers incorporating (-)-11 showed often β-turn like CD patterns, while the derivatives of

(+)-11 displayed helix-like CD patterns.

A detailed picture of the conformations of (+)-39, (-)-39, (+)-43 and (-)-43 in solution (Figure

3) could be achieved by CD and 2D NMR spectroscopy. Since 39 and 43 are unprotected

peptides, they are not soluble in CH2Cl2 and IR measurements were performed only on the

corresponding protected forms (+)-37a, (-)-37a, (+)-40 and (-)-40 (Table 1). The IR spectra of

37a and 40 diastereomers showed a substantial difference in the hydrogen-bonding extent

stabilised by the two β-ACC enantiomers, demonstrating the influence of the chirality of the

β-ACC building block when combined with α-amino acids. It was found that (+)-11 promotes

the formation of fewer hydrogen-bonds than (-)-11 (Table 1). This effect was surprisingly not

observed on the hexapeptide (+)-45 containing three (+)-11 units, in which five of the six NHs

are hydrogen-bonded, suggesting some regular structure to occur.
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Table 1. Extent of the hydrogen-bonding network on pentapeptides measured by IR
spectroscopy in CH2Cl2.

N
H

CO2Me
OH

N

O

H
N

O

CO2Bn
N
H

CO2Me
O

BocHN

N
H

CO2Me
OH

N

O

H
N

O

CO2Bn
N
H

CO2Me
O

BocHN

non HB N-H HB N-H non HB/HB

3421 3362 2:3

3419 3350 1:4

(+)-40

(-)-40

(cm-1) (cm-1)

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Bn

PhPh

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Bn

PhPh

3412 3309

3420 3364

2:3

2:5

(+)-37a

(-)-37a

The CD spectra of the protected (37a and 40) and unprotected (39 and 43) diastereomers

displayed similar patterns suggesting that the protecting groups do not substantially influence

their conformation. Once again, it was striking the difference in the influence of the two

β-ACC enantiomers on the peptides structure. The CD spectra of (-)-11 containing peptides

were usually solvent dependent (Figure 3, (-)-39 and (-)-43, right) and occasionally typical

random coil CD spectra were observed ((-)-43 in TFE, Figure 3). In contrast, the (+)-11 unit

induced helix-like CD patterns (Figure 3, (+)-39 and (+)-43, left) which showed little solvent

dependence. Moreover, the introduction of two or three (+)-11 units resulted in very similar

CD spectra, so stable to any change of solvent that even TFE could exert no structuring effect

(cf. (+)-43 in methanol and in TFE, Figure 3).
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Figure 3. CD spectra of (+)-39 and (+)-43 (left) and (-)-39 and (-)-43 (right) in various solvents.

Finally, by means of high resolution NMR spectroscopy the conformation of the

pentapeptides 39 and 43 in methanol-d3 could be more precisely depicted. The temperature

coefficients were indicative for hydrogen-bonding only in the case of (-)-43. Successively,

ROESY spectra provided distance restraints for molecular dynamics calculations. The number

of interproton distances obtained for each oligomer by ROESY spectra, resulted to be high for

so small peptides, suggesting that their structure should be well defined. The molecular
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dynamics calculation did not converge for (+)-43, probably due to the presence of at least two

different conformations differing for the cis/trans configuration at the peptide bond between

the 4th and 5th residue. In contrast, (+)-39, (-)-39 and (-)-43 calculations converged to turn like

structures (Figure 4): (+)-39 turn is the sharpest, having an Ω like N- and C-terminus

divergence; (-)-39 and (-)-43 turns are both helix-like structured but in (-)-43 it seems to be

sharper.
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Figure 4. Structures calculated for (+)-39, (-)-39 and (-)-43.

A further aim of this work was the design of a synthetic procedure for the incorporation of the

β-ACC unit in peptides making use of the solid phase technique. Compatibility with the

common Fmoc-coupling strategy could be achieved by protection of the β-ACC N-terminus

with the allyloxycarbonyl (Alloc) group, which can be removed by treatment with

palladium (0) as the catalyst in the presence of an allyl scavenger. To avoid ring opening

under deprotection conditions, an in situ deprotection/coupling protocol was developed.

DABCO was found to be an especially suitable allyl scavenger for the coupling of  β-ACC

derivatives (Scheme 2), affording high yields, short reaction times and preventing ring
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opening and epimerisation, in solution as well as on the solid phase as depicted with the

synthesis of 77.

O
N
HO

O
NHAlloc

CO2Me

Ph

HO
N
HO

O H
N

CO2Me

Ph

O
NHFmoc

85 %

O Pro-Pro-Alloc Pro-Pro-Ala-Fmoc

Pd[PPh3]4, DABCO
Ala-Fmoc, EDC/HOBt

99 %

17 77

78 80
TFA

i.

ii.

Pd[PPh3]4, DABCO
Ala-Fmoc, EDC/HOBt

TFA

i.

ii.

Scheme 2. Two examples of the application of the Alloc/DABCO protocol to the synthesis of
77 and 80 on the solid phase.

The Alloc/DABCO protocol was also successfully applied to the chain-elongation of the

Pro-Pro dimer (in solution and on the solid phase), being a sequence particularly prone to

intramolecular aminolysis with consequent interruption of the chain elongation. For instance

78 could be coupled with Fmoc-Ala giving rise to the tripeptide 80 in almost quantitative

yield.
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Experimental part

1. Instruments and general techniques

1H NMR Bruker ARX 400 (400 MHz), Bruker AC 250 (250 MHz). The chemical shifts are

reported in δ (ppm) relative to chloroform (CDCl3, 7.26 ppm), dymethylsulfoxide (DMSO-d6,

2.49 ppm), methanol (CD3OD, 3.34 ppm) and tetramethylsilane (TMS, 0 ppm). The spectra

were analysed by first order, the coupling constants are reported in Hertz (Hz).

Characterisation of signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, s br

= broad singlet, dd = double douplet, dt = double triplet, dq = double quartet, ddd = double

double doublet. Integration is determined as the relative number of atoms. Diastereomeric

ratios were determined by comparing the integrals of corresponding protons in the 1H NMR

spectra.
13C NMR Bruker ARX 400 (100.6 MHz), Bruker AC 250 (62.9 MHz). The chemical shifts

are reported in δ (ppm) relative to chloroform (CDCl3, 77.0 ppm), dymethylsulfoxide

(DMSO-d6, 36.9 ppm), methanol (CD3OD, 49.0 ppm) and tetramethylsilane (TMS, 0 ppm).
13C NMR resonance assignment were aided by the use of the DEPT 135 (DEPT =

distortionless enhancement by polarisation transfer) technique to determine the number of

hydrogens attached to each carbon atom and is declared as: + = primary or tertiary (positive

DEPT signal intensity), - = secondary (negative DEPT signal) and quat = quaternary (no

DEPT signal intensity) carbon atoms. In some cases DEPT 90 spectra were recorded to

distinguish between primary and tertiary carbon atoms. This is marked with the CH or CH3

notation at the corresponding signal.

2D-NMR Bruker DRX-500 spectrometer operating at a basic 1H frequency of 500 MHz at

298 K. The spectra were recorded at 280 K, using the solvent line (CD3OH, 1H δ 3.31) for

referencing. DQF-COSY, 80 ms-TOCSY and 500 ms-ROESY standard experiments were

performed with suppression of the methanol OH line by low-power presaturation.

IR-spectra were recorded with an ATI Mattson Genesis Series FT-IR or a Bio-Rad Excalibur

series FT-IR.

MS-spectra: masspectroscopy department of the University of Regensburg, Varian Mat 311 A.

Elemental analysis: microanalytical department of the University of Regensburg.

Melting points (m p) were determined with a Buchi SMP 20 and are uncorrected.
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Thin layer chromatography (TLC) was performed on alumina plates coated with silica gel

(Merck silica gel 60 F 254, layer thickness 0.2 mm). Visualisation was accomplished by UV-

light (wavelenght λ = 254 nm) and a vanillin/sulphuric acid solution.

Optical rotations were measured on a Perkin-Elmer-Polarimeter 241 with sodium lamp at

589 nm in the specified solvent. The optical rotation was calculated with the following

formula:

[ ]ϑα D  = ([α]exp x 100)/ (c x d)

CD spectra were measured on a JASCO model J-710/720 at the Institut für Bioanalytic und

Sensorik of the University of Regensburg (research group of Prof. Dr. O. Wolfbeis) at 21° C

between 300 and 180 nm in the specified solvent, the number of scans ranging between 10

and 50. The length of the cylindrical cuvettes was 1 or 0.1 mm, the resolution was 0.2 nm, the

band width 1.0 nm, the sensitivity 100 mdeg, the response 0.25 s, the speed 50 nm/min. The

background was subtracted to each spectrum. The absorption value is measured as Molar

Ellipticity per Residue (deg cm2 dmol-1). The spectra were smoothed by the adjacent

averaging algorithm with the Origin 6.0 program.

Column chromatography was performed on silica gel Geduran SI 60 (70-230 mesh)

purchased from Merck and flash chromatography on flash-silica gel 60 (230-400 mesh

ASTM) purchased from Merck.

Solvents were purified according to standard laboratory methods. THF, diethyl ether and

toluene were distilled over sodium/benzophenone before use. Dichlormethane, DMSO and

DMF were distilled over calcium hydride and acetonitrile over P2O5. Methanol was refluxed

2 h over magnesia, distilled and stored under nitrogen over 4 Å molecular sieves. The hexanes

used had a boiling point of 40-60 °C. All solvents were distilled before use. Other chemicals

were purchased from commercial suppliers and used as received.

All reactions with oxygen or moisture sensitive reactants were performed under nitrogen

atmosphere.

For some peptide coupling the peptide synthesiser ACT90 of Advanced ChemTech was used.

θ = temperature (°C)
[α]exp = measured value
c = concentration (g/100 ml)
d = length of the cuvette
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2 Synthesis of compounds

2.1 General procedures

General procedure for solid phase loading. GP1

The resin (Wang resin) was swelled in CH2Cl2 for 20 min.. The mixture was drained and N-

Fmoc amino acid (3 eq.), DIC (3 eq.); HOBt (3 eq.) and DMAP (0.1 eq.) in DMF (12 ml/g of

resin) were added. The resin was agitated at room temperature overnight. The mixture was

drained and the resin washed with DMF (5 x 15 ml/g of resin), CH2Cl2 (5 x 15 ml/g of resin),

methanol (5 x 15 ml/g of resin) and diethyl ether (5 x 15 ml/g of resin). The resin was dried

under vacuum at room temperature overnight. The loading of the resin was estimated from the

weight gain of the resin; spectrophotometrically from the amount of Fmoc released from a

weighed sample of resin; by elemental analysis and by estimation of the amount of amino acid

released by cleavage from the resin (about 200 mg).

General procedure for solid phase coupling of Fmoc/Alloc-protected amino
acids on Fmoc-protected amino acids loaded on a resin. GP2

The resin was swelled in CH2Cl2 (15 ml/g of resin) for 20 min.. The mixture was drained and

piperidine 20 % in DMF (15 ml/g of resin) was added. The resin was agitated for 20-40 min..

The mixture was drained, the resin was washed 10 x with DMF and a solution of N-

Fmoc/Alloc amino acid (3 eq.), DIC (3 eq.) and HOBt (3eq.) in DMF (12 ml/g of resin) was

added. The resin was agitated 2 h at room temperature. The solution was filtrated and the

resin was washed with DMF (5 x 15 ml/g of resin), CH2Cl2 (5 x 15 ml/g of resin), methanol

(5 x 15 ml/g of resin) and diethyl ether (5 x 15 ml/g of resin). The coupling yield was verified

by cleavage of the dipeptide from the resin (about 200 mg), or by the Kaiser test.

The number of equivalents of amino acid, DIC and HOBt used when the reactions were

performed on the synthesiser ACT90 of Advanced ChemTech was increased three times.



108 Experimental part

2.2 Preparation of compounds

2.2.1 Coupling at the N-terminus

HN

MeO2C CO2Bn

O

O

(±)-16b

(1R*, 2R*, 3R*) 3-Allyloxycarbonylamino-cyclopropane-1,2-dicarboxylic acid 1-bezyl

ester 2-methyl ester ((±)-16b): A solution of (±)-11 (209 mg, 0.60 mmol) in HCl 3 M in

ethyl acetate (4 ml) was stirred at 0 °C for 3 h. The solution was concentrated in vacuum and

the salt resuspended in CH2Cl2 (20 ml). Allyloxycarbonyl chloride (64 µl, 0.6 mmol, 1 eq.)

was added, then the mixture was cooled down at 0 °C and pyridine (97 µl, 1.2 mmol, 2 eq.)

was added dropwise. The mixture was stirred overnight at room temperature. The solvent was

evaporated and the product purified by chromatography (ethyl acetate/hexanes 1:2) to afford a

yellow oil (188 mg, 95 %). - Rf ((±)-16b): 0.21. - 1H NMR (CDCl3, 250 MHz) δ 2.33 (dd, J =

4.9, 4.9 Hz, 1H, cyclopropyl-CH), 2.50 (dd, J = 3.1, 8.3 Hz, 1H, cyclopropyl-CH), 3.74 (s,

3H, CH3O), 3.86-4.03 (m, 1H, cyclopropyl-CHN), 4.57-4.59 (m, 2H, =CH2), 5.08-5.16 (m,

2H, PhCH2O), 5.15-5.34 (m, 2H, OCH2CH), 5.76 (s br, 1H, NHAlloc), 5.78-5.97 (m, 1H,

CH=CH2), 7.30-7.38 (m, 5H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 26.1 (+, cyclopropyl-

CH), 28.8 (+, cyclopropyl-CH), 37.6 (+, cyclopropyl-CHN), 52.6 (+, CH3O), 66.1 (-, CH2O),

67.3 (-, CH2O), 118.0 (-, =CH2), 128.4 (+, Ph-CH, 2C), 128.5 (+, Ph-CH), 128.7 (+, Ph-CH,

2C), 132.5 (+, =CH), 135.2 (Cquat, Ph-C), 155.9 (Cquat, N(CO)O), 169.5 (Cquat, C=O), 170.3

(Cquat, CO). - MS  CI (NH3) m/z (%) 351 (MNH4
+, 100), 334 (MH+, 7). - IR (film) 3360, 3067,

3033, 2954, 1727, 1522, 1428, 1356 cm-1. - Anal. Calcd for C17H19NO6 (333.34): C, 61.25; H,

5.74; N, 4.20. Found: C, 61.36; H, 5.96; N, 4.10.
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NH

BnO2C CO2Me

O

(±)-24

(1R*, 2R*, 3S*) 3-Acetylamino-cyclopropane-1,2-dicarboxylic acid 1-bezyl ester 2-

methyl ester ((±)-24): A solution of (±)-11 (470 mg, 1.35 mmol) in HCl 3 M in ethyl acetate

(4 ml) was stirred at 0 °C for 3 h. The solution was concentrated in vacuum and the salt

resuspended in CH2Cl2 (20 ml). Acetyl chloride (173 µl, 2.4 mmol, 1.8 eq.) was added, then

the solution was cooled down at 0 °C and triethylamine (598 µl, 4.3 mmol, 3.2 eq.) was added

dropwise. The mixture was stirred overnight at room temperature. The solvent was evaporated

and the product purified by chromatography (CHCl3/MeOH 60:1) to afford a white solid

(380 mg, 97 %). - Rf ((±)-24): 0.21. - mp 68-70 °C. - 1H NMR (CDCl3, 250 MHz) δ 1.92 (s,

3H, CH3C=O), 2.28 (dd, J = 5.0, 5.0 Hz, 1H, cyclopropyl-CH), 2.54 (dd, J = 5.2, 8.3 Hz, 1H,

cyclopropyl-CH), 3.66 (s, 3H, CH3O), 4.07 (ddd, J = 4.8, 8.1, 8.1 Hz, 1H, cyclopropyl-CHN),

5.09 (d, J = 12.2 Hz, 1H, CH2O), 5.19 (d, J = 12.2 Hz, 1H, CH2O), 6.64 (d, J = 7.6 Hz, 1H,

NH), 7.31-7.39 (m, 5H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 23.0 (+, CH3C=O), 26.2

(+, cyclopropyl-CH), 28.6 (+, cyclopropyl-CH), 36.2 (+, cyclopropyl-CHN), 52.3 (+, CH3O),

67.4 (-, CH2O), 128.3 (+, Ph-CH, 2C), 128.5 (+, Ph-CH, 2C), 128.7 (+, Ph-CH), 135.1 (Cquat,

Ph-C), 169.8 (Cquat, C=O), 170.0 (Cquat, C=O), 170.6 (Cquat, C=O). - MS  CI (NH3) m/z (%)

309 (MNH4
+, 100), 292 (MH+, 18), 274 (20), 257 (17), 201 (21). - IR (KBr) 3332, 3063,

2959, 1728, 1654, 1525, 1453, 1385, 1317 cm-1. - Anal. Calcd for C15H17NO5 (292.30): C,

61.85; H, 5.88; N, 4.81. Found: C, 61.47; H, 5.88; N, 4.71.

HN

BnO2C CO2Me

O
NHBoc

HN

BnO2C CO2Me

O
NHBoc

(1R, 2R, 3S) and (1S, 2S, 3R) 3-(2S-tert-Butoxycarbonylamino-propionylamino)-

cyclopropane-1,2-dicarboxylic acid 1-bezyl ester 2-methyl ester ((+)-25a and (-)-25a): A

solution of (±)−11 (1.170 g, 3.35 mmol) in HCl 3 M in ethyl acetate (11 ml) was stirred at

0 °C for 3 h. The solvent was evaporated and a solution of Boc-alanine (950 mg, 5.02 mmol,

(+)-25a (-)-25a
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1.5 eq.), EDC (964 mg, 5.02 mmol, 1.5 eq) and HOBt (677 mg, 5.02 mmol, 1.5 eq.) in

CH2Cl2 (250 ml) (previously stirred 1 h at 0 °C and 1 h at room temperature) was added.

Triethylamine (510 µl, 3.64 mmol, 1.1 eq.) was then added dropwise at 0 °C. The mixture

was stirred overnight at room temperature. The solution was washed with saturated NaHCO3

(200 ml), 1 M KHSO4 (200 ml) and saturated NaHCO3 (200 ml). The organic phase was dried

over MgSO4 and concentrated. The mixture of the two diastereomers was purified by

chromatography (CH2Cl2/MeOH 40:1).Yield: 1.34 g (95 %). 5-12 % epimerisation was

observed. (+)-25a was isolated as a white solid by recrystallization from ethyl

acetate/hexanes. (-)-25a was obtained pure as a white solid by recrystallization of the mother

liquor. (+)-25a - Rf ((+)-25a): 0.17. - mp 148-150 °C. - [ ]21
Dα  -33.8 (c 1, CHCl3). - 1H NMR

(CDCl3, 250 MHz) δ 1.31 (d, J= 7.1 Hz, 3H, CH3CH), 1.46 (s, 9H, (CH3)3C), 2.29 (dd, J =

5.0, 4.9 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.2, 8.3 Hz, 1H, cyclopropyl-CH), 3.70 (s,

3H, CH3O), 4.01-4.18 (m, 2H, cyclopropyl-CHN + Ala-CHN), 4.88 (s br, 1H, NHBoc), 5.11

(d, J = 12.1 Hz, 1H, CH2O), 5.20 (d, J = 12.1 Hz, 1H, CH2O), 7.16 (d, J = 8.1 Hz, 1H, NH),

7.31-7.39 (m, 5H. Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 18.4 (+, CH3CH), 26.1 (+,

cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 28.7 (+, cyclopropyl-CH)), 36.0 (+, cyclopropyl-

CHN), 50.4 (+, CHN), 52.3 (+, CH3O), 67.4 (-, CH2O), 80.2 (Cquat, (CH3)3C), 128.4 (+, Ph-

CH, 2C), 128.6 (+, Ph-CH, 2C), 128.7 (+, Ph-CH), 135.1 (Cquat, Ph-C), 155.2 (Cquat,

N(CO)O), 167.8 (Cquat, C=O), 169.9 (Cquat, C=O), 173.2 (Cquat, C=O). - MS  CI (NH3) m/z (%)

858 (2MNH4
+, <1), 841 (2MH+, <1), 741 (2MH+-Boc, 7), 438 (MNH4

+, 100), 421 (MH+, 82),

382 (MNH4
+-tBu, 44), 365 (MH+-tBu, 9), 338 (MNH4

+-Boc, 2), 321 (MH+-Boc, 54). - IR

(KBr) 3348, 3316, 2987, 1739, 1687, 1495 cm-1. - Anal. Calcd for C21H28N2O7 (420.46): C,

59.99; H, 6.71; N, 6.66. Found: C, 60.06; H, 6.73; N, 6.56. (-)-25a - Rf ((-)-25a): 0.17. - mp

93-95 °C. - [ ]21
Dα  -12.0 (c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz) δ 1.30 (d, J = 7.2 Hz, 3H,

CH3CH), 1.46 (s, 9H, (CH3)3C), 1.29 (dd, J = 5.0, 4.9 Hz, 1H, cyclopropyl-CH), 2.57 (dd, J =

5.2, 8.3 Hz, 1H, cyclopropyl-CH), 3.71 (s, 3H, CH3O), 4.02-4.18 (m, 2H, cyclopropyl-CHN +

Ala-CHN), 4.78 (s br, 1H, NHBoc), 5.13 (d, J = 12.2 Hz, 1H, CH2O), 5.20 (d, J = 12.2 Hz,

1H, CH2O), 7.08 (d, J = 7.7 Hz, 1H, NH), 7.36-7.40 (m, 5H, Ph-CH). - 13C NMR (CDCl3,

62.9 MHz) δ 18.1 (+, CH3CH), 26.3 (+, cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 28.6 (+,

cyclopropyl-CH), 36.0 (+, cyclopropyl-CHN), 50.3 (+, Ala-CHN), 52.3 (+, CH3O), 67.4 (-,

CH2O), 80.23 (Cquat, C(CH3)3), 128.4 (+, Ph-CH, 2C), 128.5 (+, Ph-CH, 2C), 128.6 (+, Ph-

CH), 135.2 (Cquat, Ph-C), 155.3 (Cquat, C=O Boc), 169.7 (Cquat, C=O), 169.8 (Cquat, C=O),

173.4 (Cquat, C=O). - MS  CI (NH3) m/z (%) 859 (2MNH4
+, <1), 841 (2MH+, <1), 741 (3), 438

(MNH4
+, 100), 421(30), 382 (25), 321 (20). - IR (KBr) 3359, 3058, 2982, 1727, 1690, 1667,



Experimental part 111

1519, 1435, 1311 cm-1. - Anal. Calcd for C21H28N2O7 (420.46): C, 59.99; H, 6.71; N, 6.66.

Found: C, 59.89; H, 6.72; N, 6.53.

HN

BnO2C CO2Me

O
NHBoc

(±)-25a

(1R*, 2R*, 3S*) 3-(2S-tert-Butoxycarbonylamino-propionylamino)-cyclopropane-1,2-

dicarboxylic acid 1-bezyl ester 2-methyl ester ((±)-25a): Boc-alanine (170 mg, 0.9 mmol,

3 eq.) was preactivated with EDC (174 mg, 0.9 mmol, 3 eq.) and HOBt (121 mg, 0.9 mmol,

3 eq.) in dry CH2Cl2 (5 ml) and under nitrogen atmosphere 1 h at 0 °C and 1 h at room

temperature. This solution was added under nitrogen atmosphere to Pd[PPh3]4 (35 mg,

0.03 mmol, 0.1 eq.), then (±)-16a (100 mg, 0.3 mmol) and finally DABCO (168 mg,

1.5 mmol, 5 eq.) or pyridine (242 µl, 3  mmol, 10 eq.) were added. The solution was stirred 10

min. (DABCO) or 15 h (pyridine) at room temperature, then CH2Cl2 (10 ml) was added and

the organic phase was washed with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and

saturated NaHCO3 (10 ml) . The organic phase was dried over MgSO4 and concentrated. The

mixture of the two diastereomers was purified by chromatography (ethyl acetate/hexanes 1:1)

to yield the product as a white solid (DABCO: 122 mg, 97 %, pyridine: 120 mg, 95 %) with

4 % (DABCO) or 20 % (pyridine) epimerization.

HN

BnO2C CO2Me

O
NHFmoc

(±)-25b

(1R*, 2R*, 3S*) 3-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-propionylamino]-

cyclopropane-1,2-dicarboxylic acid 1-bezyl ester 2-methyl ester ((±)-25b): Fmoc-alanine

(168 mg, 0.54 mmol, 1.5 eq.) was preactivated with EDC (104 mg, 0.54 mmol, 1.5 eq.) and

HOBt (73 mg, 0.54 mmol, 1.5 eq.) in dry CH2Cl2 (5 ml) and under nitrogen atmosphere 1 h at

0 °C and 1 h at room temperature. This solution was added under nitrogen atmosphere to

Pd[PPh3]4 (41 mg, 0.036 mmol, 0.1 eq.), then (±)-16a was added (120 mg, 0.36 mmol) and
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finally DABCO (201 mg, 1.8 mmol, 5 eq.) or, in a parallel experiment, phenylsilane (221 µl,

1.8 mmol, 5 eq.). The solution was stirred for 20 min. at room temperature, then CH2Cl2

(10 ml) was added and the organic phase was washed with saturated NaHCO3 (10 ml), 1 M

KHSO4 (10 ml) and saturated NaHCO3 (10 ml). The organic phase was dried over MgSO4 and

concentrated. The product (mixture of two diastereomers) was purified by chromatography

(ethyl acetate/hexanes 1:1) to afford a white solid (181 mg, 93 % with DABCO-protocol;

175 mg, 90 % contaminated with 5 % of ring opening product with the phenylsilane-

protocol). - Rf ((±)-25b): 0.37. - mp 65-67 °C. - 1H NMR (CDCl3, 400 MHz) δ 1.32 (d, J =

6.8 Hz, 3H, CH3CH, 1 diast.), 1.34 (d, J = 6.2 Hz, 3H, CH3CH, 1 diast.), 2.31 (dd, J = 4.7,

4.7 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.2, 8.2 Hz, 1H, cyclopropyl-CH), 3.69 (s, 3H,

CH3O, 1 diast.), 3.70 (s, 3H, CH3O, 1 diast.), 4.03-4.07 (m, 1H, cyclopropyl-CHN, 1 diast.),

4.10 (ddd, J = 4.7, 8.1, 8.1 Hz, 1H, cyclopropyl-CHN, 1 diast.), 4.18-4.25 (m, 2H, Fmoc-CH

+ CHN), 4.33-4.48 (m, 2H, Fmoc-CH2), 5.04 (d, J = 12.2 Hz, 1H, CH2O, 1 diast.), 5.08-5.12

(m, 2H, CH2O, 1 diast.), 5.13 (d, J = 12.2 Hz, 1H, CH2O, 1 diast.), 5.18 (d, J = 6.6 Hz, 1H,

NH, 1 diast.), 5.35 (d, J = 7.0 Hz, 1H, NH, 1 diast.), 7.06 (d, J = 7.9 Hz, 1H, NH, 1 diast.),

7.12 (d, J = 7.9 Hz, 1H, NH, 1 diast.), 7.28-7.41 (m, 9H, Ar-CH), 7.51-7.59 (m, 2H, Fmoc-

Ar-CH), 7.75-7.77 (m, 2H, Fmoc-Ar-CH).  − 13C NMR (CDCl3, 100.6 MHz) δ 18.3 (+,

CH3CH, 1 diast.), 18.5 (+, CH3CH, 1diast.), 26.0 (+, cyclopropyl-CH, 1 diast.), 26.2 (+,

cyclopropyl-CH, 1 diast.), 28.6 (+, cyclopropyl-CH, 1 diast.), 28.7 (+, cyclopropyl-CH, 1

diast.), 35.9 (+, cyclopropyl-CHN), 47.1 (+, Fmoc-CH), 50.5 (+, Ala-CHN, 1 diast.), 50.6 (+,

Ala-CHN, 1 diast.), 52.4 (+, CH3O), 67.06 (-, CH2O, 1 diast.), 67.13 (-, CH2O, 1 diast.), 67.4

(-, Fmoc-CH2), 119.9-128.6 (+, Ar-CH, 13C), 134.9 (Cquat, Ph-C, 1 diast.), 135.0 (Cquat, Ph-C,

1 diast.), 141.22 (Cquat, Fmoc-Ar-C, 1 diast.), 141.25 (Cquat, Fmoc-Ar-C, 1 diast.), 141.27

(Cquat, Fmoc-Ar-C, 1 diast., 2C), 143.64 (Cquat, Fmoc-Ar-C, 1 diast.), 143.68 (Cquat, Fmoc-Ar-

C, 1 diast.), 143.8 (Cquat, Fmoc-Ar-C, 1 diast., 2C), 155.8 (Cquat, N(CO)O, 1 diast.), 155.9

(Cquat, N(CO)O, 1 diast.), 169.73 (Cquat, C=O, 1 diast.), 169.75 (Cquat, C=O, 1 diast.), 169.8

(Cquat, C=O, 1 diast.), 169.9 (Cquat, C=O, 1 diast.), 172.7 (Cquat, C=O, 1 diast.), 172.8 (Cquat,

C=O, 1 diast.). - MS  FAB (NH3) m/z (%) 543 (MH+, 9), 307 (100). - IR (KBr) 3322, 3064,

2953, 1724, 1678, 1524, 1450, 1311 cm-1. - Anal. Calcd for C31H30N2O7 (542.59): C, 68.62;

H, 5.57; N, 5.16. Found: C, 68.31; H, 5.61; N, 5.08.
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HN

BnO2C CO2Me

O Me
N

Boc

(±)-25c

(1R*, 2R*, 3S*) 3-(2S-tert-Butoxycarbonyl-methyl-amino-propionylamino)-

cyclopropane-1,2-dicarboxylic acid 1-bezyl ester 2-methyl ester ((±)-25c): A solution of

 (±)−11 (500 mg, 1.43 mmol) in HCl 3 M in ethyl acetate (5 ml) was stirred at 0 °C for 3 h.

The solvent was then evaporated and a solution of N-methyl-Boc-alanine (500 mg,

2.46 mmol, 1.7 eq.), EDC (411 mg, 2.04 mmol, 1.5 eq), HOBt (289 mg, 2.04 mmol, 1.5 eq.)

in CH2Cl2 (100 ml) (previously stirred 1 h at 0 °C and 1 h at room temperature) was added.

Triethylamine (200 µl, 1.43 mmol, 1 eq.) was then added dropwise at 0 °C. The mixture was

stirred at room temperature overnight. The solution was washed with saturated NaHCO3

(100 ml), 1 M KHSO4 (100ml) and then saturated NaHCO3 (100 ml). The organic phase was

dried over MgSO4 and concentrated. The mixture of the two diastereomers (at least one of

them exists as a mixture of two rotamers) was obtained as a colourless oil (546 mg, 88 %) by

chromatography (ethyl acetate/hexanes 1:2). 10 % epimerization was observed. - Rf

((±)-25c): 0.24. - 1H NMR (measured on a mixture of diastereomers enriched in one of them):

(CDCl3, 250 MHz) δ 1.31 (d, J = 6.7 Hz, 3H, CH3CH, major diast.), 1.34 (d, J = 6.9 Hz, 3H,

CH3CH, minor diast.), 1.47 (s, 9H, (CH3)3C, minor diast.), 1.49 ( s, 9H, (CH3)3C, major

diast.), 2.22 (dd, J = 5.0, 5.0 Hz, 1H, cyclopropyl-CH, major diast.), 2.28 (dd, J = 4.7, 4.7 Hz,

1H, cyclopropyl-CH, 1 minor diast.), 2.31 (dd, J = 5.0, 5.0 Hz, 1H, cyclopropyl-CH, 1 diast.),

2.29-2.32 (m, 1H, cyclopropyl-CH, minor diast.), 2.63 (s br, 3H, CH3N, major diast. 1

epimer), 2.71 (s br, 3H, CH3N, major diast., 1 epimer), 2.78 (s, CH3N, minor diast.), 3.70 (s,

3H, CH3O, major diast.), 3.71 (s, 3H, CH3O, minor diast.), 4.05-4.17 (m, 1H, cyclopropyl-

CHN), 4.62-4.83 (m, 1H, CHN), 5.13-5.20 (m, 2H, CH2O), 7.10 (d, J = 7.1 Hz, 1H, NH,

major diast.), 7.19 (s br, 1H, NH, minor diast.), 7.32-7.41 (m, 5H, Ph-CH). - 13C NMR

(CDCl3, 62.9 MHz) δ 13.6 (+, CH3CH, 1 diast.), 14.2 (CH3CH, 1 diast.), 25.9 (+, cyclopropyl-

CH, 1 diast.), 26.2 (+, cyclopropyl-CH, 1 diast.), 28.4 (+, (CH3)3C + cyclopropyl-CH, 4C, 1

diast.), 28.7(+, cyclopropyl-CH, 1 diast.), 29.1 (+, cyclopropyl-CH, 1 diast. 1 epimer), 29.9

(+, CH3N, 1 diast.), 36.09 (+, CH3N, 1 diast.), 36.13 (+, cyclopropyl-CHN), 52.4 (+, CH3O),

53.9 (+, CHN), 67.3 (-, CH2O, 1 diast.), 67.4 (-, CH2O, 1 diast.), 80.7 (Cquat, C(CH3)3), 128.4

(+, Ph-CH), 128. 5 (+, PH-CH), 128.57 (+, Ph-CH), 128.62 (+, Ph-CH), 128.68 (+, Ph-CH),

135.0 (Cquat, Ph-CH, 1 diast.), 135.2 (Cquat, Ph-C, 1 diast.), 155.9 (Cquat, N(C=O)O), 169.4
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(Cquat, C=O, 1 diast.), 169.9 (Cquat, C=O, 1 diast.), 169.91 (Cquat , C=O), 1 diast.), 170.1 (Cquat,

C=O, 1 diast.), 172.3 (Cquat, C=O). - MS CI (NH3)  m/z (%) 886 (2MNH4
+, <1), 769 (2MH+-

Boc, 16), 452 (MNH4
+, 78), 435 (MH+, 100), 396 (2MH+-tBu, 13), 335 (MH+-Boc, 40), 267

(12). - IR (CH2Cl2) 3394, 1722, 1687, 1606, 1515 cm-1. - Anal. Calcd for C22H30N2O7

(434.488): C, 60.82; H, 6.96; N, 6.45. Found: C, 60.36; H, 6.91; N, 6.41.

HN

BnO2C CO2Me

O
NHFmoc

CH2Ph

(±)-25d

(1R*, 2R*, 3S*) 3-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-phenyl-

propionylamino]-cyclopropane-1,2-dicarboxylic acid 1-bezyl ester 2-methyl ester

((±)-25d): A solution of (±)-11 (300 mg, 0.86 mmol) in HCl 3 M in ethyl acetate (4 ml) was

stirred at 0 °C for 3 h. The solution was then evaporated, the salt was resuspended in CH2Cl2

(10 ml) and Fmoc-phenylalanine (399 mg, 1.03 mmol, 1.2 eq.), EDC (330 mg, 1.72 mmol,

2 eq), and pyridine (83 µl, 1.03 mmol, 1.2 eq.) were added. The mixture was stirred overnight

at room temperature. The solution was washed with saturated NaHCO3 (50 ml), 1 M KHSO4

(50 ml) and then saturated NaHCO3 (50 ml). The organic phase was dried over MgSO4 and

concentrated. The mixture of the two diastereomers was purified by chromatography

(CH2Cl2/MeOH 50:1) to give a white solid (477 g, 88 %). No epimerization was observed. -

Rf ((±)-25d): 0.30. - mp 164-166 °C. - 1H NMR (CDCl3, 250 MHz): δ 1.97 (dd, J = 5.0,

5.8 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.20 (dd, J = 4.6, 4.6 Hz, 1H, cyclopropyl-CH, 1

diast.), 2.49 (dd, J = 5.2, 8.3 Hz, 1H, cyclopropyl-CH), 3.00-3.09 (m, 2H, CH2Ph), 3.68 (s,

3H, CH3O, 1 diast.), 3.70 (s, 3H, CH3O, 1 diast.), 4.02-4.10 (m, 1H, cyclopropyl-CHN), 4.17-

4.22 (m, 1H, Fmoc-CH), 4.33-4.39 (m, 3H, Fmoc-CH2 + CHN), 4.97-5.12 (m, 2H, Ph-CH2O),

5.27 (s br, 1H, NHFmoc), 6.76 (d, J = 7.3 Hz, 1H, NH, 1 diast.), 7.00 (d, J = 8.3 Hz, NH, 1

diast.), 7.18-7.42 (m, 14H, Ar-CH), 7.50-7.56 (m, 2H, Fmoc-Ar-CH), 7.75 (pseudo d, J =

7.3 Hz, 2H, Fmoc -Ar-CH). - 13C NMR (CDCl3, 62.9 MHz): δ 25.7 (+, cyclopropyl-CH, 1

diast.), 25.8 (+, cyclopropyl-CH, 1 diast.), 28.6 (+, cyclopropyl-CH, 1 diast.), 28.8 (+,

cyclopropyl-CH, 1 diast.), 35.7 (+, cyclopropyl-CHN, 1 diast.), 35.9 (+, cyclopropyl-CHN, 1

diast.), 38.5 (-, CH2Ph, 1 diast.), 38.7 (-, CH2Ph, 1 diast.), 47.1 (+, Fmoc-CH), 52.5 (+,

CH3O), 56.3 (+, CHN), 67.2 (-, CH2O, 1 diast.), 67.3 (-, CH2O, 1 diast.), 67.5 (-, CH2O),

120.0 (+, Fmoc-Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH, 2C), 127.1 (+, Ar-CH, 3C), 127.8 (+,
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Ar-CH, 2C), 128.3 (+, Ar-CH), 128.4 (Ar-CH), 128.6 (+, Ar-CH), 129.3 (+, Ar-CH, 2C),

134.9 (Cquat, Ph-C, 1 diast.), 135.0 (Cquat, Ph-C, 1 diast.), 136.16 (Cquat, Ph-C, 1 diast.), 136.24

(Cquat, Ph-C, 1 diast.), 141.30 (Cquat, Fmoc-Ar-C, 1 diast.), 141.33 (Cquat, Fmoc-Ar-C, 1 diast.),

141.34 (Cquat, Fmoc-Ar-C), 143.68 (Cquat, Fmoc-Ar-C, 1 diast.), 143.74 (Cquat, Fmoc-Ar-C, 1

diast.), 143.8 (Cquat, Fmoc-Ar-C), 155.8 (Cquat, N(CO)O), 169.7 (Cquat, C=O, 1 diast.), 169.77

(Cquat, C=O, 1 diast.), 169.84 (Cquat, C=O, 1 diast.), 170.0 (Cquat, C=O, 1 diast.), 171.43 (Cquat,

C=O, 1 diast.), 171.45 (Cquat, C=O, 1 diast.). - MS  FAB (MeOH/Glycerine) m/z (%) 619

(MH+, 100), 482 (24), 397 (MH+-Fmoc, 40). - IR (KBr) 3212, 3062, 3033, 2953, 1727, 1692,

1662, 1532, 1449, 1309, 1259 cm-1. - Anal. Calcd for C37H34N2O7 · 0.7 H2O (631.30): C,

70.39; H, 5.65; N, 4.43. Found: C, 70.09; H, 5.38; N, 4.17.

HN

BnO2C CO2Me

O

NHFmoc

O OtBu

(±)-25e

(1R*, 2R*, 3S*) 3-[4-tert-Butoxycarbonyl-2S-(9H-fluoren-9-ylmethoxycarbonylamino)-

butyrylamino]-cyclopropane-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester

((±)-25e): A solution of (±)-11 (300 mg, 0.86 mmol) in HCl 3 M in ethyl acetate (4 ml) was

stirred at 0 °C for 3 h. The mixture was evaporated, the salt was resuspended in CH2Cl2

(10 ml) and Fmoc-Asp(OtBu) (534 mg, 1.3 mmol, 1.5 eq.), EDC (336 mg, 1.7 mmol, 2 eq),

and pyridine (83 µl, 1.03 mmol, 1.2 eq.) were added. The mixture was stirred overnight at

room temperature. The solution was washed with saturated NaHCO3 (50 ml), 1 M KHSO4

(50 ml) and saturated NaHCO3 (50 ml). The organic phase was dried over MgSO4 and

concentrated. The mixture of the two diastereomers was purified by chromatography (ethyl

acetate/hexanes 1:3) to afford the product as a white solid (400 g, 72 %). No epimerization

was observed. - Rf ((±)-25e): 0.23. - mp 55-57 °C. - 1H NMR (CDCl3, 250 MHz): δ 1.46 (s,

9H, (CH3)3C, 1 diast.), 1.47 (s, 9H, (CH3)3C, 1 diast.), 2.29-2.33 (m, 1H, cyclopropyl-CH),

2.55-2.65 (m, 2H, cyclopropyl-CH + CH2CO2
tBu), 2.86-2.95 (m, 1H, CH2CO2

tBu), 3.70 (s,

3H, CH3O), 3.98-4.10 (m, 1H, cyclopropyl-CHN), 4.16-4.40 8m, 2H, Fmoc-CH + CHN),

4.45-4.54 (m, 2H, CH2Fmoc), 5.00-5.16 (m, 2H, CH2O), 5.84 (d, J = 8.7 Hz, 1H, NH, 1

diast.), 5.92 (d, J = 7.0 Hz, 1H, NH, 1 diast.), 7.28-7.40 (m, 10H, Ar-CH + NH), 7.52-7.63

(m, 2H, Fmoc-Ar-CH), 7.75-7.77 (m, 2H, Fmoc-Ar-CH). - 13C NMR (CDCl3, 62.9 MHz): δ
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18.2 (+, (CH3)3C, 3C), 26.2 (+, cyclopropyl-CH), 28.6 (+, cyclopropyl-CH, 1 diast.), 28.7 (+,

cyclopropyl-CH, 1 diast.), 36.0 (+, cyclopropyl-CHN, 1 diast.), 36.1 (+, cyclopropyl-CHN, 1

diast.), 36.9 (-, CH2CO2
tBu, 1 diast.), 37.2 (-,CH2CO2

tBu, 1 diast.), 47.2 (+, Fmoc-CH), 51.4

(+, CHN), 52.5 (+, CH3O, 1 diast.), 52.6 (+, CH3O, 1 diast.), 67.4 (-, CH2O), 67.5 (-, CH2O),

81.9 (Cquat, C(CH3)3, 1 diast.), 82.0 (+, C(CH3)3, 1 diast.), 120.0 (+, Fmoc-Ar-CH, 2C), 125.2

(+, Fmoc-Ar-CH, 2C), 127.1 (+, Ar-CH, 2C), 127.8 (+, Ar-CH, 2C), 128.4 (+, Ar-CH),

128.46 (+, Ar-CH), 128.53 (+, Ar-CH), 128.6 (+, Ar-CH, 2C), 135.0 (Cquat, Ph-C, 1 diast.),

135.1 (Cquat, Ph-C, 1 diast.), 141.29 (Cquat, Fmoc-Ar-C, 1 diast.), 141.35 (Cquat, Fmoc-Ar-C,

3C, 1 diast.), 143.6 (Cquat, Fmoc-Ar-C, 1 diast.), 143.7 (Cquat, Fmoc-Ar-C, 1 diast.), 143.9

(Cquat, Fmoc-Ar-C), 156.2 (Cquat, N(CO)O), 160.7 (Cquat, C=O, 1 diast.), 169.8 (Cquat, C=O, 1

diast.), 169.9 (Cquat, C=O), 171.2 (Cquat, C=O, 2C). - MS  FAB (MeOH/Glycerine) m/z (%)

643 (MH+, 80), 587 (100). - IR (KBr) 3348, 3065, 2955, 1727, 1526 cm-1. - Anal. Calcd for

C36H38N2O9 (642.70): C, 67.28; H, 5.96; N, 4.36. Found: C, 67.06; H, 5.96; N, 3.92.

HN

BnO2C CO2Me

O
NHFmoc

(-)-25f

(1S, 2S, 3R) 3-[(9H-fluoren-9-ylmethoxycarbonylamino)-acetylamino]-cyclopropane-1,2-

dicarboxylic acid 1-bezyl ester 2-methyl ester ((-)-25f): A solution of (−)−11111111 (200 mg,

0.57 mmol) in HCl 3 M in ethyl acetate (4 ml) was stirred at 0 °C for 3 h. The solution was

then evaporated, the salt was resuspended in CH2Cl2 (10 ml) and Fmoc-glycine (252 mg,

0.85 mmol, 1.5 eq.), EDC (219 mg, 1.14 mmol, 2 eq), and pyridine (91 µl, 1.14 mmol, 2 eq.)

were added. The mixture was stirred overnight at room temperature. The solution was washed

with saturated NaHCO3 (50 ml), 1 M KHSO4 (50 ml) and saturated NaHCO3 (50 ml). The

organic phase was dried over MgSO4 and concentrated. The product was purified by

chromatography (CH2Cl2/MeOH 40:1). Yield: 284 g (95 %). No epimerization was observed.

- Rf ((-)-25f): 0.31. - mp 57-58 °C. - [ ]21
Dα  +22.8 (c 0.5, MeOH). - 1H NMR (CDCl3,

250 MHz): δ 2.31 (dd, J = 4.9, 4.9 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.2, 8.3 Hz, 1H,

cyclopropyl-CH), 3.69 (s, 3H, CH3O), 3.81-3.83 (m, 2H, CH2N), 4.10 (ddd, J = 4.7, 8.1,

8.1 Hz, 1H, cyclopropyl-CHN), 4.21-4.27 (m, 1H, Fmoc-CH), 4.41-4.43 (m, 2H, Fmoc-CH2),

5.06-5.15 (m, 2H, CH2O), 5.35 (s br, 1H, NHFmoc), 7.09 (d, J = 7.9 Hz, 1H, NH), 7.25-7.42

(m, 9H, Ar-CH), 7.58-7.61 (m, 2H, Fmoc-Ar-CH), 7.74-7.77 (m, 2H, Fmoc-Ar-CH). -
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13C NMR (CDCl3, 62.9 MHz): δ 26.0 (+, cyclopropyl-CH), 28.6 (+, cyclopropyl-CH), 35.8

(+, cyclopropyl-CHN), 44.6 (-, CH2N), 47.1 (+, Fmoc-CH), 52.5 (+, CH3O), 67.4 (-, CH2O),

67.5 (-, CH2O), 120.0 (+, Fmoc-Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH), 127.1 (+, Ar-CH, 2C),

127.8 (+, Ar-CH, 2C), 128.4 (+, Ar-CH, 2C), 128.6 (+, Ar-CH, 2C), 128.7 (+, Ar-CH, 2C),

135.0 (Cquat, Ph-C), 141.3 (Cquat, Fmoc-Ar-C, 2C), 143.75 (Cquat, Fmoc-Ar-C), 143.78 (Cquat,

Fmoc-Ar-C), 156.5 (Cquat, N(CO)O), 169.5 (Cquat, C=O), 169.7 (Cquat, C=O), 170.0 (Cquat,

CO). - MS  FAB (MeOH/Glycerine) m/z (%) 1057 (2MH+, 8), 529 (MH+, 100), 307 (MH+-

NHFmoc, 31). - IR (KBr) 3245, 3056, 2803, 1708, 1638, 1505, 1427, 1303 cm-1. - Anal.

Calcd for C30H28N2O7 ⋅ 0.3 H2O (533.965): C, 67.48; H, 5.39; N, 5.25. Found: C, 67.57; H,

5.49; N, 4.88.

HN

BnO2C CO2Me

O
NHFmoc

(+)-25f

(1R, 2R, 3S) 3-[(9H-Fluoren-9-ylmethoxycarbonylamino)-acetylamino]-cyclopropane-

1,2-dicarboxylic acid 1-bezyl ester 2-methyl ester ((+)-25f): A solution of (+)−11111111 (200 mg,

0.57 mmol) in HCl 3 M in ethyl acetate (4 ml) was stirred at 0 °C for 3 h. The solution was

then evaporated, the salt was resuspended in CH2Cl2 (10 ml) and Fmoc-glycine (252 mg,

0.85 mmol, 1.5 eq.), EDC (219 mg, 1.14 mmol, 2 eq), and pyridine (91 µl, 1.14 mmol, 2 eq.)

were added. The mixture was stirred overnight at room temperature. The solution was washed

with saturated NaHCO3 (50 ml), 1 M KHSO4 (50 ml) and saturated NaHCO3 (50 ml). The

organic phase was dried over MgSO4 and concentrated. The product was purified by

chromatography (CH2Cl2/MeOH 40:1). Yield: 231 g (77 %). No epimerization was observed.

- Rf ((+)-25f): 0.31. - mp 56-58 °C. - [ ]21
Dα  -21.1 (c 0.5, MeOH). - 1H NMR (CDCl3,

250 MHz): δ 2.31 (dd, J = 4.8, 4.8 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.3, 8.3 Hz, 1H,

cyclopropyl-CH), 3.70 (s, 3H, CH3O), 3.81-3.83 (m, 2H, CH2N), 4.10 (ddd, J = 4.7, 8.1,

8.1 Hz, 1H, cyclopropyl-CHN), 4.21-4.27 (m, 1H, Fmoc-CH), 4.41-4.44 (m, 2H, Fmoc-CH2),

5.06-5.14 (m, 2H, CH2O), 5.35 (s br, 1H, NHFmoc), 7.09 (d, J = 7.9 Hz, 1H, NH), 7.25-7.42

(m, 9H, Ar-CH), 7.58-7.63 (m, 2H, Ar-CH), 7.74-7.78 (m, 2H, Ar-CH). - 13C NMR (CDCl3,

62.9 MHz): δ 26.0 (+, cyclopropyl-CH), 28.6 (+, cyclopropyl-CH), 35.8 (+, cyclopropyl-

CHN), 44.5 (-, CH2N), 47.1 (+, Fmoc-CH), 52.5 (+, CH3O), 67.4 (-, CH2O), 67.5 (-, CH2O),

120.0 (+,Fmoc-Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH), 127.2 (+, Ar-CH, 2C), 127.8 (+, Ar-CH,
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2C), 128.4 (+, Ar-CH, 2C), 128.6 (+, Ar-CH, 2C), 128.7 (+, Ar-CH, 2C), 135.0 (Cquat, Ph-C),

141.3 (Cquat, Fmoc-Ar-C, 2C), 143.75 (Cquat, Fmoc-Ar-C), 143.78 (Cquat, Fmoc-Ar-C), 156.5

(Cquat, N(CO)O), 169.5 (Cquat, C=O), 169.7 (Cquat, C=O), 170.0 (Cquat, CO). - MS  FAB

(MeOH/Glycerine) m/z (%) 1057 (2MH+, 8), 529 (MH+, 100), 307 (MH+-NHFmoc, 30). - IR

(KBr) 3247, 3054, 2801, 1710, 1635, 1507, 1427, 1303 cm-1. - Anal. Calcd for C30H28N2O7 ⋅

0.6 H2O (539.369): C, 66.81; H, 5.46; N, 5.19. Found: C, 66.74; H, 5.17; N, 5.02.

HN

BnO2C CO2Me

O
NHBoc

(±)-25f

(1R*, 2R*, 3S*) 3-[(tert-Butoxycarbonylamino]-acetylamino)-cyclopropane-1,2-

dicarboxylic acid 1-bezyl ester 2-methyl ester ((±)-25f):68 Boc-glycine (87 mg, 0.5 mmol,

3 eq.) was preactivated with EDC (95 mg, 0.5 mmol, 3 eq.) and HOBt (67 mg, 0.5 mmol,

3 eq.) in dry CH2Cl2 (4 ml) and under nitrogen atmosphere 1 h at 0 °C and 1 h at room

temperature. This solution was added under nitrogen atmosphere to Pd[PPh3]4 (19 mg,

0.016 mmol, 0.1 eq. for DABCO protocol, 38 mg, 0.032 mmol, 0.2 eq. for pyridine protocol),

then (±)-16a (57 mg, 0.17 mmol) and finally DABCO (94 mg, 0.85 mmol, 5 eq.) or pyridine

(137 µl, 1.7 mmol, 10 eq.) were added. The solution was stirred 10 min. (DABCO) or 2 h

(pyridine) at room temperature, then CH2Cl2 (10 ml) was added and the organic phase was

washed with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and of saturated NaHCO3

(10 ml) . The organic phase was dried over MgSO4 and concentrated. The mixture of the two

diastereomers was purified by chromatography (ethyl acetate/hexanes 1:1) to yield the

product as a white solid (DABCO: 63 mg, 92 %, 4 % epimerisation; pyridine: 64 mg, 93 %,

15 % epimerisation). Rf ((±)-25f): 0.36. - 1H NMR (CDCl3, 250 MHz) δ 1.44 (s, 9H,

(CH3)3C), 2.30 (dd, J = 5.2; 4.7 Hz, 1H, cyclopropyl-CH), 2.55 (dd, J = 8.3; 5.2 Hz, 1H,

cyclopropyl-CH), 3.67 (s, 3H, CH3O), 3.74 (m, 2H, CH2N), 4.08 (ddd, J = 8.1; 8.1; 4.7 Hz,

1H, cyclopropyl-CH), 5.08 (d, J = 12.1 Hz, 1H, CH2O), 5.17 (d, J = 12.1 Hz, CH2O), 5.20 (t,

J = 5.8 Hz, 1H, NHBoc), 7.24 (d, J = 8.0 Hz, 1H, NH), 7.33-7.35 (m, 5H, Ph-CH).
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HN

BnO2C CO2Me

O
NHBoc

CH2Ph

(±)-25h

(1R*, 2R*, 3S*) 3-(2S-tert-Butoxycarbonylamino-phenyl-propionylamino)-

cyclopropane-1,2-dicarboxylic acid 1-bezyl ester 2-methyl ester ((±)-25h): Boc-

phenylalanine (444 mg, 1.67 mmol, 3.1 eq.) was preactivated with EDC (305 mg, 1.59 mmol,

3 eq.) and HOBt (215 mg, 1.59 mmol, 3 eq.) in dry CH2Cl2 (5 ml) and under nitrogen

atmosphere 1 h at 0 °C and 1 h at room temperature. This solution was added under nitrogen

atmosphere to Pd[PPh3]4 (61 mg, 0.053 mmol, 0.1 eq.), then (±)-16a (177 mg, 0.53 mmol)

and finally DABCO (314 mg, 2.8 mmol, 5.3 eq.) were added. The solution was stirred 10

min. at room temperature, then CH2Cl2 (10 ml) was added and the organic phase was washed

with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and of saturated NaHCO3 (10 ml). The

organic phase was dried over MgSO4 and concentrated. The mixture of the two diastereomers

was purified by chromatography (ethyl acetate/hexanes 1: 1) to yield the product as a white

solid (257 mg, 96 %) with 4-5 % epimerization. - Rf ((±)-25h): 0.33. - mp 138-140 °C. -
1H NMR (CDCl3, 250 MHz) δ 1.41 (s, 9H, (CH3)3C, 1 diast.), 1.42 (s, 9H, (CH3)3C, 1 diast.),

1.95-1.97 (m, 1H, cyclopropyl-CH, 1 diast.), 2.18 (dd, J = 5.0, 5.0 Hz, 1 H, cyclopropyl-CH,

1 diast.), 2.47-2.52 (m, 1H, cyclopropyl-CH), 2.99-3.05 (m, 2H, CH2Ph), 3.69 (s, 3H, CH3O,

1 diast.), 3.70 (s, 3H, CH3O, 1 diast.), 4.03 (ddd, J = 4.5, 8.1,8.1 Hz, 1H, cyclopropyl-CHN, 1

diast.), 4.11 (ddd, J = 4.7, 8.3, 8.3 Hz, 1H, cyclopropyl-CHN, 1 diast.), 4.28-4.39 (m, 1H,

CHN), 4.93 (s br, 1H, NH), 5.01-5.16 (m, 2H, CH2O), 6.74 (d, J = 7.6 Hz, 1H, NH, 1 diast.),

7.04 (d, J = 8.3 Hz, 1H, NH, 1 diast.), 7.16-7.37 (m, 10H, Ph-CH). - 13C NMR (CDCl3,

62.9 MHz) δ 25.66 (+, cyclopropyl-CH, 1 diast.), 25.74 (+, cyclopropyl-CH, 1 diast.), 28.3 (+,

(CH3)3C, 3C), 28.6 (+, cyclopropyl-CH, 1 diast.), 28.9 (+, cyclopropyl-CH, 1 diast.), 35.7 (+,

cyclopropyl-CHN, 1 diast.), 35.9 (+, cyclopropyl-CHN, 1 diast.), 38.4 (-, CH2Ph, 1 diast.),

38.7 (-, CH2Ph, 1 diast.), 52.5 (+, CH3O), 55.9 (+, CHN, 1 diast.), 56.1 (+, CHN, 1 diast.),

67.4 (-, CH2O, 1 diast.), 67.5 (-, CH2O, 1 diast.), 80.3 (Cquat, (CH3)3C), 126.98 (+, Ph-CH, 1

diast.), 127.03 (+, Ph-CH, 1 diast.), 128.4 (+, Ph-CH, 2C, 1 diast.), 128.5 (+, Ph-CH, 2C, 1

diast.), 128.64 (+, Ph-CH, 1 diast.), 128.67 (+, Ph-CH, 1 diast.), 128.69 (+, Ph-CH, 2C, 1

diast.), 128.71 (+, Ph-CH, 2C, 1 diast.), 128.78 (+, Ph-CH, 2C, 1 diast.), 128.8 (+, Ph-CH, 2C,

1 diast.), 129.2 (+, Ph-CH, 2C, 1 diast.), 129.3 (+, Ph-CH, 2C, 1 diast.), 134.9 (Cquat, Ph-C, 1

diast.), 135.0 (Cquat, Ph-C, 1 diast.), 136.4 (Cquat, Ph-C, 1 diast.), 136.5 (Cquat, Ph-C, 1 diast.),
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155.2 (Cquat, N(CO)O), 169.7 (Cquat, C=O, 1 diast.), 169.78 (Cquat, C=O, 1 diast.), 169.82

(Cquat, C=O, 1 diast.), 170.0 (Cquat, C=O, 1 diast.), 171.8 (Cquat, C=O, 1 diast.), 171.9 (Cquat,

C=O, 1 diast.). - MS  FAB (NBA/CH2Cl2) m/z (%) 993 (2MH+, 16), 497 (MH+, 91), 441 (93),

397 (MH+-Boc, 100). - IR (KBr) 3350, 3325, 2955, 1726, 1691, 1664, 1455, 1309, 1170 cm-1.

- Anal. Calcd for C27H32N2O7 (496.563): C, 65.31; H, 6.49; N, 5.64. Found: C, 65.15; H, 6.53;

N, 5.55.

HN

BnO2C CO2Me

O
NHBoc

(±)-26

(1R*, 2R*, 3R*) 3-(2S-tert-Butoxycarbonylamino-propionylamino)-cyclopropane-1,2-

dicarboxylic acid 1-bezyl ester 2-methyl ester ((±)-26): A solution of (±)−12 (2.00 g,

5.73 mmol) in HCl 3 M in ethyl acetate (20 ml) was stirred at 0 °C for 3 h. The solvent was

evaporated and a solution of Boc-alanine (1.62 mg, 8.59 mmol, 1.5 eq.), EDC (1.65 g,

8.59 mmol, 1.5 eq) and HOBt (1.16 g, 8.59 mmol, 1.5 eq.) in CH2Cl2 (250 ml) (previously

stirred 1 h at 0 °C and 1 h at room temperature) was added. Triethylamine (797 µl,

5.73 mmol, 1 eq.) was then added dropwise at 0°C. The mixture was stirred at room

temperature overnight. The solution was washed with saturated NaHCO3 (200 ml), 1 M

KHSO4 (200ml) and then saturated NaHCO3 (200 ml). The organic phase was dried over

MgSO4 and concentrated. The mixture of the two diastereomers was purified by

chromatography (ethyl acetate/hexanes 1:2). Yield: 2.12 g (88 %). Any attempt to separate the

two diastereomers by recrystallization failed. - Rf ((±)-26): 0.10. - mp 75-77 °C. - 1H NMR

(CDCl3, 250 MHz) δ 1.33 (d, J = 7.1 Hz, 3H, CH3CH), 1.42 (s, 9H, (CH3)3C, 1 diast.), 1.43

(s, 9H, (CH3)3C, 1 diast.), 2.31 (dd, J = 4.9, 4.9 Hz, 1H, cyclopropyl-CH), 2.55 (dd, J = 5.2,

8.3 Hz, 1H, cyclopropyl-CH), 3.71 (s, 3H, CH3O, 1 diast.), 3.72 (s, 3H, CH3O, 1 diast.), 4.03-

4.17 (m, 2H, cyclopropyl-CHN + Ala-CHN), 4.98 (d, J = 7.33 Hz, 1H, NH), 5.07-5.18 (m,

2H, CH2O), 7.13 (d, J = 7.6 Hz, 1H, NH, 1 diast.), 7.23 (d, J = 8.2 Hz, 1H, 1diast.), 7.29-7.36

(m, 5H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 18.2 (+, CH3CH, 1 diast.), 18.3 (+,

CH3CH, 1 diast.), 26.10 (+, cyclopropyl-CH, 1 diast.), 26.14 (+, cyclopropyl-CH, 1 diast.),

28.3 (+, (CH3)3C, 3C), 28.77 (+, cyclopropyl-CH, 1 diast.), 28.83 (+, cyclopropyl-CH, 1

diast.), 36.0 (+, cyclopropyl-CHN), 50.4 (+, CHN), 52.4 (+, CH3O), 67.3 (-, CH2O), 80.2

(Cquat, C(CH3)3), 128.4 (+, Ph-CH, 2C), 128.5 (+, Ph-CH, 2C), 128.6 (+, Ph-CH), 135.2 (Cquat,
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Ph-C), 155.3 (Cquat, C=O), 169.3 (Cquat, C=O), 170.3 (Cquat, C=O), 173.3 (Cquat, C=O, 1diast.),

173.4 (Cquat, C=O, 1 diast.). - MS  CI (NH3) m/z (%) 858 (2MNH4
+, <1), 841 (2MH+, <1), 741

(2MH+-Boc, 11), 438 (MNH4
+, 100), 421 (MH+, 26), 382 (23), 321 (MH+-Boc, 9). - IR (KBr)

3345, 2980, 2929, 1722, 1688, 1666, 1523, 1451 cm-1. - Anal. Calcd for C21H28N2O7

(420.461): C, 59.99; H, 6.71; N, 6.66. Found: C, 60.05; H, 6.76; N, 6.43.

HN

BnO2C CO2Me

O H
N

O
NHBoc

CH2Ph

(+)-27a

(1R, 2R, 3S) 3-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-

propionylamino] cyclopropane-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester

((+)-27a): Recrystallized (+)-25a (310 mg, 0.74 mmol) was stirred in HCl 3 M in ethyl

acetate (11 ml) at 0 °C for 3 h. The solvent was then evaporated and a solution of Boc-

phenylalanine (303 mg, 1.14 mmol, 1.5 eq.), EDC (219 mg, 1.14 mmol, 1.5 eq) and HOBt

(153 mg, 1.14 mmol, 1.5 eq.) in CH2Cl2 (12 ml) (previously stirred 1 h at 0 °C and 1 h at

room temperature) was added. Finally triethylamine (103 µl, 0.74 mmol, 1 eq.) was added

dropwise. The mixture was stirred at room temperature overnight. The solution was washed

with saturated NaHCO3 (15 ml), 1 M KHSO4 (15 ml) and then saturated NaHCO3 (15 ml).

The organic phase was dried over MgSO4 and concentrated. The crude was purified by

chromatography (ethyl acetate/hexanes 1:1) to afford a white solid (390 mg, 93 %). - Rf

((+)-27a): 0.16. - mp 73-75 °C. - [ ]21
Dα  -24.9 (c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz)

δ 1.24 (d, J = 7.1 Hz, 3H, CH3CH), 1.40 (s, 9H, (CH3)3C), 2.37 (dd, J = 5.0, 5.1 Hz, 1H,

cyclopropyl-CH), 2.56 (dd, J = 5.2, 8.3 Hz, 1H, cyclopropyl-CH), 3.05-3.16 (m, 2H, CH2Ph),

3.71 (s, 3H, CH3O), 4.00-4.06 (m, 1H, cyclopropyl-CHN), 4.28-4.40 (m, 2H, 2 CHN), 4.95 (s

br, 1H, NHBoc), 5.11-5.22 (m, 2H, CH2O), 6.40 (d, J = 7.2 Hz, 1H, NH), 7.05 (d, J = 7.5 Hz,

1H, NH), 7.20-7.36 (m, 10H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 18.1 (+, cyclopropyl-

CH), 26.8(+, cyclopropyl-CH), 28.1 (+, (CH3)3C, 3C), 36.01 (+, cyclopropyl-CHN), 38.3 (-,

CH2Ph), 48.9 (+, CHN), 52.34 (CH3O), 55.9 (+, CHN), 67.3 (-, CH2O), 80.2 (Cquat, C(CH3)3),

126.9 (+, Ph-CH, 2C), 128.3 (+, Ph-CH, 2C), 128.5 (+, Ph-CH, 2C), 128.6 (+, Ph-CH, 2C),

129.3 (+, Ph-CH, 2C), 135.2 (Cquat, Ph-C), 136.6 (Cquat, Ph-C), 155.5 (Cquat, C=O Boc), 169.2

(Cquat, C=O), 169.9 (Cquat, C=O), 171.4 (Cquat, C=O), 172.5 (Cquat, C=O). - MS  FAB

(NBA/CH2Cl2) m/z (%) 1136 (2MH+, 17, 568 (MH+, 100), 512 (MH+-tBu, 42), 468 (MH+-
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Boc, 30), 307 (34), 263 (32), 154 (100). - IR (KBr) 3296, 3065, 2979, 1729, 1693, 1648,

1533, 1454, 1388 cm-1. - Anal. Calcd for C30H37N3O8 (567.64): C, 63.48; H, 6.57; N, 7.40.

Found: C, 63.21; H, 6.62; N, 7.64.

HN

BnO2C CO2Me

O H
N

O
NHBoc

CH2Ph

(-)-27a

(1S, 2S, 3R) 3-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-

propionylamino] cyclopropane-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester

((-)-27a): A recrystallisation fraction of (±)-25a enriched in the (-)-25a diastereomer (418 mg,

0.99 mmol) was stirred in HCl 3 M in ethyl acetate (20 ml) at 0 °C for 3 h. The solvent was

then evaporated and a solution of Boc-phenylalanine (398 mg, 1.5 mmol, 1.5 eq.), EDC

(288 mg, 1.5 mmol, 1.5 eq) and HOBt (270 mg, 2 mmol, 2 eq.) in CH2Cl2 (12 ml) (previously

stirred 1 h at 0 °C and 1 h at room temperature) were added. Finally triethylamine (140 µl,

1.0 mmol, 1 eq.) was added dropwise. The mixture was stirred at room temperature overnight.

The solution was washed with saturated NaHCO3 (15 ml), 1 M KHSO4 (15 ml) and then

saturated NaHCO3 (15 ml). The organic phase was dried over MgSO4 and concentrated. The

crude was purified by chromatography (ethyl acetate/hexanes 1:1) to give a white solid

(510 mg, 91 %). Diastereomerically pure (-)-27a was obtained by recrystallization by CH2Cl2/

hexanes. - Rf ((-)-27a): 0.16. - mp 180-183 °C. - [ ]21
Dα  -4.2 (c 1, CHCl3). - 1H NMR (CDCl3,

250 MHz) δ 1.27 (d, J = 7.1 Hz, 3H, CH3CH), 1.41 (s, 9H, (CH3)3C), 2.30 (dd, J = 5.0,

4.9 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.2, 8.2 Hz, 1H, cyclopropyl-CH), 3.05-3.15 (m,

2H, CH2Ph), 3.71 (s, 3H, CH3O), 3.88-3.96 (m, 1H, cyclopropyl-CHN), 4.32-4.43 (m, 2H,

CHN), 4.86 (s br, 1H, NH Boc), 5.12 (d, J = 12.2 Hz, 1H, CH2O), 5.20 (d, J = 12.2 Hz, 1H,

CH2O), 6.38 (d, J = 7.4 Hz, 1H, NH), 6.95 (d, J = 6.9 Hz, 1H, NH), 7.18-7.27 (m, 5H, Ph-

CH), 7.30-7.39 (m, 5H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 17.7 (+, CH3CH), 26.5 (+,

cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 28.5 (+, cyclopropyl-CH), 35.93 (+, cyclopropyl-

CHN), 38.0 (-, CH2Ph), 48.9 (+, CHN), 52.4 (+, CH3O), 56.0 (+, CHN), 67.4 (-, CH2O), 80.5

(Cquat, (CH3)3C), 127.0 (+, Ph-CH, 2C), 128.3 (+, Ph-CH, 2C), 128.5 (+, Ph-CH, 2C), 128.6

(+, Ph-CH, 2C), 129.3 (+, Ph-CH, 2C), 135.2 (Cquat, Ph-C), 136.5 (Cquat, Ph-C), 155.6 (Cquat,

C= Boc), 169.5 (Cquat, C=O), 169.8 (Cquat, C=O), 171.2 (Cquat, C=O), 172.5 (Cquat, C=O). –

MS  CI (NH3) m/z (%) 1152 (2MNH4
+, 9), 1135 (2MH+, 4), 1035 (2MH+-Boc, 2), 585
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(MNH4
+, 100), 568 (MH+, 22). - IR (KBr) 3291, 2980, 1728, 1675, 1638, 1534 cm-1. - Anal.

Calcd for C30H37N3O8 (567.64): C, 63.48; H, 6.57; N, 7.40. Found: C, 63.25; H, 6.56; N, 7.31.

HN

BnO2C CO2Me

O H
N

O
NHBoc

(+)-27b

(1R, 2R, 3S) 3-[2S-(tert-Butoxycarbonylamino-acetylamino)-propionylamino]

cyclopropane-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester ((+)-27b): (+)-25a

(600 mg, 1.43 mmol) was stirred in HCl 3 M in ethyl acetate (15 ml) at 0 °C for 3 h. The

solvent was then evaporated and a solution of Boc-glycine (375 mg, 2.14 mmol, 1.5 eq.),

EDC (411 mg, 2.14 mmol, 1.5 eq) and HOBt (289 mg, 2.14 mmol, 1.5 eq.) in CH2Cl2 (20 ml)

(previously stirred 1 h at 0 °C and 1 h at room temperature) was added. Finally triethylamine

(200 µl, 1.43 mmol, 1 eq.) was added dropwise. The mixture was stirred at room temperature

overnight. The solution was washed with saturated NaHCO3 (20 ml), 1 M KHSO4 (20 ml) and

saturated NaHCO3 (20 ml). The organic phase was dried over MgSO4 and concentrated. The

crude product was purified by chromatography (ethyl acetate/hexanes 2:1) to afford a white

solid (645 mg, 94 %). - Rf ((+)-27b): 0.30. - mp 44-46 °C. - [ ]21
Dα  -23.2 (c 1, CHCl3). -

1H NMR (CDCl3, 250 MHz) δ 1.31 (d, J = 7.0 Hz, 3H, CH3CH), 1.45 (s, 9H, (CH3)3C), 2.36

(dd, J = 5.0, 5.0 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.2, 8.1 Hz, 1H, cyclopropyl-CH),

3.69 (s, 3H, CH3O), 3.80-3.85 (m, 2H, CH2N), 4.01 (ddd, J = 4.8, 7.9, 7.9 Hz, 1H,

cyclopropyl-CHN), 4.43-4.50 (m, 1H, CHN), 5.14-5.21 (m, 2H, CH2O), 5.32 (s br, 1H, NH),

6.81 (d, J = 6.4 Hz, 1H, NH), 7.16 (d, J = 5.9 Hz, 1H, NH), 7.30-7.39 (m, 5H, Ph-CH). -
13C NMR (CDCl3, 62.9 MHz) δ 18.0 (+, CH3CH), 26.5 (+, cyclopropyl-CH), 28.3

(+,(CH3)3C, 3C), 28.4 (+, cyclopropyl-CH), 35.9 (+, cyclopropyl-CHN), 44.4 (-, CH2N), 48.9

(+, CHN), 52.5 (+, CH3O), 67.5 (-, CH2O), 80.4 (Cquat, (CH3)3C), 128.4 (+, Ph-CH, 2C), 128.6

(+, Ph-CH), 128.7 (+, Ph-CH, 2C), 135.1 (Cquat, Ph-C), 156.1 (Cquat, N(CO)O), 169.5 (Cquat,

C=O), 169.7 (Cquat, C=O), 169.8 (Cquat, C=O), 172.6 (Cquat, C=O). - MS  CI (NH3) m/z (%)

495 (MNH4
+, 100), 478 (MH+, 23), 439 (20), 252 (36), 189 (29). - IR (KBr) 3303, 2980,

1726, 1661, 1524, 1173 cm-1. - Anal. Calcd for C23H31N3O8(477.513): C, 57.85; H, 6.54; N,

8.80. Found: C, 57.24; H, 6.74; N, 8.39. - HR MS  calcd for C23H31N3O8 + H 478.21894,

found 478.21845.
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HN

BnO2C CO2Me

O H
N

O
NHBoc

(-)-27b

(1S, 2S, 3R) 3-[2S-(tert-Butoxycarbonylamino-acetylamino)-propionylamino]

cyclopropane-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester ((-)-27b): (-)-25a

(920 mg, 2.19 mmol) was stirred in HCl 3 M in ethyl acetate (14 ml) at 0 °C for 3 h. The

solvent was evaporated and a solution of Boc-glycine (574 mg, 3.28 mmol, 1.5 eq.), EDC

(631 mg, 3.28 mmol, 1.5 eq.) and HOBt (443 mg, 3.28 mmol, 1.5 eq.) in CH2Cl2 (50 ml)

(previously stirred 1 h at 0 °C and 1 h at room temperature) was added. Triethylamine

(300 µl, 2.19 mmol, 1 eq.) was finally added dropwise. The mixture was stirred at room

temperature overnight. The solution was washed with saturated NaHCO3 (50 ml), 1 M

KHSO4 (50 ml) and then saturated NaHCO3 (50 ml). The organic phase was dried over

MgSO4 and concentrated. The crude product was purified by chromatography (CHCl3/MeOH

80:1) to afford a white solid (966 mg, 92 %). - Rf ((-)-27b): 0.05. - mp 55-57°C. - [ ]21
Dα  -17.9

(c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz) δ 1.33 (d, J = 7.2 Hz, 3H, CH3CH), 1.45 (s, 9H,

(CH3)3C), 2.37 (dd, J = 4.9, 4.9 Hz, 1H, cyclopropyl-CH), 2.56 (dd, J = 5.4, 8.1 Hz, 1H,

cyclopropyl-CH), 3.70 (s, 3H, CH3O), 3.78-3.84(m, 2H, CH2N), 3.88-3.96 (ddd, J = 4.8, 7.9,

7.9 Hz, 1H, cyclopropyl-CHN), 4.48 (dq, J = 3.6, 3.6 Hz, 1H, CHN), 5.12-5.21 (m, 2H,

CH2O), 5.37 (s br, 1H, NH), 6.68 (d, J = 7.4 Hz, 1H, NH), 7.28 (d, J = 4.9 Hz, 1H, NH), 7.30-

7.37 (m, 5H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 17.6 (+, CH3CH), 26.7 (+,

cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 28.4 (+, cyclopropyl-CH), 35.9 (+, cyclopropyl-

CHN), 48.7 (-, CH2N), 48.9 (+, CHN), 52.5 (+, CH3O), 67.4 (-, CH2O), 80.5 (Cquat, (CH3)3C),

128.3 (+, Ph-CH, 2C), 128.5 (+, Ph-CH), 128.7 (+, Ph-CH, 2C), 135.2 (Cquat, Ph-C), 156.2

(Cquat, N(CO)O), 169.6 (Cquat, C=O), 169.7 (Cquat, C=O), 169.9 (Cquat, C=O), 172.9 (Cquat,

C=O). - MS  CI (NH3) m/z (%) 495 (MNH4
+, 100), 478 (MH+, 27), 439 (18), 263 (19), 252

(95), 189 (88). - IR (KBr) 3319, 3268, 3063, 2979, 1727, 1675, 1649, 1539, 1173 cm-1. -

Anal. Calcd for C23H31N3O8 (477.513): C, 57.85; H, 6.54; N, 8.80. Found: C, 57.27; H, 6.60;

N, 8.57. HR MS  calcd for C23H31N3O8 + H 478.21894, found 478.21834.
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HN

BnO2C CO2Me

O H
N

O
NHBoc

CH2Ph

(±)-28

(1S*, 2S*, 3S*) 3-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-

propionylamino] cyclopropane-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester

((±)-28): (±)-26 (1.130 g, 2.69 mmol) was stirred in HCl 3 M in ethyl acetate (11 ml) at 0 °C

for 3 h. The solvent was evaporated and a solution of Boc-phenylalanine (1.015 g, 3.83 mmol,

1.4 eq.), EDC (723 mg, 3.77 mmol, 1.4 eq) and HOBt (508 mg, 3.77 mmol, 1.4 eq.) in

CH2Cl2 (30 ml) (previously stirred 1 h at 0 °C and 1 h at room temperature) was added.

Triethylamine (374 µl, 2.69 mmol, 1 eq.) was finally added dropwise. The mixture was stirred

at room temperature overnight. The solution was washed with saturated NaHCO3 (50 ml),

1 M KHSO4 (50 ml) and then saturated NaHCO3 (50 ml). The organic phase was dried over

MgSO4 and concentrated. The crude product was purified by chromatography (ethyl

acetate/hexanes 1:1) to give a white solid (1.44 g, 94 %). - Rf ((±)-28): 0.16. - mp 71-73 °C. -
1H NMR (CDCl3, 250 MHz) δ 1.25 (d, J = 7.0 Hz, 3H, CH3CH, 1 diast.), 1.29 (d, J =  7.0 Hz,

3H, CH3CH, 1 diast.), 1.37 (s, 9H, (CH3)3C, 1 diast.), 1.39 (s, 9H, (CH3)3C, 1 diast.), 2.33 (dd,

J = 5.1, 5.1 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.40 (dd, J = 5.0, 5.0 Hz, 1H, cyclopropyl-CH,

1 diast.), 2.53 (dd, J = 5.5, 8.3 Hz, 1H, cyclopropyl-CH), 3.03-3.12 (m, 2H, CH2Ph), 3.72 (s,

3H, CH3O, 1 diast.), 3.73 (s, 3H, CH3O, 1 diast.), 3.88-3.97 (m, 1H, cyclopropyl-CHN , 1

diast.), 3.99-4.06 (m, 1H, cyclopropyl-CH, 1 diast.), 4.32-4.45 (m, 2H, CHN), 4.91 (d, J =

7.6 Hz, 1H, NHBoc, 1 diast.), 4.95 (d, J = 8.4 Hz, 1H, NHBoc, 1 diast.), 5.14 (s, 2H, CH2O),

6.44 (d, J = 7.3 Hz, 1H, NH, 1 diast.), 6.46 (d, J = 7.3 Hz, 1H, NH, 1 diast.), 6.96 (d, J =

6.8 Hz, 1H, NH, 1 diast.), 7.11 (d, J = 7.6 Hz, 1H, NH, 1 diast.). 7.17-7.32 (m, 5H, Ph-CH),

7.32-7.40 (m, 5H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 17.7 (+, CH3CH, 1 diast.), 17.8

(+, CH3CH, 1 diast.), 26.5 (+, cyclopropyl-CH), 28.2 (+, (CH3)3C, 3C), 28.3 (+, cyclopropyl-

CH, 1 diast.), 28.5 (+, cyclopropyl-CH, 1 diast.), 35.8 (+, cyclopropyl-CHN, 1 diast.), 35.9 (+,

cyclopropyl-CHN, 1 diast.), 38.0 (-, CH2Ph), 48.9 (+, CHN), 52.3 (+, CH3O), 55.9 (+, CHN),

67.3 (-, CH2O), 80.5 (Cquat., C(CH3)3, 1 diast.), 80.6 (Cquat., C(CH3)3, 1 diast), 126.98 (+, Ph-

CH, 1 diast.), 127.0 (+, Ph-CH, 1 diast.), 128.39 (+, Ph-CH, 1 diast.), 128.42 (+, Ph-CH, 1

diast.), 128.48 (+, Ph-CH, 2C), 128.60 (+, Ph-CH, 2C), 128.63 (+, Ph-CH), 128.64 (+, Ph-

CH), 129.23 (+, Ph-CH); 129.24 (+, Ph-CH), 135.2 (Cquat., Ph-C), 136.5 (Cquat., Ph-C), 155.5

(Cquat., N(C=O)O), 169.3 (Cquat., C=O), 169.9 (Cquat., C=O), 171.2 (Cquat., C=O), 172.3 (Cquat.,
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C=O, 1 diast.), 172.5 (Cquat., C=O, 1 diast.). - MS  FAB (NBA/CH2Cl2) m/z (%) 1135 (2MH+,

7), 568 (MH+, 100), 512 (MH+-tBu, 42), 468 (MH+-Boc, 37 ), 307 (66), 263 (38). - IR (KBr)

3288, 3065, 2979, 1733, 1696, 1649, 1520, 1455, 1367 cm-1. - Anal. Calcd for C30H37N3O8

(567.64): C, 63.48; H, 6.57; N, 7.40. Found: C, 63.37; H, 6.60; N, 7.33.

2.2.2 Deprotection of the C-terminus

NH

HO2C CO2Me

O

(±)-29

(1R*, 2R*, 3R*) 3-(2S-tert-Butoxycarbonylamino-propionyl)-cyclopropane-1,2-

dicarboxylic acid mono methyl ester ((±)-29): (±)-24 (438 mg, 1.5 mmol) was dissolved

under nitrogen atmosphere in MeOH (10 ml), then 1,4-cyclohexadiene (3.5 ml, 40 % in

pentane) and of Pd/C 10 % (85 mg) were added. The reaction mixture was stirred under inert

atmosphere overnight, then it was filtrated on a 2 cm celite pad and concentrated to afford the

product as a white solid (300 mg, 99 %). - mp 62-64 °C. - 1H NMR (CD3OD, 250 MHz)

δ 1.93 (s, 3H, CH3C=O), 2.31-2.50 (m, 2H, cyclopropyl-CH), 3.53-3.58 (m, 1H, cyclopropyl-

CHN), 3.72 (s, 3H, CH3O). - 13C NMR (CD3OD, 62.9 MHz) δ 22.3 (+, CH3C=O), 28.1 (+,

cyclopropyl-CH), 28.2 (+, cyclopropyl-CH), 36.9 (+, cyclopropyl-CHN), 52.9 (+, CH3O),

172.1 (Cquat, C=O, 2C), 174.4 (Cquat, C=O). - MS EI (70 eV) m/z (%) 201 (M+, 3), 183 (MH+-

H2O, 9), 169 (14), 158 (M+-acetyl, 16), 141 (38), 114 (47), 100 (86), 82 (56), 43 (100). - IR

(KBr) 3358, 3266, 3071, 2657, 1727, 1663, 1638, 1541, 1439, 1312 cm-1. - HR MS  calcd for

C8H10NO5 201.06372, found 201.06365.

HN

HO2C CO2Me

O
NHBoc

HN

HO2C CO2Me

O
NHBoc

(1R, 2R, 3R) and

cyclopropane-1,2-di

(819 mg, 1.95 mmol)

(-)-30a
(+)-30a
 (1S, 2S, 3S) 3-(2S-tert-Butoxycarbonylamino-propionylamino)-

carboxylic acid mono methyl ester ((+)-30a and (-)-30a): (±)-25a

 was dissolved under nitrogen atmosphere in MeOH (100 ml), then 1,4-
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cyclohexadiene (4.5 ml, 40 % in pentane) and Pd/C 5 % (100 mg) were added. The reaction

mixture was stirred under inert atmosphere overnight, then it was filtrated on a 2 cm celite pad

and concentrated to afford the product as a white solid (640 mg, 99 %). The two

diastereomers can be obtained diastereomerically pure from the corresponding dipeptides. -

(+)-30a- mp 70-72 °C. - [ ]21
Dα  -72.0° (c 1, CH3OH). - 1H NMR (CDCl3, 250 MHz) δ 1.28 (d,

J = 6.9 Hz, 3H, CH3CH), 1.43 (s, 9H, (CH3)3C), 2.32 (dd, J = 4.7, 4.7 Hz, 1H, cyclopropyl-

CH), 2.53 (dd, J = 5.2, 8.3 Hz, 1H, cyclopropyl-CH), 3.73 (s, 3H, CH3O), 4.13-4.21 (m, 1H,

cyclopropyl-CHN), 4.51-4.57(m, 1H, CHN), 5.43 (d, J = 5.3 Hz, 1H, NH), 7.54 (d, J =

8.3 Hz, 1H, NH). - 13C NMR (CDCl3, 62.9 MHz) δ 19.3 (+, CH3CH), 26.0 (+, cyclopropyl-

CH), 28.3 (+,(CH3)3C, 3C), 28.6 (+, cyclopropyl-CH), 36.1 (+, cyclopropyl-CHN), 49.6 (+,

CHN), 52.5 (+, CH3O), 81.0 (Cquat, (CH3)3C), 156.0 (Cquat, N(CO)O), 170.0 (Cquat, C=O),

172.6 (Cquat, C=O), 173.7 (Cquat, C=O). - MS  FAB (NBA/CH2Cl2) m/z (%) 331 (MH+, 29),

275 (MH+-tBu, 35), 154 (100). - IR (KBr) 3352, 2981, 1718, 1526, 1306 cm-1. - HR MS  calcd

for 331.15053, found 331.14958. - (-)-30a- mp 78-80 °C. - [ ]21
Dα  -16.5° (c 1, CH3OH). -

1H NMR (CDCl3, 250 MHz) δ 1.33 (d, J = 6.6 Hz, 3H, CH3CH), 1.44 (s, 9H, (CH3)3C), 2.30-

2.38 (m, 1H, cyclopropyl-CH), 2.53 (dd, J = 5.2, 8.2 Hz, 1H, cyclopropyl-CH), 3.73 (s, 3H,

CH3O), 4.02-4.07 (m, 1H, cyclopropyl-CHN), 4.37-4.41(m, 1H, CHN), 5.37 (d, J = 5.3 Hz,

1H, NH), 7.36 (d, J = 8.3 Hz, 1H, NH), 9.05 (s br, 1H, COOH). - 13C NMR (CDCl3,

62.9 MHz) δ 18.4 (+, CH3CH), 26.2 (+, cyclopropyl-CH), 28.3 (+,(CH3)3C, 3C), 28.7 (+,

cyclopropyl-CH), 36.0 (+, cyclopropyl-CHN), 50.0 (+, CHN), 52.5 (+, CH3O), 80.8 (Cquat,

(CH3)3C), 156.0 (Cquat, N(CO)O), 170.1 (Cquat, C=O), 172.2 (Cquat, C=O), 174.3 (Cquat, C=O).

- MS  FAB (NBA/CH2Cl2) m/z (%) 353 (MNa+, 27), 331 (MH+, 100), 275 (MH+-tBu, 123),

231 (MH+-Boc, 49). - IR (KBr) 3352, 2982, 1719, 1526, 1305 cm-1. - HR MS  calcd for

C14H22N2O5 + H 331.15053, found 331.14943.
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(±)-30d

(1R*, 2R*, 3R*) 3-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-phenyl-

propionylamino]-cyclopropane-1,2-dicarboxylic acid mono methyl ester ((±)-30d):

(±)-25d (400 mg, 0.65 mmol) was dissolved under nitrogen atmosphere in a mixture 2:1 of
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THF and MeOH (50 ml), then 1,4-cyclohexadiene (4 ml, 40 % in pentane) and Pd/C 10 %

(180 mg) were added. The reaction mixture was stirred under inert atmosphere 24 h, then it

was filtrated on a 2 cm Celite pad and concentrated to afford the product as a white solid

(335 mg, 98 %). - mp 150 °C decomp. - 1H NMR (CDCl3, 250 MHz): δ 2.04 (dd, J = 4.3,

4.3 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.20 (dd, J = 4.6, 4.6 Hz, 1H, cyclopropyl-CH, 1

diast.), 2.24-2.29 (m, 1H, cyclopropyl-CH), 2.78-2.86 (m, 1H, CH2Ph), 3.12-3.22 (m, 1H,

CH2Ph), 3.64 (s, 3H, CH3O), 3.67-3.77 (m, 1H, cyclopropyl-CHN), 3.98-4.15 (m, 2H, Fmoc-

CH + CHN), 4.24-4.29 (m, 2H, Fmoc-CH2), 6.20 (d, J = 9.7 Hz, 1H, NH, 1 diast.), 6.22 (d,

J = 9.8 Hz, 1H, NH, 1 diast.), 7.14-7.23 (m, 7H, Ar-CH), 7.24-7.34 (m, 2H, Ar-CH), 7.43-

7.51 (m, 2H, Fmoc-Ar-CH), 7.71-7.73 (m, 2H, Fmoc-Ar-CH). - 13C NMR (CDCl3,

62.9 MHz): δ 28.8 (+, cyclopropyl-CH, 1 diast.), 28.9 (+, cyclopropyl-CH, 1 diast.), 30.06 (+,

cyclopropyl-CH, 1 diast.), 30.12 (+, cyclopropyl-CH, 1 diast.), 36.3 (+, cyclopropyl-CHN, 1

diast.), 36.4 (+, cyclopropyl-CHN, 1 diast.), 38.6 (-, CH2Ph, 1 diast.), 38.8 (-, CH2Ph, 1

diast.), 48.2 (+, Fmoc-CH), 52.6 (+, CH3O), 58.0 (+, CHN, 1 diast.), 58.2 (+, CHN, 1 diast.),

67.6 (-, Fmoc-CH2, 1 diast.), 67.8 (-, Fmoc-CH2, 1 diast.), 120.9 (+, Fmoc-Ar-CH, 2C), 126.2

(+, Ar-CH), 126.29 (+, Ar-CH, 1 diast.), 126.33 (+, Ar-CH, 1 diast.), 127.7 (+, Ar-CH, 1

diast.), 127.8 (+, Ar-CH, 1 diast.), 128.1 (+, Ar-CH, 2C), 128.7 (+, Ar-CH, 2C), 129.47 (+,

Ar-CH), 129.52 (+, Ar-CH), 130.3 (+, Ar-CH, 2C), 138.5 (Cquat, Ph-C, 1 diast.), 138.6 (Cquat,

Ph-C, 1 diast.), 142.4 (Cquat, Fmoc-Ar-C, 2C), 145.1 (Cquat, Fmoc-Ar-C, 2C), 158.2 (Cquat,

N(CO)O, 1 diast.), 158.3 (Cquat, N(CO)O, 1 diast.), 172.9 (Cquat, C=O), 174.5 (Cquat, C=O, 1

diast.), 174.6 (Cquat, C=O, 1 diast.), 176.5 (Cquat, CO). - MS  FAB (MeOH/Glycerine) m/z (%)

529 (MH+, 100). - IR (KBr) 3387, 3065, 2929, 1723, 1669, 1444, 1320 cm-1. - HR MS  calcd

for C30H28N2O7 + H 529.19748, found 529.19750.
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HO2C CO2Me
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(±)-30e

(1R*, 2R*, 3R*) 3-[4-tert-Butoxycarbonyl-2S-(9H-fluoren-9-ylmethoxycarbonylamino)-

butyrylamino]-cyclopropane-1,2-dicarboxylic acid mono methyl ester ((±)-30e): (±)-25e

(345 mg, 0.54 mmol) was dissolved under nitrogen atmosphere in MeOH (25 ml), then 1,4-

cyclohexadiene (2.5 ml, 40 % in pentane) and Pd/C 10 % (250 mg) were added. The reaction
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mixture was stirred under inert atmosphere 24 h, then it was filtrated on a 2 cm celite pad and

concentrated to afford the product as a white solid (256 mg, 86 %). - mp 74-76 °C. - 1H NMR

(CDCl3, 250 MHz): δ 1.42 (s, 9H, (CH3)3C), 2.34-2.38 (m, 1H, cyclopropyl-CH), 2.45-2.49

(m, 1H, cyclopropyl-CH), 2.55-2.77 (m, 2H, CH2CO2
tBu), 3.69 (s, 3H, CH3O), 3.87-4.03 (m,

1H, cyclopropyl-CHN), 4.16-4.20 (m, 1H, Fmoc-CH), 4.34-4.40 (m, 2H, Fmoc-CH2), 4.56-

4.63 (m, 1H, CHN), 6.20 (d, J = 9.7 Hz, 1H, NH, 1 diast.), 6.23 (d, J = 9.6 Hz, 1H, NH,

1diast.), 7.26-7.40 (m, 4H, Ar-CH), 7.55-7.64 (m, 3H, Fmoc-Ar-CH + NH), 7.73-7.76 (m,

2H, Fmoc-Ar-CH). - 13C NMR (CDCl3, 62.9 MHz): δ 26.4 (+, cyclopropyl-CH), 27.9 (+,

(CH3)3C, 3C), 28.4 (+, cyclopropyl-CH, 1 diast.), 28.5 (+, cyclopropyl-CH, 1 diast.), 36.1 (+,

cyclopropyl-CHN, 1 diast.),36.2 (+, cyclopropyl-CHN, 1 diast.), 37.6 (-, CH2CO2
tBu, 1

diast.), 37.7 (-, CH2CO2
tBu, 1 diast.), 46.9 (+, Fmoc-CH), 51.2 (+, CHN, 1 diast.), 51.4 (+,

CHN, 1 diast.), 52.4 (+, CH3O), 67.5 (-, CH2O), 82.0 (Cquat, (CH3)3C, 1 diast.), 82.1 (Cquat,

(CH3)3C, 1 diast.), 120.0 (+, Fmoc-Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH, 2C), 126.9 (+, Fmoc-

Ar-CH), 127.1 (+, Fmoc-Ar-CH), 127.7 (+, Fmoc-Ar-CH, 2C), 141.21 (Cquat, Fmoc-ArC),

141.23 (Cquat, Fmoc-Ar-C), 143.5 (Cquat, Fmoc-Ar-C), 143.7 (Cquat, Fmoc-Ar-C), 156.2 (Cquat,

N(CO)O, 1 diast.), 156.3 (Cquat, N(CO)O, 1 diast.), 169.96 (Cquat, C=O, 1 diast.), 170.0 (Cquat,

C=O, 1 diast.), 171.6 (Cquat, C=O), 171.7 (Cquat, C=O), 172.5 (Cquat, CO). - MS  FAB

(MeOH/Glycerine) m/z (%) 553 (MH+, 12), 497 (MH+-tBu, 62), 275 (100). - IR (KBr) 3337,

3066, 2979, 1724, 1530, 1449, 1370, 1302 cm-1. - HR MS  calcd for C29H32N2O9 + H

553.21861, found 553.21846.

HN

HO2C CO2Me

O
NHFmoc

(+)-30f

(1R, 2R, 3R) 3-[(9H-fluoren-9-ylmethoxycarbonylamino)-ethylamino]-cyclopropane-1,2-

dicarboxylic acid mono methyl ester ((+)-30f): (+)-25f (210 mg, 0.40 mmol) was dissolved

under nitrogen atmosphere in MeOH (15 ml), then 1,4-cyclohexadiene (2 ml, 40 % in

pentane) and Pd/C 10 % (100 mg) were added. The reaction mixture was stirred under inert

atmosphere 24 h, then filtrated on a 2 cm celite pad and concentrated to afford the product as

a white solid (123 mg, 71 %). - mp 78-80 °C. - [ ]21
Dα  -22.4 (c 0.5, MeOH). - 1H NMR (CDCl3,

250 MHz): δ 2.24-2.40 (m, 1H, cyclopropyl-CH), 2.50-2.53 (m, 1H, cyclopropyl-CH), 3.67

(s, 3H, CH3O), 3.86-4.03 (m, 3H, CH2N + cyclopropyl-CHN), 4.16 (dd, J = 6.8, 7.0 Hz, 1H,
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Fmoc-CH), 4.32-4.35 (m, 2H, Fmoc-CH2), 6.05 (s br, 1H, NHFmoc), 7.23-7.39 (m, 5H, Ar-

CH + NH), 7.49-7.56 (m, 2H, Ar-CH), 7.70-7.77 (m, 2H, Ar-CH), 8.64 (s br, CO2H). -
13C NMR (CDCl3, 62.9 MHz): δ 26.5 (+, cyclopropyl-CH), 28.3 (+, cyclopropyl-CH), 35.9

(+, cyclopropyl-CHN), 44.3 (-, CH2N), 47.0 (+, Fmoc-CH), 52.6 (+, CH3O), 67.5 (-, CH2O),

120.0 (+, Ar-CH, 2C), 125.1 (+, Ar-CH, 2C), 127.1 (+, Ar-CH, 2C), 127.8 (+, Ar-CH, 2C),

141.3 (Cquat, ArC, 2C), 143.6 (Cquat, ArC, 2C), 157.1 (Cquat, N(CO)O), 170.0 (Cquat, C=O),

170.9 (Cquat, C=O), 172.2 (Cquat, CO). - MS  FAB (MeOH/Glycerine) m/z (%) 877 (2MH+, 2),

715 ((MH + 3 Glyc.)+, <1), 623 (MH++2Glyc., <1), 531 (MH+ + Glyc., 2), 439 (MH+, 23). -

IR (CDCl3) 3431, 3377, 3070, 2956, 1725, 1603, 1516, 1445 cm-1. - HR MS  calcd for

C23H22N2O7 + H 439.15053, found 439.15008.

HN

HO2C CO2Me

O
NHFmoc

(-)-30f

(1S, 2S, 3S) 3-[(9H-fluoren-9-ylmethoxycarbonylamino)-ethylamino]-cyclopropane-1,2-

dicarboxylic acid mono methyl ester ((-)-30f): (-)-25f (200 mg, 0.38 mmol) was dissolved

under nitrogen atmosphere in MeOH (15 ml), then 1,4-cyclohexadiene (2 ml, 40 % in

pentane) and Pd/C 10 % (100 mg) were added. The reaction mixture was stirred under inert

atmosphere 24 h, then filtrated on a 2 cm celite pad and concentrated to afford the product as

a white solid (100 mg, 60 %). - mp 77-79 °C. - [ ]21
Dα  +18.2 (c 0.5, MeOH). - 1H NMR

(CDCl3, 250 MHz): δ 2.23-2.40 (m, 1H, cyclopropyl-CH), 2.50-2.54 (m, 1H, cyclopropyl-

CH), 3.67 (s, 3H, CH3O), 3.86-4.02 (m, 3H, CH2N + cyclopropyl-CHN), 4.16 (dd, J = 6.7,

7.0 Hz, 1H, Fmoc-CH), 4.31-4.35 (m, 2H, Fmoc-CH2), 6.05 (s br, 1H, NHFmoc), 7.23-7.39

(m, 5H, Fmoc-Ar-CH + NH), 7.49-7.55 (m, 2H, Fmoc-Ar-CH), 7.70-7.77 (m, 2H, Fmoc-Ar-

CH), 8.60 (s br, CO2H). - 13C NMR (CDCl3, 62.9 MHz): δ 26.5 (+, cyclopropyl-CH), 28.3 (+,

cyclopropyl-CH), 35.9 (+, cyclopropyl-CHN), 44.2 (-, CH2N), 47.0 (+, Fmoc-CH), 52.6 (+,

CH3O), 67.4 (-, CH2O), 120.0 (+, Fmoc-Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH, 2C), 127.2 (+,

Fmoc-Ar-CH, 2C), 127.8 (+, Fmoc-Ar-CH, 2C), 141.3 (Cquat, Fmoc-Ar-C, 2C), 143.6 (Cquat,

Fmoc-Ar-C, 2C), 157.0 (Cquat, N(CO)O), 170.0 (Cquat, C=O), 170.9 (Cquat, C=O), 172.2 (Cquat,

CO). - MS  FAB (MeOH/Glycerine) m/z (%) 877 (2MH+, 3), 715 ((MH + 3 Glyc.)+, <1), 623

(MH++2Glyc., <1), 531 (MH+ + Glyc., 1), 439 (MH+, 25). - IR (CDCl3) 3434, 3380, 3068,
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2958, 1726, 1602, 1517, 1445 cm-1. - HR MS  calcd for C23H22N2O7 + H 439.15053, found

439.15008.

HN

HO2C CO2Me

O H
N

O
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CH2Ph

(+)-31a

(1R*, 2R*, 3R*) 3-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-

propionylamino] cyclopropane-1,2-dicarboxylic acid mono methyl ester ((+)-31a):

(+)-27a (200 mg, 0.35 mmol) was dissolved under nitrogen atmosphere in MeOH (10 ml),

then 1,4-cyclohexadiene (0.5 ml, 40 % in pentane) and Pd/C 5 % (100 mg) were added. The

reaction mixture was stirred under inert atmosphere overnight, then it was filtrated on a 2 cm

celite pad and concentrated to afford the product as a white solid (160 mg, 96 %). mp 101-

103 °C. - [ ]21
Dα  -19.6 (c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz) δ 1.15 (d, J = 7.0 Hz, 3H,

CH3CH), 1.27 (s, 9H, (CH3)3C), 2.22 (dd, J = 5.5, 8.0 Hz, 1H, cyclopropyl-CH), 2.34 (dd, J =

5.1, 5.1 Hz, 1H, cyclopropyl-CH), 2.68 (dd, J = 11.1, 13.5 Hz, 1H, CH2Ph), 2.97 (dd, J = 3.4,

13.7 Hz, 1H, CH2Ph), 3.37-3.44 (m, 1H, cyclopropyl-CHN), 3.65 (s, 3H, CH3O), 4.09-4.25

(m, 2H, CHN), 6.90 (d, J = 8.6 Hz, 1H, NH), 7.14-7.26 (m, 5H, Ph-CH), 8.03 (d, J = 7.3 Hz,

1H, NH), 8.37 (d, J = 4.7 Hz, 1H, NH), 12.69 (s br, 1H, COOH). - 13C NMR (CDCl3,

62.9 MHz) δ 18.6 (+, CH3CH), 26.4 (+, cyclopropyl-CH), 28.2 (+, cyclopropyl-CH), 28.3 (+,

(CH3)3C, 3C), 36.1 8+, cyclopropyl-CHN), 38.4 (-, CH2Ph), 48.8 (+, CHN), 52.4 (+, CH3O),

55.9 (+, CHN), 80.7 (Cquat, C(CH3)3), 127.0 (+, Ph-CH), 128.6 (+, Ph-CH, 2C), 129.3 (+, Ph-

CH, 2C), 136.3 (Cquat, Ph-C), 155.7 (Cquat, N(CO)O), 170.0 (Cquat, C=O), 171.6 (Cquat, C=O),

171.9 (Cquat, C=O), 172.9 (Cquat, C=O). - MS  FAB (Glycerin/MeOH) m/z (%) 977 (2MNa+,

2), 955 (2MH+, 2), 855 (2MH+-Boc), 500 (MNa+, 3), 478 (MH+, 17), 422 (MH+-t-Bu, 37),

378 (MH+-Boc, 46), 263 (48), 120 (100). - IR (KBr) 3311, 3065, 2980, 1721, 1656, 1526,

1453 cm-1. - HR MS  calcd for C23H31N3O8 + H 478.2189, found 478.22038.
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HN
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(-)-31a

(1R*, 2R*, 3R*) 3-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-

propionylamino] cyclopropane-1,2-dicarboxylic acid mono methyl ester ((-)-31a): (-)-27a

(1.6 g, 2.82 mmol) was dissolved under nitrogen atmosphere in MeOH (300 ml), then 1,4-

cyclohexadiene (4 ml, 40 % in pentane) and Pd/C 10 % (100 mg) were added. The reaction

mixture was stirred under inert atmosphere overnight, then it was filtrated on a 2 cm celite pad

and concentrated to afford the product as a white solid (1.34 g, 99 %). - mp 108-110 °C. -

[ ]21
Dα  -4.9 (c 1, CHCl3). - 1H NMR (DMSO-d6, 250 MHz) δ 1.23 (d, J = 7.0 Hz, 3H, CH3CH),

1.32 (s, 9H, (CH3)3C), 2.18-2.22 (m, 2H, cyclopropyl-CH), 2.80 (dd, J = 9.3, 14.0 Hz, 1H,

CH2Ph), 3.07 (dd, J = 4.76, 14.0 Hz, 1H, CH2Ph), 3.51, (dd, J = 4.7, 8.0 Hz, 1H, cyclopropyl-

CHN), 3.66 (s, 3H, CH3O), 4.19-4.27 (m, 2H, CHN), 6.31 (d, J = 8.7 Hz, 1H, NH), 7.15-7.22

(m, 1H, Ph-CH), 7.23-7.24 (m, 4H, Ph-CH), 7.67 (d, J = 7.6 Hz, 1H, NH), 8.03 (s br, 1H,

NH). - 13C NMR (DMSO-d6, 62.9 MHz) δ 17.8 (+, CH3CH), 27.1 (+, cyclopropyl-CH), 28.1

(+, cyclopropyl-CH), 28.3 (+, (CH3)3C), 36.1 (+, cyclopropyl-CHN), 38.2 (-, CH2Ph), 49.0 (+,

CHN), 52.4 (+, CH3O), 55.9 (+, CHN), 81.0 (Cquat, C(CH3)3), 127.2 (+, Ph-CH), 128.5 (+, Ph-

CH, 2C), 128.7 (+, Ph-CH, 2C), 136.3 (Cquat, Ph-C), 156.0 (Cquat, N(CO)O), 170.2 (Cquat,

C=O, 2C), 172.0 (Cquat, C=O), 173.1 (Cquat, C=O). - MS  FAB (Glycerin/MeOH) m/z (%) 977

(2MNa+, 7), 955 (2MH+, 2), 500 (MNa+, 10), 478 (MH+, 16), 422 (MH+-t-Bu, 24), 378 (MH+-

Boc, 23), 263 (35), 219 (30). - IR (KBr) 3319, 3063, 2980, 1721, 1711, 1662, 1528,

1453 cm-1. - HR MS  calcd for C23H31N3O8 + H 478.2189, found 478.22043.

HN

HO2C CO2Me

O H
N

O
NHBoc

(+)-31b

(1R*, 2R*, 3R*) 3-[2S-(tert-Butoxycarbonylamino-ethylamino)-propionylamino]

cyclopropane-1,2-dicarboxylic acid mono methyl ester ((+)-31b): (+)-27b (490 mg,

1.03 mmol) was dissolved under nitrogen atmosphere in 30 ml of MeOH, then 2.5 ml of 1,4-
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cyclohexadiene (40 % in pentane) and 60 mg of Pd/C 5 % were added. The reaction mixture

was stirred under inert atmosphere overnight, then it was filtrated on a 2 cm celite pad and

concentrated to afford 402 mg (>99 %) of product as a white solid. - mp 112-115 °C. - [ ]21
Dα

-23.7 (c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz) δ 1.34 (d, J = 6.6 Hz, 3H, CH3CH), 1.45 (s,

9H, (CH3)3C), 2.39-2.40 (m, 1H, cyclopropyl-CH), 2.43-2.52 (m, 1H, cyclopropyl-CH), 3.71

(s, 3H, CH3O), 3.81-3.94 (m, 3H, cyclopropyl-CHN + CH2N), 4.57-4.70 (m, 1H, CHN), 5.78

(s, br, 1H, NH), 7.46 (d, J = 7.5 Hz, 1H, NH), 7.73 (s br, 1H, NH), 9.30 (s br, 1H, COOH). -
13C NMR (CDCl3, 62.9 MHz) δ 18.0 (+, CH3CH), 26.8 (+, cyclopropyl-CH), 28.3 (+,(CH3)3C

+ cyclopropyl-CH, 4C), 35.9 (+, cyclopropyl-CHN), 44.1 (-, CH2N), 49.0 (+, CHN), 52.5 (+,

CH3O), 80.6 (Cquat, (CH3)3C), 156.6 (Cquat, N(CO)O), 170.2 (Cquat, C=O), 170.6 (Cquat, C=O),

172.2 (Cquat, C=O), 173.5 (Cquat, C=O). - MS  FAB (NBA/CH2Cl2) m/z (%) 775 (2MH+, 2),

388 (MH+, 24), 332 (15), 307 (32), 289 (15), 154 (100). - IR (KBr) 3317, 2981, 1721, 1669,

1527, 1302, 1252 cm-1. - HR MS  calcd for C16H25N3O8 + H 388.17199, found 388.17042.

HN

HO2C CO2Me

O H
N

O
NHBoc

(-)-31b

(1S*, 2S*, 3S*) 3-[2S-(tert-Butoxycarbonylamino-ethylamino)-propionylamino]

cyclopropane-1,2-dicarboxylic acid mono methyl ester ((-)-31b): (-)-27b (915 mg,

1.92 mmol) was dissolved under nitrogen atmosphere in MeOH (100 ml), then 1,4-

cyclohexadiene (4.5 ml, 40 % in pentane) and Pd/C 5 % (110 mg) were added. The reaction

mixture was stirred under inert atmosphere overnight, then it was filtrated on a 2 cm celite pad

and concentrated to afford the product as a white solid (765 mg, >99 %). - mp 69-72 °C. -

[ ]21
Dα  -13.7 (c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz) δ 1.34 (d, J = 4.8 Hz, 3H, CH3CH),

1.43 (s, 9H, (CH3)3C), 2.36-2.51 (m, 2H, cyclopropyl-CH), 3.70 (s, 3H, CH3O), 3.81-3.99 (m,

3H, cyclopropyl-CHN + CH2N), 4.57-4.61 (m, 1H, CHN), 5.77 (s, br, 1H, NH), 7.56 (s br,

1H, NH), 7.97 (s br, 1H, NH), 10.78 (s br, 1H, COOH). - 13C NMR (CDCl3, 62.9 MHz)

δ 17.5 (+, CH3CH), 27.5 (+, cyclopropyl-CH), 28.3 (+, (CH3)3C) + cyclopropyl-CH, 4C), 36.9

(+, cyclopropyl-CHN), 44.0 (-, CH2N), 48.8 (+, CHN), 52.5 (+, CH3O), 80.6 (Cquat,

(CH3)3C)), 156.6 (Cquat, N(CO)O), 170.2 (Cquat, C=O), 171.0 (Cquat, C=O), 172.0 (Cquat, C=O),

173.9 (Cquat, C=O). - MS  FAB (Glycerin/MeOH) m/z (%) 775 (2MH+, 11), 388 (MH+, 60),
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332 (100). - IR (KBr) 3337, 2982, 1721, 1669, 1533 cm-1. - HR MS  calcd for C16H25N3O8 +

H 388.17199, found 388.17119.

HN

CO2MeHO2C

O H
N

O
NHBoc

CH2Ph

(±)-32

(1S*, 2S*, 3R*) 3-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-

propionylamino] cyclopropane-1,2-dicarboxylic acid mono methyl ester ((±)-32): (±)-28

(230 mg, 0.40 mmol) was dissolved under nitrogen atmosphere in MeOH (10 ml), then 1,4-

cyclohexadiene (3 ml, 40 % in pentane) and Pd/C 10 % (50 mg) were added. The reaction

mixture was stirred under inert atmosphere overnight, then it was filtrated on a 2 cm celite pad

and concentrated to afford the product as a white solid (188 mg, 99%). - mp 105-107 °C. -
1H NMR (CD3OD, 250 MHz) δ 1.28 (d, J = 6.6 Hz, 3H, CH3CH), 1.35 (s, 9H, (CH3)3C),

2.31-2.45 (m, 2H, cyclopropyl-CH), 2.76-2.93 (m, 1H, CH2Ph), 3.14 (ddd, J = 2.3, 2.3,

11.8 Hz, 1H, CH2Ph), 3.49-3.63 (m, 1H, cyclopropyl-CHN), 3.66 (s, 3H, CH3O, 1 diast.),

3.67 (s, 3H, CH3O, 1 diast.), 4.23-4.42 (m, 2H, CHN), 7.12-7.34 (m, 5H, Ph-CH). - 13C NMR

(CD3OD, 62.9 MHz) δ 18.1 (+, CH3CH, 1 diast.), 18.2 (+, CH3CH, 1 diast.), 28.5 (+,

cyclopropyl-CH), 28.7 (+, (CH3)3C, 3C), 36.6 (+, cyclopropyl-CH), 39.1 (-, CH2Ph), 50.4 (+,

CHN), 52.8 (+, CHN), 52.9 (+, CH3O, 1 diast.), 53.0 (+, CH3O, 1 diast.), 57.4 (+, CHN), 80.5

(Cquat., C(CH3)3, 1 diast.), 80.7 (Cquat., C(CH3)3, 1 diast.), 127.7 (+, Ph-CH, 1 diast.), 127.8 (+,

Ph-CH, 1 diast.), 129.4 (+, Ph-CH, 2C, 1 diast.), 129.5 (+, Ph-CH, 2C, 1 diast.), 130.3 (+, Ph-

CH, 2C, 1 diast.), 130.5 (+, Ph-CH, 2C, 1 diast.), 138.4 (Cquat., Ph-C, 1 diast.), 138.7 (Cquat.,

Ph-C, 1 diast.), 157.7 (Cquat., N(C=O)O), 170.5 (Cquat., C=O), 170.7 (Cquat., C=O), 174.1 (Cquat.,

C=O), 175.8 (Cquat., C=O). - MS  FAB (NBA/CH2Cl2) m/z (%) 978 (2MNa+, 27), 500 (MNa+,

25), 478 (MH+, 100), 422 (MH+-tBu, 84 ), 378 (MH+-Boc, 51), 277 (46), 263 (82), 219 (46). -

IR (KBr) 3336, 3065, 2980, 1717, 1653, 1540, 1455, 1368 cm-1. - HR MS  calcd for

C23H31N3O8 + H 478.2189, found 478.22002.
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N
H

H
N

O

O
N
H

FmocHN
O

CO2MeCO2Me

CO2H

(+)-42

(1R, 2R, 3R) 3-[2S-({2R-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-propionylamino]-3R-

methoxycarbonyl-cyclopropane-1R-carbonyl}-amino)-propionylamino]-cyclopropane-1, 2-

dicarboxylic acid mono methyl ester ((+)-42): (+)-41 (200 mg, 0.26 mmol) was dissolved

under nitrogen atmosphere in a mixture MeOH/Benzene/HCO2H 5/5/2 (15 ml), then Pd/C

10 % (180 mg) was added. The reaction mixture was stirred under inert atmosphere 2.5 h,

then it was filtrated on a 2 cm celite pad and concentrated to afford the product as a white

solid (175 mg, 99 %). - mp 220 °C decomp. - [ ]21
Dα  -70.8 (c 0.5, MeOH). - 1H NMR (CD3OD,

400 MHz): δ 1.22 (d, J = 7.1 Hz, 3H, CH3CH), 1.28 (d, J = 7.2 Hz, 3H, CH3CH), 2.31-2.42

(m, 3H, cyclopropyl-CH), 2.45-2.51 (m, 1H, cyclopropyl-CH), 3.51-3.62 (m, 2H,

cyclopropyl-CHN), 3.67 (s, 3H, CH3O), 3.69 (s, 3H, CH3O), 4.04-4.09 (m, 1H, CHN), 4.18-

4.23 (m, 2H, CHN + Fmoc-CH), 4.28-4.38 (m, 2H, Fmoc-CH2), 7.28-7.31 (m, 2H, Fmoc-Ar-

CH), 7.35-7.39 (m, 2H, Fmoc-Ar-CH), 7.63-7.69 (m, 2H, Fmoc-Ar-CH), 7.76-7.78 (m, 2H,

Fmoc-Ar-CH). - 13C NMR (CD3OD, 62.9 MHz): δ 17.9 (+, CH3CH), 18.0 (+, CH3CH), 28.1

(+, cyclopropyl-CH), 28.5 (+, cyclopropyl-CH), 28.6 (+, cyclopropyl-CH), 29.0 (+,

cyclopropyl-CH), 36.6 (+, cyclopropyl-CHN, 2C), 48.4 (+, Fmoc-CH), 50.4 (+, CHN), 52.0

(+, CHN), 52.8 (+, CH3O), 52.9 (+, CH3O), 68.0 (-, Fmoc-CH2), 120.9 (+, Fmoc-Ar-CH, 2C),

126.2 (+, Fmoc-Ar-CH), 126.4 (+, Fmoc-Ar-CH), 128.2 (+, Fmoc-Ar-CH, 2C), 128.8 (+,

Fmoc-Ar-CH, 2C), 142.5 (Cquat, Fmoc-Ar-C), 142.6 (Cquat, Fmoc-Ar-C), 145.1 (Cquat, Fmoc-

Ar-C), 145.4 (Cquat, Fmoc-Ar-C), 158.2 (Cquat, N(CO)O), 169.4 (Cquat, C=O), 171.6 (Cquat,

C=O), 171.9 (Cquat, C=O), 172.4 (Cquat, C=O), 175.9 (Cquat, C=O), 176.5 (Cquat, C=O). –

MS  FAB (MeOH/Glycerine) m/z (%) 665 (MH+, 6), 179 (Fluorenyl cation, 100). - IR (KBr)

3298, 3066, 2955, 1724, 1664, 1529, 1448, 1312 cm-1. - HR MS  calcd for C33H36N4O11 + H

665.24588, found 665.24705.
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N
H

H
N

O

O
N
H

FmocHN
O H

N

O
N
H

O
CO2MeCO2Me CO2Me

CO2H

(+)-46

(1R, 2R, 3R) 3-{2S-[2R-(2S-{2R-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-

propionylamino]-3R-methoxycarbonyl-cyclopropane-1R-carbonylamino}-propionylamino)-

3R-methoxycarbonyl-cyclopropane-1R-carbonylamino]-propionylamino}-cyclopropane-1,

2-dicyrboxylic acid mono methyl ester ((+)-46): (+)-45 (200 mg, 0.21 mmol) was dissolved

under nitrogen atmosphere in a mixture MeOH/HCO2H 1/1 (25 ml), then Pd/C 10 % (180 mg)

was added. The reaction mixture was stirred under inert atmosphere 5 h, then it was filtrated

on a 2 cm celite pad and concentrated to afford the product as a white solid (160 mg, 88 %). -

mp 180 °C decomp. - [ ]21
Dα  -48.7 (c 0.5, MeOH) - 1H NMR (CD3OD, 250 MHz): δ 1.25 (d,

J = 7.7 Hz, 3H, CH3CH), 1.29(d, J =7.2 Hz, 6H, CH3CH), 2.29-2.32 (m, 2H, cyclopropyl-

CH), 2.44-2.80 (m, 4H, cyclopropyl-CH), 3.58-3.69 (m, 3H, cyclopropyl-CHN), 3.66 (s, 6H,

CH3O), 3.69 (s, 3H, CH3O), 4.07-4.36 (m, 6H, 3 CHN + Fmoc-CH + Fmoc-CH2), 7.25-7.39

(m, 4H, Fmoc-Ar-CH), 7.62-7.68 (m, 2H, Fmoc-Ar-CH), 7.75-7.78 (m, 2H, Fmoc-Ar-CH). -
13C NMR (CD3OD, 62.9 MHz): δ 17.8 (+, CH3CH), 18.0 (+, CH3CH), 18.1 (+, CH3CH), 27.5

(+, cyclopropyl-CH), 27.6 (cyclopropyl-CH, 2C), 28.6 (cyclopropyl-CH), 29.1 (cyclopropyl-

CH, 2C), 36.5 (+, cyclopropylCHN), 36.6 (cyclopropyl-CHN, 2C), 48.4 (+, Fmoc-CH), 50.06

(+, CHN), 50.13 (+, CHN), 52.1 (+, CHN), 52.9 (+, CH3O), 53.0 (+, CH3O), 53.1 (+, CH3O),

68.1 (-, Fmoc-CH2), 121.0 (+, Fmoc-Ar-CH, 2C), 126.3 (+, Fmoc-Ar-CH), 126.4 (+, Fmoc-

Ar-CH), 128.3 (+, Fmoc-Ar-CH, 2C), 128.9 (+, Fmoc-Ar-CH, 2C), 142.55 (Cquat, Fmoc-Ar-

C), 142.60 (Cquat, Fmoc-Ar-C), 145.1 (Cquat, Fmoc-Ar-C), 145.4 (Cquat, Fmoc-Ar-C), 158.3

(Cquat, N(CO)O), 169.5 (Cquat, C=O), 169.6 (Cquat, C=O), 172.48 (Cquat, C=O), 172.54 (Cquat,

C=O), 172.7 (Cquat, C=O), 173.8 (Cquat, C=O), 175.5 (Cquat, C=O), 175.7 (Cquat, C=O), 176.6

(Cquat, C=O). - MS  NI-FAB (MeOH/Glycerine) m/z (%) 875 ((M-H)-, 100). - IR (KBr) 3320,

3065, 2955, 1729, 1656, 1602, 1447, 1317 cm-1. - HR MS calcd for C42H48N6O15 – H

875.30994, found 875.30801.
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HN

MeO2C CO2H

O

O

(±)-69b

(1R*, 2R*, 3S*) 3-Allyloxycarbonyl-cyclopropane-1,2-dicarboxylic acid mono methyl

ester ((±)-69b): (±)-16b (1.353 g, 4.06 mmol) was dissolved in acetone (13 ml). The solution

was added dropwise to a 0.1 M (pH = 7.4) phosphate buffer (170 ml) in an ultrasonic bad. To

this suspension PLE (300 mg, 50 U/mg) was added and the reaction mixture was stirred at

room temperature and at constant pH by addition of a 0.1 M solution of NaOH. After 4 h the

pH was brought to 8 by addition of a 0.1 M NaOH solution and the water solution was

extracted with diethyl ether (100 ml), then the pH of the water phase was brought to 2 by

addition of a 1 M solution of H3PO4, saturated with NaCl and extracted twice with diethyl

ether (150 ml). The organic phase was dried over Na2SO4 and concentrated to yield a mixture

8:1 of the hydrolysed benzyl ester and hydrolysed methyl ester (770 mg, 78 %). (±)-69b

(550 mg, 56 %) could be isolated pure by recrystallisation from diethyl ether/hexanes. - mp

100-101 °C. - 1H NMR (CDCl3, 250 MHz): δ 2.24-2.28 (m, 1H, cyclopropyl-CH), 2.53 (dd,

J = 5.2, 8.5 Hz, 1H, cyclopropyl-CH), 3.77 (s, 3H, CH3O), 3.91-4.06 (m, 1H, cyclopropyl-

CHN), 4.59-4.61 (m, 2H, CH2=), 5.21-5.35 (m, 2H, CH2O), 5.83-5.98 (m, 1H, CH=CH2),

6.21 (s br, 1H, NHAlloc), 10.48 (s br, 1H, CO2H). - 13C NMR (CDCl3, 62.9 MHz): δ 26.0 (+,

cyclopropyl-CH), 28.7 (+, cyclopropyl-CH), 37.6 (+, cyclopropyl-CHN), 52.7 (+, CH3O),

66.3 (-, PhCH2O), 118.5 (-, CH2=), 132.2 (+, CH=CH2), 156.5 (Cquat, N(CO)O), 170.4 (Cquat,

C=O), 174.0 (Cquat, C=O). - MS  PI-EI (70 eV) m/z (%) 243 (M+, 1), 225 (M+-H2O, 3), 211

(M+-CH3OH, 3), 202 (M+-C3H5, 3), 158 (M+-Alloc, 27), 140 (22), 114 (23), 82 (23), 41

(C3H5
+, 100). - IR (KBr) 3354, 3069, 3022, 2890, 1737, 1700, 1516, 1441, 1316, 1236 cm-1. -

HR MS  calcd for C10H13NO6 243.07429, found 243.07441.
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2.2.3 Coupling at the C-terminus

NH

CO2Me

O

Et2N

O

(±)-34

(1R*, 2R*, 3R*) 2-acetylamino-3-diethyl-carbamoyl-cyclopropane carboxylic acid

methyl ester ((±)-34): (±)-29 (200 mg, 0.99 mmol) was dissolved in CH2Cl2 (60 ml) and

DMF to ensure solubilisation (3 ml). To this solution EDC (190 mg, 0.99 mmol, 1 eq.) and

HOBt (133 mg, 0.99 mmol, 1 eq.) were added. The mixture was cooled in an ice bath, then

diethylamine (156 µl, 109 mg, 1.5 mmol, 1.5 eq.) was added. The mixture was stirred

overnight at room temperature. The solution was then concentrated in vacuum and the product

was isolated by chromatography (CHCl3/MeOH 50:1) as a white solid (165 mg, 65 %). The

reaction resulted in 25 % epimerization, but the epimer could be easily separated by

chromatography. - Rf ((±)-34): 0.18. - mp 97-98 °C. - 1H NMR (CDCl3, 250 MHz) δ 1.06 (t,

J = 7.1 Hz, 3H, CH3CH2), 1.17 (t, J = 7.1 Hz, 3H, CH3CH2), 1.89 (s, 3H, CH3C=O), 2.28 (dd,

J = 5.1, 5.1 Hz, 1H, cyclopropyl-CH), 2.48 (dd, J = 5.2, 8.3 Hz, 1H, cyclopropyl-CH), 3.27-

3.54 (m, 4H, CH2CH3), 3.64 (s, 3H, CH3O), 3.98 (ddd, J = 4.4, 8.1, 8.1 Hz, 1H, cyclopropyl-

CHN), 7.35 (d, J = 7.7 Hz, 1H, NH). - 13C NMR (CDCl3, 62.9 MHz) δ 12.9 (+, CH3CH2),

14.6 (+, CH3CH2), 23.1 (+, CH3C=O), 24.7 (+, cyclopropyl-CH), 27.6 (+, cyclopropyl-CH),

36.6 (+, cyclopropyl-CHN), 41.1 (-, CH2), 42.6 (-, CH2), 52.1 (+, CH3O), 167.7 (Cquat, C=O),

170.6 (Cquat, C=O), 171.1 (Cquat, C=O). - MS  CI( NH3) m/z (%) 513 (2MH+, 12), 272

(MNH4
+, 4), 257 (MH+, 100). - IR (KBr) 3297, 3035, 2973, 1732, 1677, 1626, 1534, 1446,

1314 cm-1. - Anal. Calcd for C12H20N2O4 (256.301): C, 56.24; H, 7.86; N, 10.93. Found: C,

56.25; H, 7.84; N, 10.76.
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NH

CO2Me

O

H
N

O

MeO2C

(±)-35a

(1R*, 2R*, 3R*) 2-acetylamino-3-(methoxycarbonyl-methyl-carbamoyl)-cyclopropane

carboxylic acid methylester ((±)-35a): Glycine methylester hydrochloride (328 mg,

2.61 mmol, 1.5 eq.) was suspended in CH2Cl2 (50 ml) and triethylamine (363 µl, 2.61 mmol,

1.5 eq.) was added. To this solution EDC (334 mg, 1.74 mmol, 1 eq.), HOBt (234 mg,

1.74 mmol, 1 eq.) and (±)-29 (350 mg, 1.74 mmol, 1 eq.) were added at 0 °C. The mixture

was stirred overnight at room temperature. The solution was then concentrated in vacuum and

the product was obtained by chromatography (CHCl3/MeOH 60:1) as a white solid (459 mg,

97 %). - Rf ((±)-35a): 0.05. - mp 125-126 °C. - 1H NMR (CDCl3, 250 MHz) δ 1.98 (s, 3H,

CH3C=O), 2.33 (dd, J = 5.0,5.0 Hz, 1H, cyclopropyl-CH), 2.46 (dd, J = 5.1, 8.3 Hz, 1H,

cyclopropyl-CH), 3.70 (s, 3H, CH3O), 3.77 (s, 3H, CH3O), 4.03-4.12 (m, 3H, cyclopropyl-

CHN + CH2N), 6.90 (t, J = 4.9 Hz, 1H, NH), 7.00 (d, J = 8.3 Hz, 1H, NH). - 13C NMR

(CDCl3, 62.9 MHz) δ 23.2 (+, CH3C=O), 27.1 (+, cyclopropyl-CH), 27.8 (+, cyclopropyl-

CH), 36.3 (+, cyclopropyl-CHN), 41.5 (-, CH2N), 52.3 (+, CH3O), 52.5 (+, CH3O), 169.1

(Cquat, C=O), 169.7 (Cquat, C=O), 170.58 (Cquat, C=O), 170.65 (Cquat, C=O). - MS  CI (NH3)

m/z (%) 290 (MNH4
+, 18), 273 (MH+, 12), 258 (MH+-CH3, 100), 241 (MH+-CH3O), 216 (6),

201 (8). - IR (KBr) 3315, 3248, 3069, 2955, 1760, 1731,. 1670, 1649, 1565, 1547, 1445,

1375, 1319 cm-1. - Anal. Calcd for C11H16N2O6 (272.26): C, 48.53; H, 5.92; N, 10.29. Found:

C, 48.25; H, 5.88; N, 10.10.

NH

CO2Me

O

H
N

O

BnO2C

(±)-35b

(1R*, 2R*, 3R*) 2-acetylamino-3 (1S-benzyloxycarbonyl-ethylcarbamoyl)-cyclopropane

carboxylic acid methylester ((±)-35b): The Boc-alanine benzyl ester (474 mg, 1.7 mmol,

1.5 eq.) was deprotected by treatment with HCl 3 M in ethyl acetate (15 ml) for 3 h at 0 °C.

The solution was then concentrated in vacuum, the salt resuspended in CH2Cl2 (50 ml) and
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triethylamine (236 µl, 1.7 mmol, 1.5 eq.) was added dropwise. To this solution EDC (219 mg,

1.14 mmol, 1 eq.) and HOBt (154 mg, 1.14 mmol, 1 eq.) were added. The mixture was cooled

in an ice bath, then (±)-29 (230 mg, 1.14 mmol) dissolved in CH2Cl2 (20 ml) was added. The

mixture was stirred at room temperature overnight. The solution was then concentrated in

vacuum and the product was obtained by chromatography (CHCl3/MeOH 60:1) as a white

solid (285 mg, 69 %). - Rf ((±)-35b): 0.06. - mp 106-108 °C. - 1H NMR (CDCl3, 400 MHz)

δ 1.43 (d, J = 7.2 Hz, 3H, CH3CH, 1 diast.), 1.44 (d, J = 7.2 Hz, 3H, CH3CH, 1 diast.), 1.93

(s, 3H, CH3C=O, 1 diast.), 1.96 (s, 3H, CH3O, 1 diast.), 2.29 (dd, J = 5.2, 9.9 Hz, 1H,

cyclopropyl-CH), 2.37-2.44 (m, 1H, cyclopropyl-CH), 3.68 (s, 3H, CH3O, 1 diast.), 3.69 (s,

3H, CH3O, 1 diast.), 4.03-4.12 (m, 1H, cyclopropyl-CHN), 4.55-4.63 (m, 1H, Ala-CHN),

5.14-5.23 (m, 2H, CH2O), 7.04 (d, J = 8.3 Hz, 1H, NH, 1 diast.), 7.11-7.12 (m, 3H, NH, 2 NH

of one diast. + 1 NH of the other), 7.32-7.39 (m, 5H, Ph-CH). - 13C NMR (CDCl3,

100.6 MHz) δ 17.9 (+, CH3CH, 1 diast.), 18.0 (+, CH3CH, 1 diast.), 23.20 (+, CH3C=O, 1

diast.), 23.22 (+, CH3C=O, 1 diast.), 26.90 (+, cyclopropyl-CH, 1 diast.), 26.94 (+,

cyclopropyl-CH, 1 diast.), 27.56 (+, cyclopropyl-CH, 1 diast.), 27.61 (+, cyclopropyl-CH, 1

diast.), 36.18 (+, cyclopropyl-CHN, 1 diast.), 36.20 (+, cyclopropyl-CHN, 1 diast.), 48.49 (+,

CHN, 1 diast.), 48.54 (+, CHN, 1 diast.), 52.29 (+, CH3O, 1 diast.), 52.31 (+, CH3O, 1 diast.),

67.2 (-, CH2O, 1 diast.), 67.3 (-, CH2O, 1 diast.), 128.06 (+, Ph-CH, 1 diast., 2C), 128.12 (+,

Ph-CH, 1 diast., 2C), 128.4 (+, Ph-CH), 128.6 (+, Ph-CH, 2C), 135.1 (Cquat, Ph-C), 168.4

(Cquat, C=O, 1 diast.), 168.5 (Cquat, C=O, 1 diast.), 170.71 (Cquat, C=O, 1 diast.), 170.76 (Cquat,

C=O, 1 diast.), 170.79 (Cquat, C=O, 1 diast.), 170.81 (Cquat, C=O, 1 diast.), 172.26 (Cquat, C=O,

1 diast.), 172.31 (Cquat, C=O, 1 diast). - MS  CI (NH3) m/z (%) 725 (2MH+, 6), 380 (MNH4
+,

100), 363 (MH+, 45), 348 (14). - IR (KBr) 3297, 3059, 2980, 2935, 1734, 1654, 1546, 1450,

1370, 1319, 1213 cm-1. - Anal. Calcd for C18H22N2O6 (362.38): C, 59.66; H, 6.12; N, 7.73.

Found: C, 59.55; H, 6.12; N, 7.67.

NH

CO2Me

O

Me
N

O

BnO2C

(±)-35c

(1R*, 2R*, 3R*) 2-acetylamino-3-(1S-benzyloxycarbonyl-ethyl-methylcarbamoyl)-

cyclopropane carboxylic acid methylester ((±)-35c): N-methyl Boc-alanine benzyl ester

(589 mg, 2.01 mmol, 1.5 eq.) was deprotected by treatment with HCl 3 M in ethyl acetate
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(8 ml) for 3 h at 0 °C. The solution was then concentrated in vacuum, the salt was

resuspended in CH2Cl2 (50 ml) and triethylamine (280 µl, 2.01 mmol, 1.5 eq.) was added

dropwise. To this solution EDC (257 mg, 1.34 mmol, 1 eq.) and HOBt (181 mg, 1.34 mmol,

1 eq.) were added. The mixture was cooled in an ice bath and (±)-29 (270 mg, 1.34 mmol)

dissolved in CH2Cl2 (20 ml) was added. The mixture was stirred overnight at room

temperature. The solution was then concentrated in vacuum and the product was obtained by

chromatography (CHCl3/MeOH 80:1) as a colourless oil (488 mg, 97 %). 10 % epimerisation

was observed. - Rf ((±)-35c): 0.07. - 1H NMR (CDCl3, 250 MHz) δ 1.43 (d, J = 5.7 Hz,

CH3CH, 3H, 1 diast.), 1.46 (d, J = 5.8 Hz, 3H, CH3CH, 1 diast.), 1.52 (d, J = 5.7 Hz, 3H,

CH3CH, 1 diast. epimer), 1.54 (d, J = 5.7 Hz, 3H, CH3CH, 1 diast. epimer), 1.90 (s, 3H,

CH3C=O, 1 diast. epimer), 1.91 (s, 3H, CH3C=O, 1 diast. epimer), 1.94 (s, 3H, CH3C=O, 1

diast.), 1.95 (s, 3H, CH3C=O, 1 diast.), 2.26 (dd, J = 4.9, 4.9 Hz, 1H, cyclopropyl-CH 1 diast.

epimer), 2.34 (dd, J = 4.6, 5.2 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.39 (dd, J = 4.5, 5.1 Hz,

1H, cyclopropyl-CH, 1 diast.), 2.52 (dd, J = 5.2, 8.4 Hz, 1H, cyclopropyl-CH, 1 diast.

epimer), 2.56 (dd, J = 5.3, 8.3 Hz, 1H, cyclopropyl-CH, 1 diast. epimer), 2.62 (dd, J = 4.9,

4.9 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.66 (dd, J = 4.9, 4.9 Hz, 1H, cyclopropyl-CH, 1

diast.), 2.85 (s, 3H, CH3N, 1 diast. epimer), 2.86 (s, 3H, CH3N, 1 diast. epimer), 3.08 (s, 3H,

CH3N, 1 diast.), 3.09 (s, 3H, CH3N, 1 diast.), 3.71 (s, 3H, CH3O, 1 diast. epimer + 1 diast.),

3.72 (s, 3H, CH3O, 1 diast.), 3.76 (s, 3H, CH3O, 1 diast. epimer), 3.99-4.08 (m, 1H,

cyclopropyl-CHN), 5.07-5.20 (m, 3H, CH2O + CHN), 6.58 (d, J = 7.5 Hz, 1H, NH, 1 diast.

epimer), 6.88 (d, J = 7.3 Hz, 1H, NH, 1 diast.), 7.00 (d, J = 7.5 Hz, 1H, NH, 1 diast. epimer),

7.11 (d, J = 7.2 Hz, 1H, NH, 1 diast.), 7.29-7.38 (m, 5H, Ph-CH). - 13C NMR (CDCl3,

62.9 MHz) δ 14.3 (+, CH3CH, 1 diast.), 14.5 (+, CH3CH, 1 diast.), 15.6 (+, CH3CH, 1 diast.

epimer), 23.1 (+, CH3C=O, 1 diast. + epimer), 23.2 (+, CH3C=O, 1 diast. + epimer), 24.8 (+,

cyclopropyl-CH, 1 diast. epimer), 24.9 (+, cyclopropyl-CH, 1 diast.), 25.4 (+, cyclopropyl-

CH, 1 diast. epimer), 25.8 (+, cyclopropyl-CH, 1 diast.), 27.6 (+, cyclopropyl-CH, 1 diast.),

27.9 (+, cyclopropyl-CH, 1 diast.), 28.0 (+, cyclopropyl-CH, 1 diast. epimer), 28.8 (+,

cyclopropyl-CH, 1 diast. epimer), 29.3 (+, CH3N, 1 diast. epimer), 29.5 (+, CH3N, 1 diast.

epimer), 32.2 (+, CH3N,1 diast.), 32.5 (+, CH3N,1 diast.), 36.1 (+, cyclopropyl-CHN, 1 diast.

epimer), 36.4 (+, cyclopropyl-CHN, 1 diast.), 36.6 (+, cyclopropyl-CHN, 1 diast. epimer),

36.7 (+, cyclopropyl-CHN, 1 diast.), 52.3 (+, CH3O, 1 diast. + epimer), 52.37 (+, CH3O, 1

diast. + 1 diast. epimer), 53.18 (+, CHN, 1 diast ), 53.22 (+, CHN, 1 diast.), 55.5 (+, CHN, 1

diast. epimer), 55.6 (+, CHN, 1 diast. epimer), 67.06 (-, CH2O, 1 diast.), 67.15 (-, CH2O, 1

diast.), 67.5 (-, CH2O, 1 diast. epimer), 67.6 (+, CH2O, 1 diast. epimer), 128.1-135.5
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(Aromatics CH and Cquat), 168.8 (Cquat, C=O, 1 diast. + 1 diast. epimer), 169.2 (Cquat, C=O, 1

diast. + 1 diast. epimer), 170.6 (Cquat, C=O, 1 diast. + 1 diast. epimer), 170.91 (Cquat, C=O, 1

diast. + 1 diast. epimer), 170.97 (Cquat, C=O, 1 diast. + 1 diast. epimer), 171.0 (Cquat, C=O, 1

diast. + epimer), 171.1 (Cquat, C=O, 1 diast. + 1 diast. epimer), 171.3 (Cquat, C=O, 1 diast. + 1

diast. epimer). - MS  CI (NH3) m/z (%) 753 (2MH+, 4), 394 (MNH4
+, 53), 377 (MH+, 100),

301 (MH+-Phenyl, 6). - IR (CH2Cl2) 3373, 1732, 1679, 1634, 1606 cm-1. - Anal. Calcd for

C19H24N2O6 ⋅ 0.33 H2O (381.81): C, 59.77; H, 6.49; N, 7.34. Found: C, 59.76; H, 6.51; N,

7.34. - HR MS  calcd for C19H24N2O6 376.16344, found 376.16285.

CO2Me

N
H

O
BocHN

H
N

O

CO2Bn

CO2Me

N
H
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H
N

O

CO2Bn

(1R, 2R, 3R) and (1S, 2S, 3S) 2-(1S-Benzyloxycarbonyl-ethylcarbamoyl)-3-(2S-tert-

butyloxycarbonylamino-propionyl)-cyclopropane carboxylic acid methyl ester ((+)-36a

and (-)-36a): The N-Boc alanine benzyl ester (381 mg, 1.36 mmol, 1.5 eq.) was deprotected

by treatment with HCl 3 M in ethyl acetate (4 ml) for 3 h at 0 °C. The solution was then

concentrated in vacuum, the salt resuspended in CH2Cl2 (50 ml) and triethylamine (190 µl,

1.36 mmol, 1.5 eq.) was added dropwise. To this mixture EDC (175 mg, 0.91 mmol, 1 eq.)

and HOBt (123 mg, 0.91 mmol, 1 eq.) were added. The mixture was cooled in an ice bath,

then (±)-30a (300 mg, 0.91 mmol) dissolved in CH2Cl2 (20 ml) was added. The mixture was

stirred overnight at room temperature. The solution was then concentrated in vacuum and the

product was obtained by chromatography (CHCl3/MeOH 40:1) as a white solid (410 mg,

92 %, a mixture of two diastereomer). The two diastereomers can be separated by

recrystallization from ethyl acetate/hexanes. The pure diastereomers can be obtained with the

same procedure from diastereomerically pure 30a (yield 92 % for (+)-36a and 90 % for

(-)-36a). – (+)-36a: Rf ((+)-36a): 0.17. - mp 157-159 °C. - [ ]21
Dα  -18.7 ° (c 1, CHCl3). -

1H NMR (CDCl3, 250 MHz) δ 1.32 (d, J = 7.1 Hz, 3H, CH3CH), 1,40 (d, J = 7.5 Hz, 3H,

CH3CH), 1.43 (s, 9H, (CH3)3C), 2.31 (dd, J = 4.8, 4.9 Hz, 1H, cyclopropyl-CH), 2.39 (dd, J =

5.2, 8.2 Hz, 1H, cyclopropyl-CH), 3.69 (s, 3H, CH3O), 4.01-4.14 (m, 2H, CHN), 4.59 (dq, J =

7.2, 7.2 Hz, 1H, CHN), 5.06 (d, J = 7.3 Hz, 1H, NHBoc), 5.12-5.23 (m, 2H, CH2O), 6.90 (d,

J = 7.3 Hz, 1H, NH), 7.33-7.37 (m, 5H, Ph-CH), 7.61 (d, J = 8.2 Hz, 1H, NH). - 13C NMR

(CDCl3, 62.9 MHz) δ 18.2 (+, CH3CH), 18.8 (+, CH3CH), 27.2 (+, cyclopropyl-CH), 27.6 (+,

(+)-36a (-)-36a
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cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 36.1 (+, cyclopropyl-CHN), 48.5 (+, CHN), 50.3 (+,

CHN), 52.4 (+, CH3O), 67.4 (-, CH2O), 80.0 (Cquat, (CH3)3C), 128.2 (+, Ph-CH, 2C), 128.5 (+,

Ph-CH), 128.7 (+, Ph-CH, 2C), 135.2 (Cquat, Ph-C), 155.2 (Cquat, N(CO)O), 168.2 (Cquat,

C=O), 170.7 (Cquat, C=O), 172.5 (Cquat, C=O), 173.4 (Cquat, C=O). - MS  CI (NH3) m/z (%)

509 (MNH4
+, 50), 492 (MH+, 78), 392 (MH+-Boc, 30), 293 (37), 279 (100), 182 (44). - IR

(KBr) 3331, 3294, 2983, 1739, 1657, 1538, 1451 cm-1. - Anal. Calcd for C24H33N3O8

(491.54): C, 58.64; H, 6.77; N, 8.55. Found: C, 58.70; H, 6.74; N, 8.44. – (-)-36a: Rf

((-)-36a): 0.17. - mp 65-67 °C. - [ ]α D
r t. .  -21.6 ° (c 1, CHCl3). - 1H NMR (CDCl3, 250 MHz)

δ 1.30 (d, J = 7.1 Hz, 3H, CH3CH), 1,43 (d, J = 7.0 Hz, 3H, CH3CH), 1.42 (s, 9H, (CH3)3C),

2.32 (dd, J = 4.8, 4.8 Hz, 1H, cyclopropyl-CH), 2.42 (dd, J = 5.1, 8.3 Hz, 1H, cyclopropyl-

CH), 3.70 (s, 3H, CH3O), 4.01 (ddd, J = 4.5, 8.0, 8.0 Hz, 1H, cyclopropyl-CHN), 4.07-4.16

(m, 1H, CHN), 4.57 (dq, J = 7.2, 7.2 Hz, 1H, CHN), 5.04 (s br, 1H, NH), 5.13-5.23 (m, 2H,

CH2O), 6.85 (d, J = 7.2 Hz, 1H, NH), 7.29-7.36 (m, 6H, Ph-CH + NH). - 13C NMR (CDCl3,

62.9 MHz) δ 17.9 (+, CH3CH), 18.6 (+, CH3CH), 27.4 (+, cyclopropyl-CH), 27.5 (+,

cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 36.0 (+, cyclopropyl-CHN), 48.5 (+, CHN), 48.7 (+,

CHN), 52.4 (+, CH3O), 67.4 (-, CH2O), 80.0 (Cquat, (CH3)3C), 128.2 (+, Ph-CH, 2C), 128.6 (+,

Ph-CH), 128.7 (+, Ph-CH, 2C), 135.2 (Cquat, Ph-C), 155.2 (Cquat, N(CO)O), 168.0 (Cquat,

C=O), 170.8 (Cquat, C=O), 172.4 (Cquat, C=O), 173.0 (Cquat, C=O). - MS  CI (NH3) m/z (%)

1000 (2MNH4
+, <1), 983 (2MH+, <1), 883 (2MH+-Boc, <1), 509 (MNH4

+, 70), 492 (MH+,

100), 477 (88), 392 (MH+-Boc, 69), 279 (82). - IR (KBr) 3321, 3281, 2983, 1739, 1664, 1539,

1520, 1457 cm-1. - Anal. Calcd for C24H33N3O8 (491.54): C, 58.64; H, 6.77; N, 8.55. Found:

C, 58.36; H, 6.67; N, 8.49.
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(1R, 2R, 3R) and (1S, 2S, 3S) 2-[(1S-Benzyloxycarbonyl-ethyl)-methyl-carbamoyl]-3-(2S-

tert-butyloxycarbonylamino-propionyl)-cyclopropane carboxylic acid methyl ester

((+)-36b and (-)-36b): N-methyl Boc-alanine benzyl ester (510 mg, 1.74 mmol, 1.5 eq.) was

deprotected by treatment with HCl 3 M in ethyl acetate (10 ml) for 3 h at 0 °C. Then the

solution was concentrated in vacuum, the salt was resuspended in CH2Cl2 (50 ml) and

triethylamine (201 µl, 1.4 mmol, 1.7 eq.) was added dropwise. To this mixture EDC (180 mg,

(+)-36b (-)-36b
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0.93 mmol, 1.1 eq.) and HOBt (125 mg, 0.93 mmol, 1.1 eq.) were added. The mixture was

cooled in an ice bath, then (±)-30a (280 mg, 0.85 mmol) dissolved in CH2Cl2 (20 ml) was

added. The mixture was stirred overnight at room temperature. The solution was then

concentrated in vacuum and the product was obtained by chromatography (CHCl3/MeOH

60:1) as a white solid (337 mg, 78 %, a mixture of two diastereomer). The two diastereomers

can be obtained pure by reacting the diastereomerically pure acid with the same procedure

described before and with the same yields. - Rf (36b): 0.16. – (+)-36b: mp 52-54 °C. - [ ]21
Dα

-59.3 ° (c 1, MeOH). - 1H NMR (CDCl3, 400 MHz) δ  1.32 (d, J = 7.1 Hz, 3H, CH3CH), 1.40

(d, J = 7.4 Hz, 3H, CH3CH), 1.43 (s, 9H, (CH3)3C), 2.36 (dd, J = 4.9, 4.9 Hz, 1H,

cyclopropyl-CH), 2.62 (dd, J = 5.3, 8.3 Hz, 1H, cyclopropyl-CH), 3.05 (s, 3H, CH3N), 3.72

(s, 3H, CH3O), 4.03 (ddd, J = 4.4, 8.0, 8.0 Hz, 1H, cyclopropyl-CHN), 4.09-4.15 (m, 1H,

CHN), 4.99 (d, J = 7.0 Hz, 1H, NH), 5.16 (s, 2H, CH2O), 5.19-5.23 (m, 1H, CHN), 7.33-7.36

(m, 5H, Ph-CH), 7.64 (d, J = 7.5 Hz, 1H, NH). - 13C NMR (CDCl3, 100.6 MHz) δ 14.5 (+,

CH3CH), 18.8 (+, CH3CH), 24.7 (+, cyclopropyl-CH), 28.0 (+, cyclopropyl-CH), 28.3 (+,

(CH3)3C, 3C), 32.0 (+, CH3N), 36.6 (+, cyclopropyl-CHN), 52.4 (+, CHN), 52.6 (+, CH3O),

55.6 ( +, CHN), 67.1 (-, CH2O), 80.0 (Cquat, C(CH3)3), 128.1 (+, Ph-CH, 2C), 128.4 (+, Ph-

CH), 128.6 (+, Ph-CH, 2C), 135.5 (Cquat, Ph-C), 155.1 (Cquat, N(C=O)O), 169.1(Cquat, C=O),

170.9 (Cquat, C=O), 171.2 (Cquat, C=O), 173.4 (Cquat, C=O). - MS  FAB (NBA/CH2Cl2) m/z

(%) 1011 (2M+, 9), 506 (MH+, 100), 317 (32), 307 (37). - IR (CH2Cl2) 3322,2980, 1737,

1676, 1640, 1519 cm-1. - Anal. Calcd for C25H35N3O8 (505.57): C, 59.39; H, 6.98; N, 8.31.

Found: C, 59.14; H, 7.11; N, 8.19. – (-)-36b: mp not measurable, very hygroscopic. - [ ]21
Dα

-52.5 (c 1, MeOH). - 1H NMR (CDCl3, 400 MHz) δ  1.30 (d, J = 7.1 Hz, 3H, CH3CH), 1.43-

1.46 (d, J = not measurable: it lays under the Boc signal, 3H, CH3CH), 1.43 (s, 9H, (CH3)3C),

2.43-2.45 (m, 1H, cyclopropyl-CH), 2.66 (dd, J = 5.2, 8.4 Hz, 1H, cyclopropyl-CH), 3.07 (s,

3H, CH3N), 3.72 (s, 3H, CH3O), 3.99 (ddd, J = 4.3, 8.0, 8.0 Hz, 1H, cyclopropyl-CHN), 4.16-

4.18 (m, 1H, CHN), 5.09-5.21 (m, 4H, CH2O + CHN + NH), 7.18 (d, J = 6.3 Hz, 1H, NH),

7.34-7.36 (m, 5H, Ph-CH). - 13C NMR (CDCl3, 100.6 MHz) δ 14.3 (+, CH3CH), 18.5 (+,

CH3CH), 26.5 (+, cyclopropyl-CH), 27.2 (+, cyclopropyl-CH), 28.3 (+, (CH3)3C, 3C), 31.9

(+, CH3N), 36.1 (+, cyclopropyl-CHN), 52.4 (+, CHN), 53.0 (+, CH3O), 55.5 ( +, CHN), 67.2

(-, CH2O), 79.9 (Cquat, C(CH3)3), 128.1 (+, Ph-CH, 2C), 128.5 (+, Ph-CH), 128.8 (+, Ph-CH,

2C), 135.3 (Cquat, Ph-C), 155.3 (Cquat, N(C=O)O), 168.4 (Cquat, C=O), 170.9 (Cquat, C=O),

171.6 (Cquat, C=O), 173.7 (Cquat, C=O). - MS  FAB (MeOH/Glycerine) m/z (%) 506 (MH+,

100), 450 (MH+-tBu, 42), 407 (MH+-Boc, 75), 317 (69). - IR (CDCl3) 3431, 3370, 2982,
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1727, 1685, 1639, 1494 cm-1. - HR MS  calcd for C25H35 N3O8 + H506.25024, found

506.24853.
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(+)-37a

(1R, 2R, 3R) 2-[1S-(1S-Benzyloxycarbonyl-2-phenyl-ethylcarbamoyl)-ethylcarbamoyl]-3-[2S-

(2S-tert-butoxycarbonylamino-3-phenyl-propionylamino)-propionylamino]-cyclopropane

carboxylic acid methyl ester ((+)-37a): Boc-phenylalanylalanine benzyl ester (492 mg,

1.15 mmol, 1.1 eq.) was deprotected by treatment with HCl 3 M in ethyl acetate (20 ml) for

3 h at 0 °C. The solution was concentrated in vacuum, the salt was resuspended in CH2Cl2

(50 ml) and triethylamine (160 µl, 1.15 mmol, 1.1 eq.) was added dropwise. To this mixture

EDC (201 mg, 1.05 mmol, 1 eq.) and HOBt (142 mg, 1.05 mmol, 1 eq.) were added. The

mixture was cooled in an ice bath, then (+)-31a acid (500 mg, 1.05 mmol) dissolved in

CH2Cl2 (20 ml) was added. The mixture was stirred overnight at room temperature. The

solution was concentrated in vacuum and the product was obtained by chromatography

(CHCl3/MeOH 20:1) as a white solid (820 mg, 99 %). - Rf ((+)-37a): 0.27. - mp 185-186 °C. -

[ ]α D
r t. .  -56.0 (c 1, MeOH). - 1H NMR (CD3OD, 250 MHz) δ 1.19 (d, J = 7.1 Hz, 3H, CH3CH),

1.29 (d, J = 7.1 Hz, 3H, CH3CH), 1.34 (s, 9H, (CH3)3C), 2.38-2.48 (m, 2H, cyclopropyl-CH),

2.80 (dd, J = 13.7, 9.7 Hz, 1H, CH2Ph), 2.98 (dd, J = 13.8, 8.0 Hz, 1H, CH2Ph), 3.08-3.18 (m,

2H, CH2Ph), 3.61 (dd, J 8.4, 4.7 Hz, 1H, cyclopropyl-CHN), 3.73 (s, 3H, CH3O), 4.25-4.33

(m, 3H, CHN), 4.65 (dd, J = 7.9, 6.2 Hz, 1H, CHN), 5.10 (s, 2H, CH2O), 7.09-7.36 (m, 15H,

Ph-CH). - 13C NMR (CD3OD, 62.9 MHz) δ 17.8 (+, CH3CH), 18.0 (+, CH3CH), 27.4 (+,

cyclopropyl-CH), 28.6 (+, (CH3)3C, 3C), 29.3 (+, cyclopropyl-CH), 36.7 (+, cyclopropyl-

CHN), 38.3 (-, CH2Ph), 39.1 (-, CH2Ph), 50.3 (+, CHN), 50.4 (+, CHN), 55.3 (+, CHN), 57.2

(+, CHN), 68.1 (-, CH2O), 80.7 (Cquat, C(CH3)3), 127.7 (+, Ph-CH), 127.8 (+, Ph-CH), 129.37

(+, Ph-CH), 129.42 (+, Ph-CH, 2C) 129.47 (+, Ph-CH, 2C), 129.49 (+, Ph-CH, 2C), 129.6 (+,

Ph-CH, 2C), 130.4 (+, Ph-CH, 2C), 130.5 (+, Ph-CH, 2C), 137.0 (Cquat, Ph-C), 137.9 (Cquat,

Ph-C), 138.7 (Cquat, Ph-C), 157.6 (Cquat, C=O Boc), 169.1 (Cquat, C=O), 172.4 (Cquat, C=O),

172.6 (Cquat, C=O), 174.1 (Cquat, C=O), 174.5 (Cquat, C=O), 175.6 (Cquat, C=O). - MS FAB

(Glycerin/MeOH) m/z (%) 786 (MH+, 40), 686 (MH+-Boc). - IR (KBr) 3302, 3064, 2978,
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1734, 1649, 1526, 1453 cm-1. - Anal. Calcd for C42H51N5O10 (785.89): C, 64.19; H, 6.54; N,

8.91. Found: C, 64.09; H, 6.54; N, 8.88.
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(-)-37a

(1S, 2S, 3S) 2-[1S-(1S-Benzyloxycarbonyl-2-phenyl-ethylcarbamoyl)-ethylcarbamoyl]-

3-[2S-(2S-tert-butoxycarbonylamino-3-phenyl-propionylamino)-propionylamino]-

cyclopropane carboxylic acid methyl ester ((-)-37a) : Boc-phenylalanylalanine benzyl ester

(492 mg, 1.15 mmol, 1 eq.) was deprotected by treatment with HCl 3 M in ethyl acetate

(15 ml) for 3 h at 0 °C. Then the solution was concentrated in vacuum, the salt resuspended in

CH2Cl2 (50 ml) and triethylamine (160 µl, 1.15 mmol, 1.1 eq.) was added dropwise. To this

mixture EDC (201 mg, 1.05 mmol, 1 eq.) and HOBt (142 mg, 1.05 mmol, 1 eq.) were added.

The mixture was cooled in an ice bath, then (-)-31a (500 mg, 1.05 mmol) dissolved in CH2Cl2

(20 ml) was added. The mixture was stirred overnight at room temperature. The solution was

then concentrated in vacuum and the product was obtained by chromatography

(CHCl3/MeOH 25:1) as a white solid (700 mg, 85 %). - Rf ((-)-37a): 0.31. - mp 52-54 °C. -

[ ]α D
r t. .  -34.0 ° (c 1, CHCl3). - 1H NMR (CDCl3, 400 MHz) δ 1.25 (d, J = 7.0 Hz, 3H, CH3CH),

1.30 (d, J = 7.0 Hz, 3H, CH3CH), 1.36 (s, 9H, (CH3)3C), 2.32-2.33 (m, 2H, cyclopropyl-CH),

2.99-3.08 (m, 1H, CH2Ph), 3.10-3.15, m, 2H, CH2Ph), 3.21 (dd, J = 5.8, 13.6, 1H, CH2Ph),

3.71 (s, 3H, CH3O), 3.78 (dd, J = 6.3, 12.2 , 1H, cyclopropyl-CHN), 4.40-4.49 (m, 3H, CHN),

4.86 ( dd, J = 6.4, 13.7 , 1H, CHN), 5.03 (d, J = 7.8 Hz, 1H, NH), 5.14 (d, J = 12.2 Hz, 1H,

CH2O), 5.20 (d, J = 12.2 Hz, 1H, CH2O), 6.49 (d, J = 7.3 Hz, 1H, NH), 6.83 (d, J = 6.2 Hz,

1H, NH), 6.92 (d, J = 7.5 Hz, 1H, NH), 7.06 (s br, 1H, NH), 7.17-7.38 (m, 15H, Ph-CH). -
13C NMR (CDCl3, 100.6 MHz) δ 17.7 (+, CH3CH), 18.0 (+, CH3CH), 27.5 (+, cyclopropyl-

CH), 27.9 (+, cyclopropyl-CH), 28.2 (+, (CH3)3C, 3C), 35.7 (+, CHN), 37.3 (-, CH2Ph), 38.2

(-, CH2Ph), 48.7 (+, CHN), 49.0 (+, CHN), 52.4 (+, CH3O), 53.3 (+, CHN), 53.6 (+, CHN),

67.6 (-, CH2O), 80.0 (Cquat, C(CH3)3), 126.9 (+, Ph-CH), 127.2 (+, Ph-CH), 128.51 (+, Ph-CH,

2C), 128.53 (+, Ph-CH, 2C), 128.55 (+, Ph-CH), 128.56 (+, Ph-CH, 2C), 128.6 (+, Ph-CH,

2C), 129.31 (+, Ph-CH, 2C), 129.35 (+, Ph-CH, 2C), 134.9 (Cquat, Ph-C), 135.7 (Cquat, Ph-C),

136.7 (Cquat, Ph-C), 155.4 (Cquat, C=O Boc), 167.7 (Cquat, C=O), 170.7 (Cquat, C=O), 171.31

(Cquat, C=O), 171.34 (Cquat, C=O), 171.7 (Cquat, C=O), 172.9 (Cquat, C=O). - MS  FAB
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(NBA/CH2Cl2) m/z (%) 1571 (2MH+, 5), 786 (MH+, 82), 686 (M+-Boc, 100), 450 (19), 307

(59), 289 (24). - IR (KBr) 3300, 3062, 2978, 1727, 1659, 1641, 1529, 1170 cm-1. - Anal.

Calcd for C42H51N5O10 . 0.5H2O (794.90): C, 63.46; H, 6.59; N, 8.81. Found: C, 63.49; H,

6.61; N, 8.75.
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(+)-37b

(1R, 2R, 3R) 2-[1S-(Methyloxycarbonyl-methyl-carbamoyl)-ethylcarbamoyl]-3-[2S-(tert-

butoxycarbonylamino-acetylamino)-propionylamino]-cyclopropane carboxylic acid

methyl ester ((+)-37b): Boc-glycylalanine methyl ester (227 mg, 1.16 mmol, 1.5 eq.) was

deprotected by treatment with HCl 3 M in ethyl acetate (10 ml) for 3 h at 0 °C. The solution

was concentrated in vacuum, the salt was resuspended in CH2Cl2 (50 ml) and triethylamine

(161 µl, 1.16 mmol, 1.5 eq.) was added dropwise. To this mixture EDC (163 mg, 0.85 mmol,

1.1 eq.) and HOBt (114 mg, 0.85 mmol, 1.1 eq.) were added. The mixture was cooled in an

ice bath, then (+)-31b (300 mg, 0.77 mmol, 1 eq.) dissolved in CH2Cl2 (30 ml) was added.

The addition of DMF (6 ml) ensured solubilisation. The mixture was stirred overnight at room

temperature. The solution was then concentrated in vacuum and the product was obtained by

chromatography (CHCl3/MeOH 20:1) as a white solid (328 mg, 80 %). The product could be

recrystallized from ethyl acetate/MeOH/hexanes. - Rf ((+)-37b): 0.05. - mp 180-182 °C. -

[ ]21
Dα  -76.7 (c 1, CH3OH). - 1H NMR (CD3OD, 250 MHz) δ 1.31 (d, J = 7.2 Hz, 3H, CH3CH),

1.36 (d, J = 7.2 Hz, 3H, CH3CH), 1.45 (s, 9H, (CH3)3C), 2.41 (dd, J = 5.1, 5.1 Hz, 1H,

cyclopropyl-CH), 2.52 (dd, J = 5.4, 8.2 Hz, 1H, cyclopropyl-CH), 3.65-3.78 (m, 3H,

cyclopropyl-CHN + CH2N), 3.70 (s, 3H, CH3O), 3.71 (s, 3H, CH3O), 3.94-3.97 (m, 2H,

CH2N), 4.32 (q, J = 7.2 Hz, 1H, CHN), 4.39 (q, J = 7.2 Hz, 1H, CHN). - 13C NMR (CD3OD,

62.9 MHz) δ 18.0 (+, CH3CH), 18.1 (+, CH3CH), 27.4 (+, cyclopropyl-CH), 28.8 (+,

(CH3)3C, 3C), 29.3 (+, cyclopropyl-CH), 36.6 (+, cyclopropyl-CHN), 41.9 (-, CH2N), 44.6 (-,

CH2N), 50.4 (+, CHN), 50.6 (+, CHN), 52.7 (+, CH3O), 52.9 (+, CH3O), 80.8 (Cquat,

(CH3)3C), 158.4 (Cquat, N(CO)O), 169.4 (Cquat, C=O), 171.7 (Cquat, C=O), 172.3 (Cquat, C=O),

172.4 (Cquat, C=O), 175.6 (Cquat, C=O), 175.7 (Cquat, C=O). - MS  FAB (Glycerin/MeOH) m/z

(%) 1060 (2MH+, 7), 530 (MH+, 71), 430 (MH+-Boc, 80), 285 (100). - IR (KBr) 3300, 3079,
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2981, 1734, 1654, 1532, 1449 cm-1. - Anal. Calcd for C22H35N5O10 (529.546): C, 49.90; H,

6.66; N, 13.20. Found: C, 49.55; H, 6.59; N, 13.02.

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Me

(-)-37b

(1S, 2S, 3S) 2-[1S-(Methyloxycarbonyl-methyl-carbamoyl)-ethylcarbamoyl]-3-[2S-(tert-

butoxycarbonylamino-acetylamino)-propionylamino]-cyclopropane carboxylic acid

methyl ester ((-)-37b): Boc-glycylalanine benzyl ester (253 mg, 1.58 mmol, 1.4 eq.) was

deprotected by treatment with HCl 3 M in ethyl acetate (5 ml) for 3 h at 0 °C. Then the

solution was concentrated in vacuum, the salt was resuspended in CH2Cl2 (50 ml) and

triethylamine (220 µl, 1.58 mmol, 1.4 eq.) was added dropwise. To this mixture EDC

(303 mg, 1.58 mmol, 1.4 eq.) and HOBt (213 mg, 1.58 mmol, 1.4 eq.) were added. The

mixture was cooled in an ice bath and (-)-31b (442 mg, 1.14 mmol, 1 eq.) dissolved in

CH2Cl2 (30 ml) was added. The addition of DMF (4 ml) ensured solubilisation. The mixture

was stirred at room temperature overnight. The solution was then concentrated in vacuum and

the product was obtained by chromatography (CHCl3/MeOH 20:1) as a white solid (560 mg,

93 %). - Rf ((-)-37b): 0.06. - mp 88-90 °C. - [ ]21
Dα  -64.8 (c 1, CH3OH). - 1H NMR (CD3OD,

250 MHz) δ 1.29 (d, J = 7.2 Hz, 3H, CH3CH), 1.38 (d, J = 7.2 Hz, 3H, CH3CH), 1.44 (s, 9H,

(CH3)3C), 2.36 (dd, J = 4.8, 4.8 Hz, 1H, cyclopropyl-CH), 2.51 (dd, J = 5.3, 8.1 Hz, 1H,

cyclopropyl-CH), 3.51 (dd, J = 4.2, 8.0 Hz, 1H, cyclopropyl-CHN), 3.70 (s, 3H, CH3O), 3.72

(s, 3H, CH3O), 3.70-3.72 (m, 2H, CH2N), 3.93-4.00 (m, 2H, CH2N), 4.33 (q, J = 7.3 Hz, 1H,

CHN), 4.40 (q, J = 7.3 Hz, 1H, CHN). - 13C NMR (CD3OD, 62.9 MHz) δ 17.6 (+, CH3CH),

17.8 (+, CH3CH), 27.8 (+, cyclopropyl-CH), 28.7 (+, (CH3)3C, 3C), 29.2 (+, cyclopropyl-

CH), 36.4 (+, cyclopropyl-CHN), 41.9 (-, CH2N), 44.8 (-, CH2N), 50.46 (+, CHN), 50.53 (+,

CHN), 52.8 (+, CH3O), 52.9 (+, CH3O), 80.8 (Cquat, (CH3)3C), 158.1 (Cquat, N(CO)O), 169.4

(Cquat, C=O), 171.9 (Cquat, C=O), 172.4 (Cquat, C=O), 172.5 (Cquat, C=O), 175.6 (Cquat, C=O),

176.1 (Cquat, C=O). - MS  FAB (Glycerin/MeOH) m/z (%) 1060 (2MH+, 9), 530 (MH+, 82),

430 (MH+-Boc, 45), 153 (100). - IR (KBr) 3319, 2982, 1734, 1662, 1654, 1539, 1449 cm-1. -

HR MS  calcd for C22H35N5O10 + H 530.24622, found 530.24923.
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N
H

CO2Me
OH
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O
BocHN

H
N

O
N
H

O

CO2Bn

PhH2C CH2Ph

N
H

CO2Me
OH

N

O
BocHN

H
N

O
N
H

O

CO2Bn

PhH2C CH2Ph

(1R*, 2R*, 3S*) 2-[1S-(1S-Benzyloxycarbonyl-2-phenyl-ethylcarbamoyl)-ethylcarbamoyl]-

3-[2S-(2S-tert-butoxycarbonylamino-3-phenyl-propionylamino)-propionylamino]-

cyclopropane carboxylic acid methyl ester ((±)-38): Boc-phenylalanylalanine benzyl ester

(552 mg, 1.3 mmol, 1.1 eq.) was deprotected by treatment with HCl 3 M in ethyl acetate (5 ml)

for 3h at 0 °C. Then the solution was concentrated in vacuum, the salt was resuspended in

CH2Cl2 (50 ml) and triethylamine (180 µl, 1.3 mmol, 1 eq.) was added dropwise. To this

mixture EDC (226 mg, 1.18 mmol, 1 eq.) and HOBt (159 mg, 1.18 mmol, 1 eq.) were added.

The solution was cooled in an ice bath, then (±)-32 (567 mg, 1.18 mmol, 1 eq.) dissolved in

CH2Cl2 (20 ml) was added. The mixture was stirred at room temperature overnight. The

solution was then concentrated in vacuum and the product was obtained by chromatography

(CHCl3/MeOH 25:1) as a white solid (830 mg, 90 %). The two diastereomers can be almost

completely separated by several recrystallizations performed by cooling down their solution in

CHCl3/MeOH at -18 °C overnight. – Recrystallized isomer - Rf : 0.30. - mp 300 °C decomp. -

[ ]α D
r t. .  not measurable because of solubility problems. - 1H NMR (DMSO-d6, 250 MHz) δ 1.13

(d, J = 7.0 Hz, 3H, CH3CH), 1.19 (d, J = 6.7 Hz, 3H, CH3CH), 1.27 (s, 9H, (CH3)3C), 2.11 (dd,

J = 5.2, 7.9 Hz, 1H, cyclopropyl-CH), 2.68 (dd, J = 10.6, 13.7 Hz, 1H, cyclopropyl-CH), 2.96-

3.04 (m, 4H, CH2Ph), 3.23-3.40 (m , 1H, cyclopropyl-CHN), 3.57 (s, 3H, CH3O), 4.12-4.18 (m,

1H, CHN), 4.27-4.36 (m , 1H, CHN), 4.48 (dd, J = 7.2, 14.2 Hz, 1H, CHN), 5.04 (dd, J = 7.2,

14.2 Hz, 1H, CHN), 4.94-5.09 (m, 2H, CH2O),  6.92 (d, J = 8.6 Hz, 1H, NH), 7.16-7.25 (m,

12H, Ph-CH), 7.30-7.33 (m, 3H, Ph-CH), 7.99 (d, J = 7.5 Hz, 1H, NH), 8.16 (d, J = 4.8 Hz, 1H,

NH), 8.42 (d, J = 7.3 Hz, 1H, NH), 8.62 (d, J = 7.6 Hz, 1H, NH). - 13C NMR (DMSO-d6, 250

MHz) δ 18.1 (+, CH3CH), 18.4 (+, CH3CH), 26.3 (+, cyclopropyl-CH), 27.6 (+, cyclopropyl-

CH), 28.1 (+, (CH3)3C, 3C), 34.7 (+, CHN), 36.5 (-, CH2Ph), 37.3 (-, CH2Ph), 48.0 (+, CHN,

2C), 51.8 (+, CH3O), 53.7 (+, CHN), 55.6 (+, CHN), 66.0 (-, CH2O), 78.1 (Cquat., C(CH3)3),

(+)-38

(-)-38
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126.1 (+, Ph-CH), 126.5 (+, Ph-CH), 127.8 (+, Ph-CH, 2C), 127.9 (+, Ph-CH, 2C), 128.0 (+,

Ph-CH), 128.2 (+, Ph-CH, 2C), 128.3 (+, Ph-CH, 2C), 129.0 (+, Ph-CH, 2C), 129.2 (+, Ph-CH,

2C), 135.7 (Cquat., Ph-C), 136.9 (Cquat., Ph-C), 138.2 (Cquat., Ph-C), 155.2 (Cquat., N(CO)O), 167.4

(Cquat., C=O), 168.7 (Cquat., C=O), 171.1 ( C=O), 171.2 (Cquat., C=O), 172.1 (Cquat., C=O), 173.2

(Cquat., C=O). - MS  FAB (NBA/CH2Cl2) m/z (%) 1572 (2MH+, <1), 787 (MH+, 9), 687 (MH+-

Boc, 19), 307 (32), 154 (100). - IR (KBr) 3329, 3286, 3061, 2977, 1754, 1717, 1689, 1640,

1530, 1453, 1368 cm-1. - Anal. Calcd for C42H51N5O10 (785.89): C, 64.19; H, 6.54; N, 8.91.

Found: C, 63.99; H, 6.58; N, 8.83. – Isomer isolated in the mother liquor - Rf : 0.30. - mp

207-209 °C. - 1H NMR (CDCl3, 400 MHz) δ 1.13 (d, J = 7.0 Hz, 6H, CH3CH), 1.27 (s, 9H,

(CH3)3C), 2.08 (dd, J = 5.2, 7.9 Hz, 1H, cyclopropyl-CH), 2.55 (dd, J = 5.1, 5.1 Hz, 1H,

cyclopropyl-CH), 2.68 (dd, J = 11.1, 13.1 Hz, 1H, CH2Ph), 2.89-3.07 (m, 3H, CH2Ph), 3.30-

3.40 (m, 1H, cyclopropyl-CHN), 3.57 (s, 3H, CH3O), 4.10-4.17 ( m, 1H, CHN), 4.23-4.35 ( m,

2H, CHN), 4.46 (dd, J = 7.9, 14.2 Hz, 1H, CHN), 5.02 (d, J = 15.9 Hz, 1H, CH2O), 5.07 (d, J =

15.9 Hz, 1H, CH2Ph), 6.91 (d, J = 8.6 Hz, 1H, NH), 7.17-7.23 (m, 15H, Ph-CH), 7.99 (d, J =

7.6 Hz, 1H, NH), 8.30 (d, J = 4.7 Hz, 1H, NH), 8.40 (d, J = 7.5 Hz, 1H, NH), 8.66 (d, J =

7.8 Hz, 1H, NH). - 13C NMR (CDCl3, 100.6 MHz) δ 18.1 (+, CH3CH), 18.4 (+, CH3CH), 26.7

(+cyclopropyl-CH), 27.2 (+, cyclopropyl-CH), 28.1 (+, (CH3)3C, 3C), 34.4 (+, cyclopropyl-

CHN), 36.4 (-, CH2Ph), 37.3 (-, CH2Ph), 47.7 (+, CHN), 47.9 (+, CHN), 51.7 (+, CH3O), 53.7

(+, CHN), 55.6 (+, CHN), 65.9 (-, CH2O), 78.0 (Cquat, C(CH3)3), 126.1 (+, Ph-CH), 126.5 (+,

Ph-CH), 127.8 (+, Ph-CH, 2C), 127.9 (+, Ph-CH, 2C), 128.0 (+, Ph-CH), 128.2 (+, Ph-CH, 2C),

128.3 (+, Ph-CH, 2C), 129.1 (+, Ph-CH, 2C), 129.2 (+, Ph-CH, 2C), 135.7 (Cquat, Ph-C), 137.0

(Cquat, Ph-C), 138.3 (Cquat, Ph-C), 155.24 (Cquat, N(C=O)O), 167.4 (Cquat, C=O), 168.5 (Cquat,

C=O), 171.1 (Cquat, C=O), 171.3 (Cquat, C=O), 172.2 (Cquat, C=O), 173.5 (Cquat, C=O). –

MS  FAB (Glycerin/DMSO) m/z (%)1572 (2M H+, <1), 787 (MH+, 11), 687 (MH+-Boc, 100),

596 (14), 451 (16), 327 (12), 256 (24). - IR (KBr) 3310, 2977, 1721, 1689, 1643, 1530, 1449,

1353 cm-1. - HR MS  calcd for C42H51N5O10 786.371, found 786.3701.

NHBoc

CO2Me
O

O
Ph

O

(±)-50

(1R*, 2R*, 3S*) 3-(tert-Butylcarbonylamino)-cyclopropane-1, 2-dicarboxylic acid 1-

phenacil ester 2-methyl ester ((±)-50): Phenacylbromid (388 mg, 1.95 mmol, 5 eq.) and
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potassiumfluorid (49 mg, 0.85 mmol, 2.2 eq.) were dissolved in DMF (4 ml) and stirred

1 min., then (1R*, 2R*, 3R*)-N-tert-Butoxycarbonyl-3-aminocyclopropane-1,2-dicarboxylic

acid monomethyl ester (100 mg, 0.39 mmol) was added. After 5 h, diethyl ether (20 ml) was

added and the organic phase was washed with a water solution of 1 M KHSO4 (15 ml). The

organic phase was dried over Na2SO4 and evaporated. The product was purified by

chromatography (ethyl acetate/hexanes 2:3). Yield: 140 mg (96 %). – Rf ((±)-50): 0.35. - mp

129-131 °C. - 1H NMR (CDCl3, 250 MHz): δ 1.46 (s, 9H, (CH3)3C), 2.38-2.41 (m, 1H,

cyclopropyl-CH), 2.68 (dd, J = 5.3, 8.6 Hz, 1H, cyclopropyl-CH), 3.73 (s, 3H, CH3O), 3.87-

3.91 (m, 1H, cyclopropyl-CHN), 5.35 (d, J = 16.4 , 1H, CH2O), 5.52 (d, J = 16.4 Hz, 1H,

CH2O), 5.81 (s br, 1H, NHBoc), 7.49-7.53 (m, 2H, Ph-CH), 7.61-7.64 (m, 1H, Ph-CH), 7.90-

7.93 (m, 1H, Ph-CH). - 13C NMR (CDCl3, 62.9 MHz): δ 26.3 (+, cyclopropyl-CH), 28.3 (+,

(CH3)3C, 3C), 28.8 (+, cyclopropyl-CH), 37.6 (+, cyclopropyl-CHN), 52.3 (+, CH3O), 66.7 (-,

CH2O), 80.2 (Cquat, (CH3)3C), 127.8 (+, Ph-CH, 2C), 128.9 (+, Ph-CH, 2C), 133.7 (Cquat, Ph-

C), 134.2 (+, Ph-CH), 155.6 (Cquat, N(CO)O), 168.9 (Cquat, C=O), 170.0 (Cquat, C=O), 191.4

(Cquat, Ph(C=O)CH2). - MS  CI (NH3) m/z (%) 395 (MNH4
+, 52), 378 (MH+, 2), 339 (MH+-

tBu, 100), 295 (MH+-Boc, 14), 277 (33), 221 (34). - IR (KBr) 3370, 3087, 3066, 2986, 2952,

1731, 1708, 1689, 1510,1323 cm-1. - Anal. Calcd for C19H23NO7 (377.393): C, 60.47; H, 6.14;

N, 3.71. Found: C, 60.45; H, 6.23; N, 3.60.

2.2.4 Compounds containing multiple β-ACCs

N
H

CO2Me
OH

N

O

H
N

O

CO2Bn
N
H

CO2Me
O

BocHN

(+)-40

(1R, 2R, 3R) 2-(2S-Benzyloxycarbonyl-ethylcarbamoyl)-3-{2S-[2R-(2S-tert-

butylcarbonylamino-propionylamino)-3R-methoxycarbonyl-cyclopropane-1R-carbonyl-

amino]-propionylamino}-cyclopropane carboxylic acid methyl ester ((+)-40): (+)-36a

(541 mg, 1.10 mmol) was deprotected by treatment with HCl 3 M in ethyl acetate (7 ml) for

3 h at 0 °C. The solution was concentrated in vacuum, the salt was resuspended in CH2Cl2

(50 ml) and triethylamine (168 µl, 1.21 mmol, 1.1 eq.) was added dropwise. To this mixture

EDC (232 mg, 1.21 mmol, 1.1 eq.) and HOBt (163 mg, 1.21 mmol, 1.1 eq.) were added. The

mixture was cooled in an ice bath and (+)-30a (375 mg, 1.13 mmol, 1.03 eq.) dissolved in
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CH2Cl2 (20 ml) was added. The mixture was stirred at room temperature 60 h. The solution

was then concentrated in vacuum and the product was obtained by chromatography

(CHCl3/MeOH 20:1) as a white solid (741 mg, 96 %). 15 % epimerisation was observed. - Rf

((+)-40): 0.23. - mp 134-136 °C. - [ ]21
Dα  -86.2 (c 1, CH3OH). - 1H NMR (CD3OD, 250 MHz)

δ 1.24 (d, J = 7.3 Hz, 3H, CH3CH), 1.29 (d, J = 7.3 Hz, 3H, CH3CH), 1.39 (d, J= 7.4 Hz, 3H,

CH3CH), 1.42 (s, 9H, (CH3)3C), 2.33-2.38 (m, 2H, cyclopropyl-CH), 2.49-2.54 (m, 2H,

cyclopropyl-CH), 3.64 (s, 3H, CH3O), 3.70 (s, 3H, CH3O), 3.68-3.77 (m, 2H, cyclopropyl-

CHN), 3.94-4.03 (m, 1H, Ala-CHN), 4.24 (q, J = 7.3 Hz, 1H, Ala-CHN), 4.50 (q, J = 7.3 Hz,

1H, Ala-CHN), 5.11 (d, J = 12.3 Hz, 1H, CH2O), 5.19 (d, J = 12.3 Hz, 1H, CH2O), 7.33-7.37

(m, 5H, Ph-CH). - 13C NMR (CD3OD, 62.9 MHz) δ 17.6 (+, CH3CH), 17.7 (+, CH3CH), 18.2

(+, CH3CH), 27.6 (+, cyclopropyl-CH), 28.5 (+, cyclopropyl-CH), 28.7 (+, (CH3)3C, 3C),

28.9 (+, cyclopropyl-CH, 2C), 36.5 (+, cyclopropyl-CHN), 36.7 (+, cyclopropyl-CHN), 49.6

(+, CHN), 50.8 (+, CHN), 51.6 (+, CHN), 52.9 (+, CH3O, 2C), 68.0 (-, CH2O), 80.7 (Cquat,

(CH3)3C), 129.2 (+, Ph-CH, 2C), 129.4 (+, Ph-CH), 129.6 (+, Ph-CH, 2C), 137.3 (Cquat, Ph-

C), 157.6 (Cquat, N(CO)O), 169.68 (Cquat, C=O), 169.73 (Cquat, C=O), 172.3 (Cquat, C=O),

172.4 (Cquat, C=O), 173.9 (Cquat, C=O), 175.5 (Cquat, C=O), 176.8 (Cquat, C=O). - MS  FAB

(NBA/CH2Cl2) m/z (%) 1408 (2MH+, 2), 704 (MH+, 58), 604 (MH+-Boc, 79), 307 (100). - IR

(KBr) 3310, 2982, 1736, 1660, 1521, 1451, 1314 cm-1. - Anal. Calcd for C33H45N5O12

(703.745): C, 56.32; H, 6.44; N, 9.95. Found: C, 55.77; H, 6.54; N, 0.37.

N
H

CO2Me
OH

N

O

H
N
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CO2Bn
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(-)-40

(1S, 2S, 3S) 2-(2S-Benzyloxycarbonyl-ethylcarbamoyl)-3-{2S-[2S-(2S-tert-

butylcarbonylamino-propionylamino)-3S-methoxycarbonyl-cyclopropane-1S-carbonyl-

amino]-propionylamino}-cyclopropane carboxylic acid methyl ester ((-)-40): (-)-36a

(750 mg, 1.53 mmol) was deprotected by treatment with HCl 3 M in ethyl acetate (10 ml) for

3 h at 0 °C. Then the solution was concentrated in vacuum, the salt resuspended in CH2Cl2

(50 ml) and triethylamine (230 µl, 1.68 mmol, 1.1 eq.) was added dropwise. To this mixture

EDC (323 mg, 1.68 mmol, 1.1 eq.) and HOBt (227 mg, 1.68 mmol, 1.1 eq.) were added. The

mixture was cooled in an ice bath and the (-)-30a (503 mg, 1.53 mmol, 1.0 eq.) dissolved in

CH2Cl2 (30 ml) was added. The mixture was stirred 60 h at room temperature. The solution
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was then concentrated in vacuum and the product was obtained by chromatography

(CHCl3/MeOH 20:1) as a white solid (1.052 g, 97 %). 15 % epimerisation was observed. - Rf

((-)-40): 0.24. - mp 103-105 °C. - [ ]21
Dα  -117.3 (c 1, CH3OH). - 1H NMR (CDCl3, 400 MHz)

δ 1.21 (d, J = 6.7 Hz, 3H, CH3CH), 1.33 (d, J = 7.0 Hz, 3H, CH3CH), 1.44 (d, J= 6.9 Hz, 3H,

CH3CH), 1.44 (s, 9H, (CH3)3C), 2.29 (dd, J = 5.1, 5.1 Hz, 1H, cyclopropyl-CH), 2.42-2.45

(m, 3H, cyclopropyl-CH), 3.69 (s, 3H, CH3O), 3.70 (s, 3H, CH3O), 3.85 (dd, J = 6.6, 6.6 Hz,

1H, cyclopropyl-CHN), 3.96-3.98 (m, 1H, cyclopropyl-CHN), 4.35 (dq, J = 7.2, 7.2 Hz, 1H,

CHN), 4.43 (dq, J = 7.0, 7.0 Hz, 1H, CHN), 4.51 (dq, J = 7.1, 7.1 Hz, 1H, CHN), 5.17 (d, J =

12.2 Hz, 1H, CH2O), 5.28 (d, J = 12.2 Hz, 1H, CH2O), 5.48 (d, J = 8.3 Hz, 1H, NH), 6.52 (s

br, 1H, NH), 7.31-7.38 (m, 6H, Ph-CH + NH), 7.48 (d, J = 6.3 Hz, 1H, NH), 7.64 (d, J =

7.2 Hz, 1H, NH). - 13C NMR (CDCl3, 100.6 MHz) δ 16.4 (+, CH3CH), 17.2 (+, CH3CH), 19.3

(+, CH3CH), 26.9 (+, cyclopropyl-CH), 27.3 (+, cyclopropyl-CH), 27.9 (+, cyclopropyl-CH),

28.3 (+, cyclopropyl-CH, + (CH3)3C, 4C), 35.8 (+, cyclopropyl-CHN), 36.0 (+, cyclopropyl-

CHN), 48.5 (+, CHN), 48.7 (+, CHN), 49.7 (+, CHN), 52.2 (+, CH3O), 52.3 (+, CH3O), 67.3

(-, CH2O), 79.9 (Cquat, (CH3)3C), 128.1 (+, Ph-CH, 2C), 128.4 (+, Ph-CH), 128.6 (+, Ph-CH,

2C), 135.3 (Cquat, Ph-C), 155.4 (Cquat, N(CO)O), 167.7 (Cquat, C=O), 168.0 (Cquat, C=O), 170.7

(Cquat, C=O), 170.9 (Cquat, C=O), 172.7 (Cquat, C=O), 172.8 (Cquat, C=O), 173.6 (Cquat, C=O). -

MS  FAB (NBA/CH2Cl2) m/z (%) 1408 (2MH+, 7), 704 (MH+, 55), 604 (MH+-Boc, 100), 307

(27). - IR (KBr) 3325, 2982, 1734, 1663, 1528, 1450, 1315 cm-1. - Anal. Calcd for

C33H45N5O12 (703.745): C, 56.32; H, 6.44; N, 9.95. Found: C, 55.77; H, 6.54; N, 9.58.
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(+)-41

(1R, 2R, 3R) 3-[2S-({2R-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionylamino]-

3R-methoxycarbonyl-cyclopropane-1R-carbonyl}-amino)-propionylamino]-cyclopropane-1,

2-dicarboxylic acid 1-benzy ester 2-methyl ester ((+)-41): (+)-25a (40 mg, 0.095 mmol) was

(2 ml) at 0 °C for 3 h. The solution was concentrated in vacuum, the salt was resuspended in

CH2Cl2 (5 ml), then (+)-30b (43 mg, 0.095 mmol, 1 eq.), EDC (36 mg, 0.19 mmol, 2 eq), and

pyridine (11 µl, 0.14 mmol, 1.5 eq.) were added. The mixture was stirred at room temperature

overnight. The solution was washed with saturated NaHCO3 (8 ml), 1 M KHSO4 (8 ml) and

saturated NaHCO3 (8 ml). The organic phase was dried over MgSO4 and concentrated. The



154 Experimental part

product was purified by chromatography (CH2Cl2/MeOH 40:1). Yield: 49 mg (68 %). 10 to

15 % epimerization was observed. - Rf ((+)-41): 0.15. - mp 188-189 °C. - [ ]21
Dα  -58.1 (c 0.5,

MeOH/CHCl3 1:1). - 1H NMR (CDCl3, 250 MHz): δ 1.16 (d, J= 6.7 Hz, 3H, CH3CH), 1.34

(d, J = 7.0 Hz, 3H, CH3CH), 2.32-2.47 (m, 3H, cyclopropyl-CH), 2.56 (dd, J = 5.3, 8.0 Hz,

1H, cyclopropyl-CH), 3.61 (s, 3H, CH3O), 3.68 (s, 3H, CH3O), 3.89-3.96 (m, 1H,

cyclopropyl-CHN), 4.02-4.10 (m, 1H, cyclopropyl-CHN), 4.17-4.22 (m, 1H, Fmoc-CH),

4.26-4.48 (m, 4H, Fmoc-CH2 + 2 CHN), 5.05-5.15 (m, 2H, CH2O), 5.77 (d, J = 7.5 Hz, 1H,

NHFmoc), 7.11 (d, J = 7.3 Hz, 1H, NH), 7.23-7.41 (m, 10H, Ar-CH + NH), 7.57-7.60 (m, 2H,

Ar-CH), 7.73-7.76 (m, 3H, Ar-CH + NH). - 13C NMR (CDCl3, 62.9 MHz): δ 18.9 (+,

CH3CH), 19.3 (+, CH3CH), 26.7 (+, cyclopropyl-CH), 27.0 (+, cyclopropyl-CH), 27.9 (+,

cyclopropyl-CH), 28.1 (+, cyclopropyl-CH), 35.9 (+, cyclopropyl-CHN), 36.1 (+,

cyclopropyl-CHN), 47.1 (+, Fmoc-CH), 49.0 (+, CHN), 50.5 (+, CHN), 52.4 (+, CH3O, 2C),

67.2 (-, CH2O), 67.3 (-, CH2O), 120.0 (+, Fmoc-Ar-CH, 2C), 125.2 (+, Fmoc-Ar-CH, 2C),

127.1 (+, Ar-CH, 2C), 127.7 (+, Ar-CH, 2C), 128.3 (+, Ar-CH, 2C), 128.5 (+, Ar-CH), 128.6

(+, Ar-CH, 2C), 135.1 (Cquat, Ph-C), 141.3 (Cquat, Fmoc-Ar-C, 2C), 143.8 (Cquat, Fmoc-Ar-C),

143.9 (Cquat, Fmoc-Ar-C), 155.9 (Cquat, N(CO)O), 167.8 (Cquat, C=O), 169.3 (Cquat, C=O),

169.7 (Cquat, C=O), 170.6 (Cquat, C=O), 172.5 (Cquat, C=O), 173.2 (Cquat, CO). - MS  FAB

(CH2Cl2/NBA) m/z (%) 755 (MH+, 91), 444 (19), 179 (Fluorenyl cation, 100). - IR (KBr)

3418, 3345, 1728, 1685, 1504 cm-1. - Anal. Calcd for C40H42N4O11 ⋅ 2 H2O (790.822): C,

60.75; H, 5.86; N, 7.08. Found: C, 60.56; H, 5.41; N, 6.98. - HR MS  calcd for 755.29283,

found 755.29165.

N
H

H
N

O

O
N
H

FmocHN
O H

N

O
N
H

O
CO2MeCO2Me CO2Me

CO2Bn

(+)-45

(1R, 2R, 3R) 3-{2S-[2R-(2S-{2R-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-

propionylamino]-3R-methoxycarbonyl-cyclopropane-1R-carbonylamino}-propionylamino)-

3R-methoxycarbonyl-cyclopropane-1R-carbonylamino]-propionylamino}-cyclopropane-1,

2-dicarboxylic acid 1-benzyl ester 2-methyl ester ((+)-45): (+)-25b (72 mg, 0.22 mmol,

1.5 eq.) was deprotected by treatment with HCl 3 M in ethyl acetate (10 ml) for 3 h at 0 °C.

The solution was concentrated in vacuum, the salt was resuspended in CH2Cl2 (5 ml) and

(+)-42 (100 mg, 0.15 mmol, 1 eq.), EDC (58 mg, 0.30 mmol, 2 eq) and pyridine (24 µl,
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0.30 mmol, 2 eq.) were added. The mixture was stirred at room temperature overnight. The

product was purified by chromatography (CH2Cl2/MeOH 40:1). Yield: 70 mg (48 %). 5 to

10 %  epimerization was observed. - Rf ((+)-45): 0.18. - mp 174-176 °C. - [ ]21
Dα  -77.1 (c 0.5,

MeOH/CHCl3 1:1). - 1H NMR (CDCl3/CD3OD 1:1, 250 MHz): δ 1.26 (d, J = 7.1 Hz, 6H,

CH3CH), 1.34 (d, J = 7.1 Hz, 3H, CH3CH), 2.31-2.41 (m, 2H, cyclopropyl-CH), 2.45-2.57

(m, 4H, cyclopropyl-CH), 3.68 (s, 3H, CH3O), 3.71 (s, 3H, CH3O), 3.72 (s, 3H, CH3O), 3.80-

3.88 (m, 3H, cyclopropyl-CHN), 4.12-4.41 (m, 6H, 3 CHN + Fmoc-CH2 + Fmoc-CH), 5.09-

5.20 (m, 2H, CH2O), 7.31-7.39 (m, 9H, Ar-CH), 7.60-7.68 (m, 2H, Fmoc-Ar-CH), 7.76-7.78

(m, 2H, Fmoc-Ar-CH), 8.02 (s br, 1H, NH), 8.20 (s br, 1H, NH), 8.46 (s br, 2H, NH). -
13C NMR (CDCl3/CD3OD 1:1, 62.9 MHz): δ 17.6 (+, CH3CH), 17.7 (+, CH3CH), 18.2 (+,

CH3CH), 27.38 (+, cyclopropyl-CH), 27.43 (cyclopropyl-CH), 27.8 (cyclopropyl-CH), 28.0

(cyclopropyl-CH, 2C), 28.2 (cyclopropyl-CH), 36.2 (+, cyclopropyl-CHN, 2C), 36.3 (+,

cyclopropyl-CHN), 47.7 (+, Fmoc-CH), 49.7 (+, CHN), 50.0 (+, CHN), 51.4 (+, CHN), 52.7

(+, CH3O), 52.8 (CH3O), 52.9 (CH3O), 67.6 (-, CH2O), 67.8 (-, CH2O), 120.4 (+, Fmoc-Ar-

CH, 2C), 125.6 (+, Fmoc-Ar-CH), 125.8 (+, Fmoc-Ar-CH), 127.7 (+, Ar-CH, 2C), 128.3 (+,

Ar-CH, 2C), 128.8 (+, Ar-CH, 2C), 129.0 (+, Ar-CH), 129.1 (+, Ar-CH, 2C), 136.0 (Cquat, Ph-

C), 141.87 (Cquat, Fmoc-Ar-C), 141.90 (Cquat, Fmoc-Ar-C), 144.3 (Cquat, Fmoc-Ar-C), 144.6

(Cquat, Fmoc-Ar-C), 157.4 (Cquat, N(CO)O), 169.03 (Cquat, C=O), 169.06 (Cquat, C=O), 169.5

(Cquat, C=O), 171.0 (Cquat, C=O), 171.7 (Cquat, C=O), 171.9 (Cquat, C=O), 174.4 (Cquat, C=O),

174.6 (Cquat, C=O), 175.4 (Cquat, C=O). - MS  FAB (CH2Cl2/NBA) m/z (%) 967 (MH+, 100). -

IR (CDCl3) 3426, 3335, 3070, 2984, 1726, 1678, 1505, 1450, 1314 cm-1. - HR MS  calcd for

C49H54N6O15 + H 967.37254, found 967.37171.

2.2.5 Completely deprotected peptides

N
H

CO2Me
OH

N

O

+H3N
H
N

O
N
H

O

CO2H

PhH2C CH2Ph

Cl-

(+)-39

(1R, 2R, 3R) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-

carboxy-2-phenyl-ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid

methyl ester; HCl salt ((+)-39): (+)-37a (390 mg, 0.50 mmol) was stirred in HCl 3 M in

ethyl acetate (5 ml) at 0°C for 3 h. The solution was concentrated in vacuum and the salt
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redissolved in methanol (25 ml). Then Pd/C 10 % (100 mg) and cyclohexadiene (1.1 ml, 40 %

in pentane) were added. The reaction mixture was stirred overnight, filtrated over a celite pad

and concentrated in vacuum to afford the deprotected peptide as a white solid (295 mg, 94 %).

- mp 260 °C decomp. - [ ]21
Dα  -39.9° (c 1, MeOH). - 1H NMR (CD3OD, 250 MHz) δ 1.22 (d,

J = 6.1 Hz, 3H, CH3CH), 1.32 (d, J = 6.6 Hz, 3H, CH3CH), 2.41 (dd, J = 5.2, 5.2 Hz, 1H

cyclopropyl-CH), 2.47 (dd, J = 5.4, 8.2 Hz, 1H, cyclopropyl-CH), 2.93-3.10 (m, 2H, CH2Ph),

3.20 (dd, J = 5.2, 13.9 Hz, 1H, CH2Ph), 3.59-3.71 (m, 2H, cyclopropyl-CHN + CH2Ph), 3.74

(s, 3H, CH3O), 4.10 (dd, J = 5.4, 8.8 Hz, 1H, Phe-CHN), 4.22-4.36 (m, 2H, Ala-CHN), 4.62

(dd, J = 5.2, 8.2 Hz, 1H, CHN), 7.17-7.24 (m, 5H, Ph-CH), 7.29-7.36 (m, 5H, Ph-CH). -
13C NMR (CD3OD, 100.6 MHz) δ 17.8 (+, CH3CH), 18.0 (+, CH3CH), 27.4 (+, cyclopropyl-

CH), 29.3 (+, cyclopropyl-CH), 36.6 (+, cyclopropyl-CHN), 38.2 (-, CH2Ph), 38.5 (-, CH2Ph),

50.49 (+, CHN), 50.53 (+, CHN), 52.9 (+, CH3O), 55.1 (+, CHN), 55.6 (+, CHN), 127.7 (+,

Ph-CH), 128.8 (+, Ph-CH), 129.4 (+, Ph-CH, 2C), 130.1 (+, Ph-CH, 2C), 130.4 (+, Ph-CH,

2C), 130.6 (+, Ph-CH, 2C), 135.6 (Cquat, Ph-CH), 138.2 (Cquat, Ph-C), 169.1 (Cquat, C=O),

169.5 (Cquat, C=O), 172.4 (Cquat, C=O), 174.5 (Cquat, C=O, 2C), 175.1 (Cquat, C=O). –

MS  FAB (Glycerin/MeOH) m/z (%) 1191 (2MH+, 3), 597 (MH+, 100), 361 (28), 219 (20). -

IR (KBr) 3318, 3297, 3063, 2933, 1732, 1654, 1540 cm-1. - HR MS  calcd for C30H38N5O8

596.27204, found 596.27248.

N
H

CO2Me
OH

N

O

+H3N
H
N

O
N
H

O

CO2H

PhH2C CH2Ph

Cl-

(-)-39

(1S, 2S, 3S) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-

carboxy-2-phenyl-ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid

methyl ester; HCl salt ((-)-39): (-)-37a (400 mg, 0.51 mmol) was stirred in HCl 3 M in ethyl

acetate (5 ml) at 0°C for 3 h. The solution was then concentrated in vacuum and the salt

redissolved in methanol (25 ml). Then Pd/C 10 % (200 mg) and cyclohexadiene (1.2 ml, 40 %

in pentane) were added. The reaction mixture was stirred overnight, filtrated over a celite pad

and concentrated in vacuum to afford (321 mg, >99 %) of the unprotected peptide as a white

solid. - mp 115-120 °C. - [ ]21
Dα  -43.7 (c 1, MeOH). - 1H NMR (CD3OD, 250 MHz) δ 1.25 (d,

J = 7.1 Hz, 3H, CH3CH), 1.32 (d, J = 7.1 Hz, 3H, CH3CH), 2.26 (dd, J = 5.2, 5.2 Hz, 1H

cyclopropyl-CH), 2.52 (dd, J = 5.5, 8.3 Hz, 1H, cyclopropyl-CH), 2.97-3.14 (m, 2H, CH2Ph),
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3.20-3.44 (m, 2H, CH2Ph), 3.56 (dd, J = 4.4, 8.3 Hz, 1 H, cyclopropyl-CHN), 3.72 (s, 3H,

CH3O), 4.17 (dd, J = 4.8, 9.5 Hz, 1H, Phe-CHN), 4.31 (q, J = 7.1 Hz, 1H, Ala-CHN), 4.41 (q,

J = 6.7 Hz, 1H, Ala-CHN), 4.60-4.69 (m, 1H, Phe-CHN), 7.19-7.35 (m, 10H, Ph-CH). -
13C NMR (CD3OD, 100.6 MHz) δ 17.4 (+, CH3CH), 18.2 (+, CH3CH), 28.3 (+, cyclopropyl-

CH), 28.8 (+, cyclopropyl-CH), 36.5 (+, cyclopropyl-CHN), 38.1 (-, CH2Ph), 38.6 (-, CH2Ph),

50.6 (+, CHN), 52.9 (+, CH3O), 55.5 (+, CHN), 55.6 (+, CHN), 55.9 (+, CHN), 127.9 (+, Ph-

CH), 128.8 (+, Ph-CH), 129.5 (+, Ph-CH, 2C), 130.2 (+, Ph-CH, 2C), 130.5 (+, Ph-CH, 2C),

130.7 (+, Ph-CH, 2C), 135.9 (Cquat, Ph-CH), 138.4 (Cquat, Ph-C), 169.6 (Cquat, C=O), 172.3

(Cquat, CO, 3C), 174.9 (Cquat, CO, 2C). - MS  FAB (NBA/CH2Cl2) m/z (%) 597 (MH+, 15),

460 (8), 307 (55), 154 (100). - IR (KBr) 3318, 3063 2954, 1727, 1661, 1527, 1453, 1316 cm-1.

- HR MS  calcd for C30H38N5O8 596.27204, found 596.27085.

N
H

CO2Me
OH

N

O

H
N

O

CO2H
N
H

CO2Me
O

+H3NCl-

(+)-43

(1R, 2R, 3R) 2-(2S-Carboxyl-ethylcarbamoyl)-3-{2S-[2R-(2S-amino-propionylamino)-

3R-methoxycarbonyl-cyclopropane-1R-carbonyl-amino]-propionylamino}-cyclopropane

carboxylic acid methyl ester; HCl salt ((+)-43): (+)-40 (300 mg, 0.43 mmol) was stirred in

HCl 3 M in ethyl acetate (5 ml) at 0 °C for 3 h. The solution was concentrated in vacuum and

the salt redissolved in methanol (25 ml). Then Pd/C 10 % (150 mg) and cyclohexadiene

(1.2 ml, 40 % in pentane) were added. The reaction mixture was stirred overnight, filtrated

over a celite pad and concentrated in vacuum to afford the unprotected peptide as a white

solid (218 mg, 92 %). - mp 193-195 °C. - [ ]21
Dα  -72.4 (c 0.5, MeOH). - 1H NMR (CD3OD,

400 MHz) δ 1.30 (d, J = 7.3 Hz, 3H, CH3CH), 1.38 (d, J = 7.3 Hz, 3H, CH3CH), 1.39 (d, J =

7.1 Hz, 3H, CH3CH), 2.34 (dd, J = 4.5, 5.2 Hz, 1H, cyclopropyl-CH), 2.47 (dd, J = 5.0,

5.0 Hz, 1H, cyclopropyl-CH), 2.49 (dd, J = 5.2, 8.3 Hz, 1H, cyclopropyl-CH), 2.54 (dd, J =

5.4, 7.9 Hz, 1H, cyclopropyl-CH), 3.52 (dd, J = 4.6, 8.0 Hz, 1H, cyclopropyl-CHN), 3.70 (s,

3H, CH3O), 3.72-3.75 (m, 1H, cyclopropyl-CHN), 3.73 (s, 3H, CH3O), 3.88 (q, J = 7.0 Hz,

1H, CHN), 4.20 (q, J = 7.2 Hz, 1H, CHN), 4.41 (q, J = 7.2 Hz, 1H, CHN). - 13C NMR

(CD3OD, 100.6 MHz) δ 17.6 (+, CH3CH), 17.7 (+, CH3CH), 17.8 (+, CH3CH), 26.9 (+,

cyclopropyl-CH), 27.5 (+, cyclopropyl-CH), 28.6 (+, cyclopropyl-CH), 29.9 (+, cyclopropyl-

CH), 36.3 (+, cyclopropyl-CHN), 36.5 (+, cyclopropyl-CHN), 49.3 (+, Ala-CHN), 50.1 (+,
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Ala-CHN), 50.9 (+, Ala-CHN), 52.9 (+, CH3O), 53.0 (+, CH3O), 168.7 (Cquat, C=O), 169.5

(Cquat, C=O), 172.1 (Cquat, C=O), 172.27 (Cquat, C=O), 172.33 (Cquat, C=O), 175.6 (Cquat,

C=O), 175.8 (Cquat, C=O). - MS  FAB (HCO2H/MeOH/Glycerin) m/z (%) 514 (M+, 27), 369

(32), 277 (100). - IR (KBr) 3326, 3061, 1731, 1538, 1452, 1351, 1211, 1173 cm-1. - HR MS

calcd for C21H32N5O10 514.21492, found 514.21296.

N
H

CO2Me
OH

N

O

H
N

O

CO2H
N
H

CO2Me
O

+H3NCl-

(-)-43

(1S, 2S, 3S) 2-(2S-Carboxy-ethylcarbamoyl)-3-{2S-[2S-(2S-amino-propionylamino)-3S-

methoxycarbonyl-cyclopropane-1S-carbonyl-amino]-propionylamino}-cyclopropane

carboxylic acid methyl ester; HCl salt ((-)-43): (-)-40 (357 mg, 0.51 mmol) was stirred in

HCl 3 M in ethyl acetate (5 ml) at 0°C for 3 h. The solution was then concentrated in vacuum

and the salt redissolved in methanol (25 ml). Then Pd/C 10 % (60 mg) and cyclohexadiene

(1.2 ml, 40 % in pentane) were added. The reaction mixture was stirred overnight, filtrated

over a celite pad and concentrated in vacuum to afford the deprotected peptide as a white

solid (270 mg, 96 %). - mp 195-197 °C. - [ ]21
Dα  -116.6 (c 1, MeOH). - 1H NMR (CD3OD,

250 MHz) δ 1.35 (d, J = 7.2 Hz, 3H, CH3CH), 1.44 (d, J = 7.3 Hz, 3H, CH3CH), 1.51 (d, J =

7.0 Hz, 3H, CH3CH), 2.35 (dd, J = 4.8, 4.8 Hz, 1H, cyclopropyl-CH), 2.42 (d, J = 4.9, 4.9 Hz,

1H, cyclopropyl-CH), 2.52 (dd, J = 5.5, 8.0 Hz, 1H, cyclopropyl-CH), 2.60 (dd, J = 5.4,

6.0 Hz, 1H, cyclopropyl-CH), 3.45 (dd, J = 4.5, 8.0 Hz, 1H, cyclopropyl-CHN), 3.59 (dd, J =

4.4, 8.3 Hz, 1H, cyclopropyl-CHN), 3.71 (s, 6H, CH3O), 3.97 (q, J = 7.1 Hz, 1H, CHN), 4.27

(q, J = 7.1 Hz, 1H, CHN), 4.38 (q, J = 7.2 Hz, 1H, CHN), 7.93 (d, J = 5.4 Hz, 1H, NH), 8.32

(d, J = 3.5 Hz, 1H, NH), 8.55 (d, J = 5.9 Hz, 1H, NH), 8.82 (d, J = 6.8 Hz, 1H, NH). -
13C NMR (CD3OD, 62.9 MHz) δ 17.3 (+, CH3CH), 17.4 (+, CH3CH), 17.5 (+, CH3CH), 27.7

(+, cyclopropyl-CH, 2C), 28.9 (+, cyclopropyl-CH), 29.6 (+, cyclopropyl-CH), 36.2 (+,

cyclopropyl-CHN), 36.6 (+, cyclopropyl-CHN), 50.0 (+, CHN), 50.4 (+, CHN), 51.0 (+,

CHN), 52.92 (+, CH3O), 52.93 (+, CH3O), 168.9 (Cquat, C=O), 169.4 (Cquat, C=O), 172.29

(Cquat, C=O), 172.35 (Cquat, C=O, 2C), 176.0 (Cquat, C=O), 176.1 (Cquat, C=O). - MS  FAB

(NBA/CH2Cl2) m/z (%) 514 (M+, 23), 443 (3). - IR (KBr) 3449, 3307, 3061, 1742, 1660,

1542, 1451, 1313, 1173 cm-1. - HR MS  calcd for C21H32N5O10 514.21492, found 514.2144.
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2.2.6 Synthesis of α-peptides in solution

BocHN
H
N

O

OPhH2C

N
H

H
N

N
HO

O

CO2Bn

CH2Ph

49

2S-(2S-{2S-[2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-propionylamino]-

propionylamino}-propionylamino)-3-phenyl-propionic acid benzyl ester (49):

Boc-alanylalanylalanylphenylalanine benzyl ester (198 mg, 0.35 mmol, 1 eq.) was

deprotected by treatment with HCl 3 M in ethyl acetate (3 ml) for 3 h at 0 °C. The solution

was concentrated in vacuum, the salt was resuspended in CH2Cl2 (20 ml) and triethylamine

(56 µl, 0.4 mmol, 1.1 eq.) was added dropwise. To this mixture EDC (115 mg, 0.6 mmol,

1.7 eq.), HOBt (81 mg, 0.6 mmol, 1.7 eq.) and Boc-phenylalanine (159 mg, 0.6 mmol,

1.7 eq.) were added. The mixture was stirred at room temperature overnight. The solution was

then concentrated in vacuum and the product was obtained by chromatography

(CHCl3/MeOH 20:1) as a white solid (225 mg, 90 %). - Rf (49): 0.12. - mp 217-218 °C. - [ ]21
Dα

-43.2 (c 0.5, CHCl3). - 1H NMR (CDCl3/CD3OD 1:1, 400 MHz) δ 1.32 (d, J = 7.2 Hz, 3H,

CH3CH), 1.36 (d, J = 7.2 Hz, 3H, CH3CH), 1.37 (d, J = 6.9 Hz, 3H, CH3CH), 1.40 (s, 9H,

(CH3)3C), 2.90 (dd, J = 8.6, 13.7 Hz, 1H, CH2Ph), 3.04-3.18 (m, 3H, CH2Ph), 4.19-4.25 (m,

1H, CHN), 4.26-4.32 (m, 2H, CHN), 4.36 (q, J = 7.2 Hz, 1H, CHN), 4.76 (dd, J = 6.2, 7.5 Hz,

1H, CHN), 5.09-5.15 (m, 2H, CH2O), 7.12-7.37 (m, 15H, Ph-CH). - 13C NMR

(CDCl3/CD3OD 1:1, 100.6 MHz) δ 17.3 (+, CH3CH), 17.4 (+, CH3CH), 17.6 (+, CH3CH),

28.4 (+, (CH3)3C, 3C), 37.9 (-, CH2Ph), 38.1 (-, CH2Ph), 49.2 (+, CHN), 49.8 (+, CHN), 50.4

(+, CHN), 54.1 (+, CHN), 56.8 (+, CHN), 67.4 (-, CH2O), 80.9 (Cquat, (CH3)3C), 127.2 (+, Ph-

CH), 127.3 (+, Ph-CH), 128.7 (+, Ph-CH, 3C), 128.78 (+, Ph-CH, 2C), 128.83 (+, Ph-CH,

2C), 128.9 (+, Ph-CH, 2C), 129.5 (+, Ph-CH, 2C), 129.6 (+, Ph-CH, 2C), 135.6 (Cquat, Ph-C),

136.6 (Cquat, Ph-C), 136.8 (Cquat, Ph-C), 156.8 (Cquat, N(CO)O), 171.7 (Cquat, CO, 2C), 173.2

(Cquat, C=O), 173.5 (Cquat, C=O), 173.7 (Cquat, C=O). - MS  FAB (NBA/MeOH/CH2Cl2) m/z

(%) 1432 (2MH+, <1), 717 (MH+, 17), 616 (MH+-Boc, 3), 154 (100). - IR (KBr) 3382, 3287,

2978, 2933, 1710, 1636, 1525, 1451 cm-1. - Anal. Calcd for C39H49N5O8 (715.845): C, 65.44;

H, 6.90; N, 9.78, found: C, 65.30; H, 6.92; N, 9.77.
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BocHN
H
N

O
OBn

O

56a

2S-(2S-tert-Butoxycarbonylamino-propionylamino)-propionic acid benzyl ester (56a):69

N-Boc-alanine (144 mg, 0.76 mmol, 2 eq.) was preactivated by stirring with EDC (146 mg,

0.76 mmol, 2 eq.) and HOBt (103 mg, 0.76 mmol, 2 eq.) in dry CH2Cl2 (5 ml), under nitrogen

atmosphere 1 h at 0 °C and 1 h at room temperature. The solution was added under nitrogen

atmosphere to Pd[PPh3]4 (44 mg, 0.038 mmol, 0.1 eq.), then 55a (100 mg, 0.38 mmol, 1 eq.)

and finally DABCO (191 mg, 1.71 mmol, 4.5 eq.) were added. The solution was stirred

10 min. at room temperature, then CH2Cl2 (10 ml) was added and the solution was washed

with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and saturated NaHCO3 (10 ml). The

organic phase was dried over MgSO4 and concentrated. The product was purified by

chromatography (ethyl acetate/hexanes 2:3) to afford a white solid (131 mg, 99 %). - Rf (56a):

0.15. - mp 65-67 °C. - [ ]21
Dα  -59.4 (c 0.5, MeOH). - 1H NMR (CDCl3, 250 MHz) δ 1.24 (d, J =

7.2 Hz, 3H, CH3CH), 1.41 (d, J = 7.2 Hz, 3H, CH3CH), 1.44 (s, 9H, (CH3)3C), 4.10-4.17 (m,

1H, CHN), 4.61 (dq, J = 7.3, 7.3 Hz, 1H, CHN), 5.04 (s br, 1H, NHBoc), 5.22-5.22 (m, 2H,

CH2O), 6.69 (d, J = 6.9 Hz, 1H, NH), 7.32-7.36 (m, 5h, Ph-CH).

BocHN
H
N

O
OBn

OPhH2C

56b

2S-(2S-tert-Butoxycarbonylamino-3-phenyl-propionylamino)-propionic acid benzyl ester

(56b):70 N-Boc-phenylalanine (263 mg, 0.97 mmol, 2.7 eq.) was preactivated by stirring with

EDC (187 mg, 0.97 mmol, 2.7 eq.) and HOBt (132 mg, 0.97 mmol, 2.7 eq.) in dry CH2Cl2

(5 ml), under nitrogen atmosphere 1 h at 0 °C and 1 h at room temperature. The solution was

added under nitrogen atmosphere to Pd[PPh3]4 (40 mg, 0.036 mmol, 0.1 eq.), then 55b

(96 mg, 0.36 mmol, 1 eq.) and finally DABCO (190 mg, 1.7 mmol, 4.7 eq.) were added. The

solution was stirred 10 min. at room temperature, then CH2Cl2 (10 ml) was added and the

solution was washed with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and saturated

NaHCO3 (10 ml). The organic phase was dried over MgSO4 and concentrated. The product

was purified by chromatography (ethyl acetate/hexanes 2:3) to afford a white solid (155 mg,
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quantitative). - Rf (56b): 0.45. - mp 93-95 °C. - [ ]21
Dα  -19.4 (c 1, MeOH). - 1H NMR (CDCl3,

250 MHz) δ 1.35 (d, J = 7.2 Hz, 3H, CH3CH), 1.39 (s, 9H, (CH3)3C), 3.03-3.06 (m, 2H,

CH2Ph), 4.35-4.38 (m, 1H, CHN), 4.56 (dq, J = 7.2, 7.2, 1H, CHN), 5.08 (s br, 1H, NH), 5.14

(s, 2H, CH2O), 6.52 (d, J = 7.1 Hz, 1H, NH), 7.16-7.39 (m, 10H, Ph-CH).

FmocHN
H
N

O
OBn

O

56c

2S-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionylamino]-propionic acid methyl

ester (56c): N-Fmoc-alanine (177 mg, 0.57 mmol, 3 eq.) was preactivated by stirring with

EDC (109 mg, 0.57 mmol, 3 eq.) and HOBt (77 mg, 0.57 mmol, 3 eq.) in dry CH2Cl2 (5 ml),

under nitrogen atmosphere 1 h at 0 °C and 1 h at room temperature. The solution was added

under nitrogen atmosphere to Pd[PPh3]4 (22 mg, 0.019 mmol, 0.1 eq.), then 55c (50 mg,

0.19 mmol, 1 eq.) and finally DABCO (106 mg, 0.95 mmol, 5 eq.) were added. The solution

was stirred 10 min. at room temperature, then CH2Cl2 (10 ml) was added and the solution was

washed with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and saturated NaHCO3 (10 ml).

The organic phase was dried over MgSO4 and concentrated. The product was purified by

chromatography (ethyl acetate/hexanes 2:3) to afford a white solid (85 mg, 94 %). - Rf (56c):

0.17. - mp 157-158 °C. - [ ]21
Dα  -48.2 (c 1, MeOH). - 1H NMR (CDCl3, 250 MHz) δ 1.37 (d,

J = 4.6 Hz, 3H, CH3CH), 1.40 (d, J = 7.1 Hz, 3H, CH3CH), 4.20 (t, J = 7.0 Hz, 1H, Fmoc-

CH), 4.26-4.32 (m, 1H, CHN), 4.38 (d, J = 7.0 Hz, 2H, Fmoc-CH2), 4.61 (dq, J = 7.2, 7.2 Hz,

1H, CHN), 5.09-5.21 (m, 2H, CH2O), 5.49 (d, J = 6.5 Hz, 1H, NHFmoc), 6.64 (d, J = 6.0 Hz,

1H, NH), 7.25-7.41 (m, 9H, Ar-CH), 7.56-7.59 (m, 2H, Fmoc-Ar-CH), 7.74-7.77 (m, 2H,

Fmoc-Ar-CH). - 13C NMR (CDCl3, 62.9 MHz) δ 18.3 (+, CH3CH), 18.9 (+, CH3CH), 47.1 (+,

Fmoc-CH), 48.3 (+, CHN), 50.4 (+, CHN), 67.1 (-, CH2O), 67.3 (-, CH2O), 120.0 (+, Fmoc-

Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH, 2C), 127.1 (+, Ar-CH, 2C), 127.8 (+, Ar-CH, 2C), 128.2

(+, Ar-CH, 2C), 128.5 (+, Ar-CH), 128.7 (+, Ar-CH, 2C), 135.3 (Cquat, Ph-C), 141.3 (Cquat,

Fmoc-Ar-C, 2C), 143.81 (Cquat, Fmoc-Ar-C), 143.84 (Fmoc-Cquat-, ArC), 155.9 (Cquat,

N(CO)O), 171.9 (Cquat, C=O), 172.5 (Cquat, C=O). - MS  CI (NH3) m/z (%) 490 (MNH4
+, 31),

473 (MH+, 2), 400 (10), 294 (15), 251 (15), 214 (100). - IR (KBr) 3304, 3065, 2979, 1737,

1690, 1654, 1537, 1450 cm-1. - Anal. Calcd for C28H28N2O5.0.3 H2O (477.944): C, 70.36; H,



162 Experimental part

6.03; N, 5.86. Found: C, 70.35; H, 5.99; N, 5.82. - HR MS  calcd for C28H28N2O5 472.19982,

found 472.20010.

FmocHN
H
N

O
OMe

O

56d

2S-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionylamino]3-methyl-butyric acid

methyl ester (56d):71 N-Fmoc-alanine (130 mg, 0.42 mmol, 1.5 eq.) was preactivated by

stirring with EDC (81 mg, 0.42 mmol, 1.5 eq.) and HOBt (57 mg, 0.42 mmol, 1.5 eq.) in dry

CH2Cl2 (5 ml), under nitrogen atmosphere 1 h at 0 °C and 1 h at room temperature. The

solution was added under nitrogen atmosphere to Pd[PPh3]4 (32 mg, 0.028 mmol, 0.1 eq.),

then 55d (60 mg, 0.28 mmol, 1 eq.) and finally DABCO (110 mg, 0.98 mmol, 3.5 eq.) were

added. The solution was stirred 10 min. at room temperature, then CH2Cl2 (10 ml) was added

and the solution was washed with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and

saturated NaHCO3 (10 ml). The organic phase was dried over MgSO4 and concentrated. The

product was purified by chromatography (ethyl acetate/hexanes 2:3) to afford a white solid

(103 mg, 87 %). - Rf (56d): 0.21. - mp 151-153 °C. - [ ]21
Dα  -33.9 (c 0.5, MeOH). - 1H NMR

(CDCl3, 250 MHz) δ 0.88 (t, J = 6.9 Hz, 3H, (CH3)2CH), 0.91 (t, J = 6.9 Hz, 3H, (CH3)2CH),

1.40 (d, J = 7.0 Hz, 3H, CH3CH), 2.09-2.20 (m, 1H, (CH3)2CH), 3.72 (s, 3H, CH3O), 4.18-

4.23 (m, 1H, Fmoc-CH), 4.31-4.40 (m, 3H, Fmoc-CH2 + Ala-CHN), 4.54 (dd, J = 4.9, 8.8 Hz,

1H, Val-CHN), 5.49 (d, J = 7.6 Hz, 1H, NHFmoc), 6.61 (d, J = 8.3 Hz, 1H, NH), 7.25-7.42

(m, 4H, Fmoc-Ar-CH); 7.56-7.59 (m, 2H, Fmoc-Ar-CH), 7.74-7.77 (m, 2H, Fmoc-Ar-CH).

BocHN
H
N

O
OMe

O

56e

2S-(2S-tert-Butoxycarbonylamino-propionylamino)-3-methyl-butyric acid methyl ester

(56e):72 N-Boc-alanine (261 mg, 1.38 mmol, 3 eq.) was preactivated by stirring with EDC

(265 mg, 1.38 mmol, 3 eq.) and HOBt (186 mg, 1.38 mmol, 3 eq.) in dry CH2Cl2 (5 ml),

under nitrogen atmosphere 1 h at 0 °C and 1 h at room temperature. The solution was added

under nitrogen atmosphere to Pd[PPh3]4 (50 mg, 0.046 mmol, 0.1 eq.), then 55e (107 mg,
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0.46 mmol, 1 eq.) and finally DABCO (283 mg, 2.53 mmol, 5.5 eq.) were added. The solution

was stirred 10 min. at room temperature, then CH2Cl2 (10 ml) was added and the solution was

washed with saturated NaHCO3 (10 ml), 1 M KHSO4 (10 ml) and saturated NaHCO3 (10 ml).

The organic phase was dried over MgSO4 and concentrated. The product was purified by

chromatography (ethyl acetate/hexanes 2:3) to afford a white solid (145 mg, 97 %). - Rf (56e):

0.18. - mp 82-84 °C. - [ ]21
Dα  -49.8 (c 0.5, MeOH). - 1H NMR (CDCl3, 250 MHz) δ 0.90 (d, J =

7.0 Hz, 3H, (CH3)2CH), 0.93 (d, J = 7.0 Hz, 3H, (CH3)2CH), 1.36 (d, J = 7.0 Hz, 3H,

CH3CH), 1.45 (s, 9H, (CH3)3C), 2.11-2.21 (m, 1H, (CH3)2CH), 3.74 (s, 3H, CH3O), 4.13-4.22

(m, 1H, Ala-CHN); 4.53 (dd, J = 4.9, 13.8 Hz, 1H, Val-CHN), 5.04 (d, J = 6.7 Hz, 1H,

NHBoc), 6.69 (s br, 1H, NH).

N

CO2BnO

N

O

BocHN

67a

1-{1-[(tert-Butoxycarbonylamino)-acetylamino]-pyrrolidine-2S-carbonyl}-pyrrolidine-2S-

carboxylic acid benzyl ester (67a):73 N-Boc-glycine (272 mg, 1.55 mmol, 3eq.) was

preactivated by stirring with EDC (298 mg, 1.55 mmol, 3 eq.) and HOBt (209 mg,

1.55 mmol, 3 eq.) in dry CH2Cl2 (8 ml), under nitrogen atmosphere 1 h at 0 °C and 1 h at

room temperature. The solution was added under nitrogen atmosphere to Pd[PPh3]4 (60 mg,

0.05 mmol, 0.1 eq.), then 66 (200 mg, 0.52 mmol, 1 eq.) and finally DABCO (349 mg,

3.1 mmol, 6 eq.) were added. The solution was stirred 20 min. at room temperature, then

CH2Cl2 (10 ml) was added and the solution was washed with saturated NaHCO3 (15 ml), 1 M

KHSO4 (10 ml) and saturated NaHCO3 (15 ml). The organic phase was dried over MgSO4

and concentrated. The product was purified by chromatography (CHCl3/MeOH 40:1) to

afford a white solid (215 mg, 90 %). - Rf  (67a): 0.6. - mp 58-60 °C. - [ ]21
Dα  -105.7 (c 1,

CHCl3). - 1H NMR (CDCl3, 400 MHz) δ 1.43 (s, 9H, (CH3)3C), 2.01-2.24 (m, 8H, CH2-CH2),

3.40-3.49 (m, 1H, proline-CH2N), 3.54-3.65 (m, 2H, proline-CH2N), 3.81-3.90 (m, 2H,

proline-CH2N + glycine CH2N), 4.03 (dd, J = 5.4; 17.1 Hz, 1H, gycine-CH2N), 4.59-4.69 (m,

2H, proline-CHN), 5.06 (d, J = 12.3 Hz, 1H, CH2O), 5.22 (d, J = 12.3 Hz, CH2O), 5.30 (s br,

1H, NH), 7.32-7.34 (m, 5H, Ph-CH).
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N

CO2BnO

N

O

FmocHN

67b

1-{1-[2S-(9H-Fluoren-9-ylmethoxycarbonyl-amino)-propionyl]-pyrrolidine-2S-carbonyl}-

pyrrolidine-2S-carboxylic acid benzyl ester (67b): N-Fmoc-alanine (805 mg, 2.59 mmol,

4 eq.) was preactivated by stirring with EDC (497 mg, 2.59 mmol, 4 eq.) and HOBt (349 mg,

2.59 mmol, 4 eq.) in dry CH2Cl2 (10 ml), under nitrogen atmosphere 1 h at 0 °C and 1 h at

room temperature. The solution was added under nitrogen atmosphere to Pd[PPh3]4 (99 mg,

0.086 mmol, 0.13 eq.), then 66 (247 mg, 0.64 mmol, 1 eq.) and finally DABCO (532 mg,

4.75 mmol, 7.5 eq.) were added. The solution was stirred 20 min. at room temperature, then

CH2Cl2 (10 ml) was added and the solution was washed with saturated NaHCO3 (15 ml), 1 M

KHSO4 (10 ml) and saturated NaHCO3 (15 ml). The organic phase was dried over MgSO4

and concentrated. The product was purified by chromatography (CHCl3/MeOH 90:1) to

afford a white solid (375 mg, 98 %). - Rf  (67b): 0.14. - mp 58-60 °C. - [ ]21
Dα  -127.1 (c 0.5,

MeOH). - 1H NMR (CDCl3, 400 MHz) δ 1.41 (d, J = 6.9 Hz, 3H, CH3CH), 1.93-2.06 (m, 5H,

CH2CH2CH2), 2.08-2.24 (m, 3H, CH2CH2CH2), 3.57-3.70 (m, 3H, CH2N), 3.77-3.81 (m, 1H,

CH2N), 4.20 (dd, J = 7.2, 7.2 Hz, 1H, Fmoc-CH), 4.34 (d, J = 7.1 Hz, 2H, Fmoc-CH2), 4.54

(pseudo p, J = 7.6 Hz, 1H, Ala-CHN), 4.66 (dd, J = 3.9, 9.1 Hz, 1H, Pro-CHN), 4.68-4.70 (m,

1H, Pro-CHN), 5.04 (d, J = 12.3 Hz, 1H, CH2O), 5.24 (d, J = 12.3 Hz, 1H, CH2O), 5.69 (d,

J = 8.0 Hz, 1H, NH), 7.30-7.40 (m, 9H, Ar-CH), 7.57-7.60 (m, 2H, Fmoc-Ar-CH), 7.74-7.76

(m, 2H, Fmoc-Ar-CH). - 13C NMR (CDCl3, 100.6 MHz) δ 18.2 (+, CH3CH), 24.77 (-, CH2),

24.81 (-, CH2), 28.0 (-, CH2), 28.7 (-, CH2), 46.6 (-, CH2N), 47.06 (+, Fmoc-CH), 47.10 (-,

CH2N), 48.3 (+, CHN), 57.8 (+, CHN), 58.7 (+, CHN), 66.8 (-, CH2O), 66.9 (-, CH2O), 119.9

(+, Fmoc-Ar-CH, 2C), 125.1 (+, Fmoc-Ar-CH, 2C), 127.0 (+, Ar-CH, 2C), 127.6 (+, Ar-CH,

2C), 128.1 (+, Ar-CH, 2C), 128.2 (+, Ar-CH), 128.5 (+, Ar-CH, 2C), 135.5 (Cquat, Ph-C),

141.19 (Cquat, Fmoc-Ar-C), 141.20 (Cquat, Fmoc-Ar-C), 143.8 (Cquat, Fmoc-Ar-C), 143.9

(Cquat, Fmoc-Ar-C), 155.6 (Cquat, N(CO)O), 170.2 (Cquat, C=O), 171.0 (Cquat, C=O), 171.9

(Cquat, C=O). - MS  FAB (MeOH/Glycerin) m/z (%) 596 (MH+, 25), 391 (9), 303 (23), 179

(100). - IR (KBr) 3388, 3209, 2942, 2786, 1739, 1700, 1609, 1521, 1420 cm-1. - HR MS

calcd for C35H37N3O6 + H 596.27606, found 596.27622.
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N

CO2BnO

N

ON
Fmoc

67c

1-{1-[1-(9H-Fluoren-9-ylmethoxycarbonyl)-pyrrolidine-2S-carbonyl]-pyrrolidine-2S-

carbonyl}-pyrrolidine-2S-carboxylic acid benzyl ester (67c): N-Fmoc-proline (526 mg,

1.56 mmol, 3 eq.) was preactivated by stirring with EDC (299 mg, 1.56 mmol, 3 eq.) and

HOBt (210 mg, 1.56 mmol, 3 eq.) in dry CH2Cl2 (10 ml), under nitrogen atmosphere 1 h at

0 °C and 1 h at room temperature. The solution was added under nitrogen atmosphere to

Pd[PPh3]4 (60 mg, 0.052 mmol, 0.1 eq.), then 66 (200 mg, 0.52 mmol, 1 eq.) and finally

DABCO (323 mg, 2.86 mmol, 5.5 eq.) were added. The solution was stirred 20 min. at room

temperature, then CH2Cl2 (10 ml) was added and the solution was washed with saturated

NaHCO3 (15 ml), 1 M KHSO4 (10 ml) and saturated NaHCO3 (15 ml). The organic phase was

dried over MgSO4 and concentrated. The product was purified by chromatography

(CHCl3/MeOH 90:1) to afford a mixture of two rotamers 70:30 (310 mg, 96 %). - Rf (67c):

0.13. - mp 74-76 °C. - [ ]21
Dα  -140.0 (c 0.5, MeOH). - 1H NMR (CDCl3, 62.9 MHz) δ 1.79-2.25

(m, 12H, CH2), 3.19-3.22 (m, 1H, CH2N, minor rotamer), 3.43-3.82 (m, 6H, CH2N, major

rotamer + 5H minor rotamer), 4.14-4.46 (m, 3H, Fmoc-CH2 + Fmoc-CH), 4.48-4.65 (m, 2H,

CHN, major rotamer + 3H minor rotamer), 4.76 (dd, J = 3.6, 7.7 Hz, 1H, CHN, major

rotamer), 5.01 (d, J = 12.3 Hz, 1H, CH2O, minor rotamer), 5.02 (d, J = 12.3 Hz, 1H, CH2O,

major rotamer), 5.23 (d, J =12.3 Hz, 1H, CH2O, minor rotamer + 1H major rotamer), 7.29-

7.41 (m, 9H, Ar-CH), 7.54-7.64 (m, 2H, Fmoc-Ar-CH), 7.74-7.77 (m, 2H, Fmoc-Ar-CH). -
13C NMR (CDCl3, 62.9 MHz) δ major rotamer: 23.4 (-, CH2), 24.9 (-, CH2, 2C), 27.9 (-,

CH2), 28.8 (-, CH2), 29.1 (-, CH2), 46.6 (-, CH2N), 46.89 (-, CH2N), 46.94 (-, CH2N), 47.3 (+,

Fmoc-CH), 57.9 (+, CHN), 58.3 (+, CHN), 58.8 (+, CHN), 66.8 (-, CH2O), 67.4 (-, CH2O),

119.9 (+, Fmoc-Ar-CH, 2C), 125.2 (+, Fmoc-Ar-CH), 125.3 (+, Ar-CH), 127.0 (+, Ar-CH),

127.1 (+, Ar-CH), 127.64 (+, Ar-CH), 127.65 (+, Ar-CH), 128.20 (+, Ar-CH, 2C), 128.3 (+,

Ar-CH), 128.6 (+, Ar-CH, 2C), 135.7 (Cquat, Ph-C), 141.28 (Cquat, Fmoc-Ar-C), 141.31 (Cquat,

Fmoc-Ar-C), 144.0 (Cquat, Fmoc-Ar-C), 144.3 (Cquat, Fmoc-Ar-C), 155.0 (Cquat, N(CO)O),

170.68 (Cquat, C=O), 170.71 (Cquat, C=O), 172.1 (Cquat, C=O). Minor rotamer: 23.2 (-, CH2),

24.8 (-, CH2), 24.9 (-, CH2N), 27.8 (-, CH2), 28.8 (-, CH2), 29.9 (-, CH2), 46.5 (-, CH2N), 46.6

(-, CH2N), 47.3 (-, CH2N), 47.7 (+, Fmoc-CH), 57.69 (+, CHN), 57.73 (+, CHN), 58.7 (+,

CHN), 66.3 (-, CH2O), 66.8 (-, CH2O), 119.8 (+, Fmoc-Ar-CH, 2C), 124.9 (+, Fmoc-Ar-CH),
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125.0 (+, Fmoc-Ar-CH), 126.8 (+, Ar-CH), 127.0 (+, Ar-CH), 127.4 (+, Ar-CH), 127.6 (+,

Ar-CH), 128.18 (+, Ar-CH, 2C), 128.3 (+, Ar-CH), 128.6 (+, Ar-CH, 2C), 135.68 (Cquat, Ph-

C), 141.26 (Cquat, Fmoc-Ar-C), 141.35 (Cquat, Fmoc-Ar-C), 143.9 (Cquat, Fmoc-Ar-C), 144.6

(Cquat, Fmoc-Ar-C), 154.3 (Cquat, N(CO)O), 170.5 (Cquat, C=O), 170.6 (Cquat, C=O), 172.0

(Cquat, C=O). - MS  FAB (MeOH/Glycerine) m/z (%) 1243 (2MH+, <1), 622 (MH+, 28), 179

(Fuorenyl cation, 100). - IR (KBr) 2971, 2875, 1742, 1702, 1649, 1421 cm-1. - HR MS  calcd

for C37H39N3O6 + H 622.29171, found 622.29072.

2.2.7 Solid-phase synthesis

OH
H
N

O

O
N
H

O
FmocHN

Ph

76

2S-{2S-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionylamino]-3-phenyl-

propionylamino}-propionic acid (76): The solid phase synthesis was performed on a Wang

resin. The loading of N-Fmoc-alanine (0.35 mmol/g) on the resin was performed following

the Advanced ChemTech catalogue protocol (GP1). Fmoc group removal was carried out with

20 % piperidine in DMF (20 min.). The coupling of N-Alloc-phenylalanine was achieved

following the Advanced ChemTech Synthesiser (Model 90) manual protocol (GP2) for

HOBt/DIC/amino acid method. Then the resin (495 m, 0.15 mmol) was swelled in CH2Cl2

(10 ml) for 25 min.. The resin was drained and a solution (previously stirred 1 h at 0 °C and

1 h at room temperature for preactivation) of N-Fmoc-alanine (700 mg, 2.25 mmol, 15 eq.),

EDC (432 mg, 2.25 mmol, 15 eq.) and HOBt (304 mg, 2.25 mmol, 15 eq.) in freshly distilled

CH2Cl2 (8 ml) was added under nitrogen atmosphere. Pd[PPh3]4 (34 mg, 0.03 mmol, 0.2 eq.)

and finally DABCO (302 mg, 2.7 mmol, 18 eq.) were added. The reaction mixture was

agitated 2 h, the resin was drained and washed with CH2Cl2 (10 x 10 ml). The product was

cleaved from the resin by stirring for 1 h with a 2:1 mixture of TFA/CH2Cl2 (10 ml). After

solvent evaporation the pure product was isolated as a white solid (78 mg, 99 %). - mp 176-

178 °C. - [ ]21
Dα  -37.3 (c 0.5, MeOH). - 1H NMR (DMSO-d6, 250 MHz): δ 1.11 (d, J = 7.0 Hz,

3H, CH3CH), 1.27 (d, J = 7.2 Hz, 3H, CH3CH), 2.78 (dd, J = 9.3, 13.8 Hz, 1H, CH2Ph), 3.03

(dd, J = 4.0, 13.8 Hz, 1H, CH2Ph), 3.95-4.03 (m, 1H, Fmoc-CH), 4.16-4.21 (m, 4H, Fmoc-

CH2 + 2 CHN), 4.27-4.51 (m, 1H, CHN), 7.19-7.48 (m, 10H, Ar-CH + NH), 7.69-7.71 (m,

2H, Fmoc-Ar-CH), 7.87-7.89 (m, 3H, Fmoc-Ar-CH + NH), 8.22 (d, J = 7.0 Hz, 1H, NH),
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12.52 (s br, 1H, CO2H). - 13C NMR (DMSO-d6, 62.9 MHz): δ 17.2 (+, CH3CH), 18.1 (+,

CH3CH), 37.3 (-, CH2Ph), 46.6 (+, Fmoc-CH), 47.5 (+, CHN), 50.2 (+, CHN), 53.3 (+, CHN),

65.6 (-, CH2O), 120.1 (+, Fmoc-Ar-CH, 2C), 125.3 (+, Fmoc-Ar-CH, 2C), 126.2 (+, Ar-CH),

127.1 (+, Ar-CH, 2C), 127.6 (+, Ar-CH, 2C), 127.9 (+, Ar-CH, 2C), 129.3 (+, Ar-CH, 2C),

137.6 (Cquat, Ph-C), 140.7 (Cquat, Fmoc-Ar-C, 2C), 143.7 (Cquat, Fmoc-Ar-C), 143.8 (Cquat,

Fmoc-Ar-C), 155.6 (Cquat, N(CO)O), 170.6 (Cquat, C=O), 172.2 (Cquat, C=O), 173.9 (Cquat,

C=O). - MS  FAB (MeOH/Glycerine) m/z (%) 530 (MH+, 13), 441 (MH+-Alanine, 8), 237 (7),

179 (Fluorenyl cation, 100). - IR (KBr) 3298, 3066, 1711, 1688, 1645, 1536, 1450 cm-1. - HR

MS  FAB (MeOH/Glycerine) calcd for C30H31N3O6 + H 530.22911, found 596.27622.

N
H

CO2Me

H
N

O

O
FmocHN CO2H

CH2Ph

77

(1R*, 2R*, 3S*) 2-(1S-Carboxy-2-phenyl-ethylcarbamoyl)-3-[2S-(9H-fluoren-9-

ylmethoxycarbonylamino)-propionylamino]-cyclopropane carboxylic acid methyl ester (77):

The solid phase synthesis was performed on a Wang resin. The loading of Fmoc-phenylalanine

(0.85 mmol/g) on the resin was performed following the Advanced ChemTech catalogue protocol

(GP1). Fmoc group removal was carried out with 20 % piperidine in DMF (20 min.). The

coupling of (±)-69b was achieved following the Advanced ChemTech Synthesiser (Model 90)

manual protocol (GP2) for HOBt/DIC/amino acid method. Then the resin (200 mg, 0.13 mmol)

was swelled in CH2Cl2 (10 ml) for 25 min.. The resin was drained and a solution (previously

stirred 1 h at 0 °C and 1 h at room temperature for preactivation) of N-Fmoc-alanine (248 mg,

0.80 mmol, 6 eq.), EDC ( 154 mg, 0.80 mmol, 6 eq.) and HOBt (108 mg, 0.80 mmol, 6 eq.) in

freshly distilled CH2Cl2 (4 ml) was added under nitrogen atmosphere. Pd[PPh3]4 (30 mg,

0.026 mmol, 0.2 eq.) and finally DABCO (175 mg, 1.56 mmol, 12 eq.) were added. A parallel

experiment was performed under the same conditions but with the addition of PhSiH3 (192 µl,

1.56 mmol, 12 eq.) instead of DABCO. The reaction mixture was agitated 2 h, the resin was then

drained and washed CH2Cl2 with (10 x 10 ml). The product was cleaved from the resin by stirring

1 h with a 2:1 mixture of TFA/CH2Cl2 (10 ml). After solvent evaporation the product (as a

mixture of two diastereomers) was purified by chromatography (CHCl3/MeOH 15:1 + 1 %

AcOH) as a white solid (66 mg, 85 % for DABCO protocol, 62 mg, 82 % for PhSiH3 protocol). -

Rf (77): 0.3 - mp 200 °C decomp. - 1H NMR (CD3OD, 400 MHz): δ 1.26-1.29 (m, 3H, CH3CH),
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2.19 (dd J = 5.4, 7.9 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.32 (dd, J = 5.4, 7.8 Hz, 1H,

cyclopropyl-CH, 1 diast.), 2.42 (dd, J = 5.1, 5.1 Hz, 1H, cyclopropyl-CH, 1 diast.), 2.46-2.49 (m,

1H, cyclopropyl-CH, 1 diast.), 2.90-2.97 (m, 1H, PhCH2), 3.17-3.22 (m, 1H, PhCH2), 3.45-3.50

(m, 1H, cyclopropyl-CHN), 3.59 (s, 3H, CH3O, 1 diast.), 3.61 (s, 3H, CH3O, 1 diast.), 4.04-4.09

(m, 1H, Ala-CHN), 4.19-4.2 (m, 1H, Fmoc-CH), 4.29-4.39 (m, 2H, Fmoc-CH2), 4.62-4.67 (m,

1H, Phe-CHN), 7.13-7.39 (m, 9H, Ar-CH), 7.64-7.68 (m, 2H, Fmoc-Ar-CH), 7.77-7.79 (m, 2H,

Fmoc-Ar-CH). - 13C NMR (CD3OD, 100.6 MHz): δ 18.0 (+, CH3CH, 1 diast.), 18.1 (+, CH3CH,

1 diast.), 27.6 (+, cyclopropyl-CH, 1 diast.), 27.7 (+, cyclopropyl-CH, 1 diast.), 29.4 (+,

cyclopropyl-CH, 1 diast.), 29.7 (+, cyclopropyl-CH, 1 diast.), 35.7 (+, cyclopropylCHN, 1 diast.),

35.9 (+, cyclopropyl-CHN, 1 diast.), 38.4 (-, CH2Ph, 1 diast.), 38.6 (-, CH2Ph, 1 diast.), 48.4 (+,

Fmoc-CH), 51.9 (+, CH3O, 1 diast.), 52.0 (+, CH3O, 1 diast.), 52.7 (+, CHN, 1 diast.), 52.8 (+,

CHN, 1 diast.), 55.4 (+, CHN, 1 diast.), 55.5 (+, CHN, 1 diast.), 68.0 (-, Fmoc-CH2), 120.9 (+,

Fmoc-Ar-CH, 2C), 126.2 (+, Ar-CH, 2C, 1 diast.), 126.3 (+, Ar-CH, 2C, 1 diast.), 127.78 (+, Ar-

CH, 1 diast.), 127.81 (+, Ar-CH, 1 diast.), 128.14 (+, Ar-CH, 2C, 1 diast.), 128.18 (+, Ar-CH, 2C,

1 diast.), 128.8 (+, Ar-CH, 2C), 129.4 (+, Ar-CH, 2C, 1 diast.), 129.5 (+, Ar-CH, 2C, 1 diast.),

130.28 (+, Ar-CH, 2C, 1 diast.), 130.31 (+, Ar-CH, 2C, 1 diast.), 138.2 (Cquat, Ph-C, 1 diast.),

138.3 (Cquat, Ph-C, 1 diast.), 142.57 (Cquat, Fmoc-Ar-C, 2C, 1 diast.), 142.59 (Cquat, Fmoc-Ar-C,

2C, 1 diast.), 145.51 (Cquat, Fmoc-Ar-C, 1 diast.), 145.2 (Cquat, Fmoc-Ar-C, 1 diast.), 145.4 (Cquat,

Fmoc-Ar-C), 158.2 (Cquat, N(CO)O), 170.5 (Cquat, C=O, 1 diast.), 170.6 (Cquat, C=O, 1 diast.),

170.8 (Cquat, C=O, 1 diast.), 170.9 (Cquat, C=O, 1 diast.), 174.56 (Cquat, C=O, 1 diast.), 174.65

(Cquat, C=O, 1 diast.), 176.6 (Cquat, C=O). - MS  FAB (MeOH/Glycerine) m/z (%) 600 (MH+,

100), 442 (18). - IR (KBr) 3500-277 (OH broad signal), 3292, 3047, 2961, 1719, 1649, 1529,

1439, 1247 cm-1. - HR MS  calcd for C33H33N3O8 + H 600.23459, found 600.23475.

N

CO2HO

N

O

FmocHN

80

1-{1-[2S-(9H-Fluoren-9-ylmethoxycarbonyl-amino)-propionyl]-pyrrolidine-2S-carbonyl}-

pyrrolidine-2S-carboxylic acid (80): The solid phase synthesis was performed on a Wang resin.

The loading of N-Fmoc-proline (0.6 mmol/g) on the resin was performed following the

Advanced ChemTech catalogue protocol (GP1). Fmoc group removal was carried out with

20 % piperidine in DMF (20 min.). The coupling of N-Alloc-proline was achieved following
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the Advanced ChemTech Synthesiser (Model 90) manual protocol (GP2) for

HOBt/DIC/amino acid method. Then the resin (300 mg, 0.15 mmol) was swelled in CH2Cl2

(10 ml) for 25 min.. The resin was drained and a solution (previously stirred 1 h at 0 °C and

1 h at room temperature for preactivation) of N-Fmoc-alanine (299 mg, 0.96 mmol, 6 eq.),

EDC ( 184 mg, 0.96 mmol, 6 eq.) and HOBt (130 mg, 0.96 mmol, 6 eq.) in freshly distilled

CH2Cl2 (4 ml) was added under nitrogen atmosphere. Pd[PPh3]4 (34 mg, 0.03 mmol, 0.2 eq.)

and finally DABCO (201 mg, 1.8 mmol, 12 eq.) were added. A parallel experiment was

performed under the same conditions but with the addition of PhSiH3 (221 µl, 1.8 mmol,

12 eq.) instead of DABCO. The reaction mixture was agitated 2 h, the resin was then drained

and washed with CH2Cl2 (10 x 10 ml). The product was cleaved from the resin by stirring 1 h

with a 2:1 mixture of TFA/CH2Cl2 (10 ml). After solvent evaporation the pure product was

isolated as a white solid (77 mg, quantitative for DABCO protocol, 76 mg, 99 % for PhSiH3

protocol). - mp 96-99 °C. - [ ]21
Dα  -107.5 (c 0.5, MeOH). - 1H NMR (CDCl3, 400 MHz): δ 1.38

(d, J = 6.8 Hz, 3H, CH3CH), 1.97-2.06 (m, 4H, CH2CH2CH2), 2.09-2.20 (m, 4H,

CH2CH2CH2), 3.54-3.80 (m, 4H, CH2N), 4.20 (dd, J = 7.4, 7.4 Hz, 1H, Fmoc-CH), 4.33 (d,

J = 6.8 Hz, 2H, Fmoc-CH2), 4.54 (dq, J = 7.3, 7.3 Hz, 1H, Ala-CHN), 4.60 (dd, J = 4.2,

7.7 Hz, 1H, CHN), 4.67 (dd, J = 4.6, 7.9 Hz, 1H, CHN), 5.82 (d, J = 8.3 Hz, 1H, NH), 7.26-

7.31 (m, 2H, Fmoc-Ar-CH), 7.37-7.41 (m, 2H, Fmoc-Ar-CH), 7.57-7.70 (m, 2H, Fmoc-Ar-

CH), 7.74-7.76 (m, 2H, Fmoc-Ar-CH), 9.23 (s br, 1H, CO2H). - 13C NMR (CDCl3,

100.6 MHz): δ 17.9 (+, CH3CH), 24.9 (-,CH2CH2CH2), 28.0 (-,CH2CH2CH2), 28.1 (-

,CH2CH2CH2), 29.6 (-,CH2CH2CH2), 47.09 (+, Fmoc-CH), 47.12 (-, CH2N), 47.2 (-, CH2N),

48.3 (+, CHN), 57.9 (+, CHN), 59.4 (+, CHN), 67.0 (-, CH2O), 119.9 (+, Fmoc-Ar-CH, 2C),

125.1 (+, Fmoc-Ar-CH, 2C), 127.0 (+, Fmoc-Ar-CH, 2C), 127.6 (+, Fmoc-Ar-CH, 2C), 141.2

(Cquat, Fmoc-Ar-C, 2C), 143.8 (Cquat, Fmoc-Ar-C), 143.9 (Cquat, Fmoc-Ar-C), 155.8 (Cquat,

N(CO)O), 171.6 (Cquat, C=O), 171.8 (Cquat, C=O), 173.9 (Cquat, C=O). - MS  FAB

(MeOH/Glycerine) m/z (%) 506 (MH+, 17), 319 (MH+-Pro, 9), 213 (25), 179 (Fluorenyl

cation, 100). - IR (KBr) 3414, 3308, 2978, 1715, 1637, 1449, 1248 cm-1. - HR MS  calcd for

C28H31N3O6 + H 506.22911, found 506.2293.
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Appendix of NMR and X-Ray Data

NMR

1H-Spectra (top of the page)

13C-Spectra (DEPT) (bottom of the page)

In some cases DQF-COSY, 80 ms TOCSY and 500 ms ROESY are given in this order after

the 13C spectrum.



Appendix of NMR and X-ray data 179

11.0

(1R*, 2R*, 3

18

(1R*, 2R*, 3

O

(ppm)
1.02.03.04.05.06.07.08.09.010.0

S*) 3-Allyloxycarbonyl-cyclopropane-1,2-dicarboxylic acid mono methyl ester, 250 MHz, CDCl3.

(ppm)
1020304050607080901001101201301401501601700

S*) 3-Allyloxycarbonyl-cyclopropane-1,2-dicarboxylic acid mono methyl ester, 62.9 MHz, CDCl3.

HN

MeO2C CO2H

O

69b
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(1R, 2
methoxyc
carbonyla
CDCl3/C

(1R, 2
methoxyc
carbonyla
MHz, CD

CO2MeCO2Me CO2Me
(ppm)
0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5

R, 3R) 3-{2S-[2R-(2S-{2R-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionylamino]-3R-
arbonyl-cyclopropane-1R-carbonylamino}-propionylamino)-3R-methoxycarbonyl-cyclopropane-1R-
mino]-propionylamino}-cyclopropane-1, 2-dicarboxylic acid 1-benzyl ester 2-methyl ester, 250 MHz,

D3OD 1:1.

(ppm)
102030405060708090100110120130140150160170180

R, 3R) 3-{2S-[2R-(2S-{2R-[2S-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionylamino]-3R-
arbonyl-cyclopropane-1R-carbonylamino}-propionylamino)-3R-methoxycarbonyl-cyclopropane-1R-
mino]-propionylamino}-cyclopropane-1, 2-dicarboxylic acid 1-benzyl ester 2-methyl ester, 100.6
Cl3/CD3OD 1:1.
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N
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O
N
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O
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(ppm)
0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

(1R, 2R, 3R) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester, HCl salt, 400 MHz, CD3OD.

(ppm)
102030405060708090100110120130140150160170180

(1R, 2R, 3R) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester, HCl salt, 100.6 MHz, CD3OD.

N
H

CO2Me
OH

N

O
H3N

H
N

O
N
H

O

CO2H
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Cl
(+)-39
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(ppm) 8.0 6.0 4.0 2.0 0.0

10.0

8.0

6.0

4.0

2.0

0.0

(ppm)

(1R, 2R, 3R) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester HCl salt. COSY: 500 MHz, 280 K,
CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
10.0

8.0

6.0

4.0

2.0

(ppm)

(1R, 2R, 3R) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester HCl salt. TOCSY: 500 MHz,
280 K, CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
10.0

8.0

6.0

4.0

2.0

(ppm)

(1R, 2R, 3R) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester HCl salt. ROESY: 500 MHz,
500 ms spin lock, 280 K, CD3OH.
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(1S, 2
ethylcar

(1S, 2
ethylcar

CO2Me PhPh
(ppm)
0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5

S, 3S) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
bamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester, HCl salt, 400 MHz, CD3OD.

(ppm)
102030405060708090100110120130140150160170180

S, 3S) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
bamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester, HCl salt, 100.6 MHz, CD3OD.

N
H

OH
N

O
H3N

H
N

O
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(ppm) 8.0 6.0 4.0 2.0 0.0

10.0

8.0

6.0

4.0

2.0

0.0

(ppm)
(1S, 2S, 3S) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester HCl salt. COSY: 500 MHz, 280 K,
CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
10.0

8.0

6.0

4.0

2.0

(ppm)

(1S, 2S, 3S) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester HCl salt. TOCSY: 500 MHz,
280 K, CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
10.0

8.0

6.0

4.0

2.0

(ppm)

(1S, 2S, 3S) 2-[2S-(2S-Amino-3-phenyl-propionylamino)-propionylamino]-3-[1S-(1S-carboxy-2-phenyl-
ethylcarbamoyl)-ethylcarbamoyl]-cyclopropane carboxylic acid methyl ester HCl salt. ROESY: 500 MHz,
500 ms spin lock, 280 K, CD3OH.
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(1R, 2R
cyclopro
MHz, C

(1R, 2R
cyclopro
MHz, C

CO2MeCO2Me
(ppm)
0.40.81.21.62.02.42.83.23.64.04.44.85.25.6

, 3R) 2-(2S-Carboxyl-ethylcarbamoyl)-3-{2S-[2R-(2S-amino-propionylamino)-3R-methoxycarbonyl-
pane-1R-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt, 400

D3OD.

(ppm)
102030405060708090100110120130140150160170180

, 3R) 2-(2S-Carboxyl-ethylcarbamoyl)-3-{2S-[2R-(2S-amino-propionylamino)-3R-methoxycarbonyl-
pane-1R-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt, 100.6

D3OD.

N
H
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N

O

H
N
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(ppm) 8.0 6.0 4.0 2.0 0.0
0

146

292

438

584

730

876

(pts)

(1R, 2R, 3R) 2-(2S-Carboxyl-ethylcarbamoyl)-3-{2S-[2R-(2S-amino-propionylamino)-3R-methoxycarbonyl-
cyclopropane-1R-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester HCl salt.
COSY: 500 MHz, 280 K, CD3OH.
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(ppm) 8.0 6.0 4.0 2.0

4800

4000

3200

2400

1600

800

(Hz)

(1R, 2R, 3R) 2-(2S-Carboxyl-ethylcarbamoyl)-3-{2S-[2R-(2S-amino-propionylamino)-3R-methoxycarbonyl-
cyclopropane-1R-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester HCl salt.
TOCSY: 500 MHz, 280 K, CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
10.0

8.0

6.0

4.0

2.0

(ppm)
(1R, 2R, 3R) 2-(2S-Carboxyl-ethylcarbamoyl)-3-{2S-[2R-(2S-amino-propionylamino)-3R-methoxycarbonyl-
cyclopropane-1R-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester HCl salt.
ROESY: 500 MHz, 500 ms spin lock, 280 K, CD3OH.
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(1S, 2
cyclopro
MHz, C

(1S, 2
cyclopro
MHz, C

CO2MeCO2Me
(ppm)
0.40.81.21.62.02.42.83.23.64.04.44.85.25.6

S, 3S) 2-(2S-Carboxy-ethylcarbamoyl)-3-{2S-[2S-(2S-amino-propionylamino)-3S-methoxycarbonyl-
pane-1S-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt, 250

D3OD.

(ppm)
102030405060708090100110120130140150160170180

S, 3S) 2-(2S-Carboxy-ethylcarbamoyl)-3-{2S-[2S-(2S-amino-propionylamino)-3S-methoxycarbonyl-
pane-1S-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt, 62.9

D3OD.

N
H

OH
N

O

H
N

O

CO2H
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H3NCl (-)-43
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(ppm) 8.0 6.0 4.0 2.0 0.0

10.0

8.0

6.0

4.0

2.0

0.0

(ppm)

(1S, 2S, 3S) 2-(2S-Carboxy-ethylcarbamoyl)-3-{2S-[2S-(2S-amino-propionylamino)-3S-methoxycarbonyl-
cyclopropane-1S-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt.
COSY: 500 MHz, 280 K, CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
0

146

292

438

584

730

876

(pts)

(1S, 2S, 3S) 2-(2S-Carboxy-ethylcarbamoyl)-3-{2S-[2S-(2S-amino-propionylamino)-3S-methoxycarbonyl-
cyclopropane-1S-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt.
TOCSY: 500 MHz, 280 K, CD3OH.
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(ppm) 8.0 6.0 4.0 2.0
10.0

8.0

6.0

4.0

2.0

(ppm)

(1S, 2S, 3S) 2-(2S-Carboxy-ethylcarbamoyl)-3-{2S-[2S-(2S-amino-propionylamino)-3S-methoxycarbonyl-
cyclopropane-1S-carbonyl-amino]-propionylamino}-cyclopropane carboxylic acid methyl ester, HCl salt.
ROESY: 500 MHz, 500 ms spin lock, 280 K, CD3OH.
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77.58.08.5

1-{1-[2S-(9H-Fluoren-9-ylm
carboxylic acid, 400 MHz, C

15160170180

1-{1-[2S-(9H-Fluoren-9-ylm
carboxylic acid, 100.6 MHz,

O

(ppm)
0.51.01.52.02.53.03.54.04.55.05.56.06.5.0

ethoxycarbonyl-amino)-propionyl]-pyrrolidine-2S-carbonyl]-pyrrolidine-2S-
DCl3.

(ppm)
1020304050607080901001101201301400

ethoxycarbonyl-amino)-propionyl]-pyrrolidine-2S-carbonyl]-pyrrolidine-2S-
 CDCl3.

N

CO2HO

NFmocHN

80
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(1R*, 
propiony

(1R*, 
propiony

CO2Me
(ppm)
0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5

2R*, 3S*) 2-(1S-Carboxy-2-phenyl-ethylcarbamoyl)-3-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-
lamino]-cyclopropane carboxylic acid methyl ester, 400 MHz, CD3OD.

(ppm)
102030405060708090100110120130140150160170180

2R*, 3S*) 2-(1S-Carboxy-2-phenyl-ethylcarbamoyl)-3-[2S-(9H-fluoren-9-ylmethoxycarbonylamino)-
lamino]-cyclopropane carboxylic acid methyl ester, 100.6 MHz, CD3OD.

N
H

H
N

O

O
FmocHN CO2H

Ph

77
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X-ray data of compound (±±±±)-34

(1R*, 2R*, 3R*) 2-acetylamino-3-diethyl-carbamoyl-cyclopropane carboxylic acid

methyl ester ((±±±±)-34)

Table 1. Crystal data and structure refinement for (±)-34.

      Identification code mc11b

      Empirical formula C12 H20 N2 O4

      Formula weight 256.30

      Temperature 293(2) K

      Wavelength 1.54178 Å

      Crystal system, space group Monoclinic, P2(1)/c

      Unit cell dimensions a = 8.873(3) Å alpha = 90 deg.

b = 14.219(4) Å beta = 93.28(5) deg.

c = 10.839(4) Å gamma = 90 deg.

      Volume 1365.3(8) Å3

      Z, Calculated density 4,  1.247 Mg/m3

      Absorption coefficient 0.778 mm-1

      F(000) 552

      Crystal size 0.60 x 0.60 x 0.40 mm

      Theta range for data collection 5.14 to 59.99 deg.

      Limiting indices -9<=h<=9, -1<=k<=15, 0<=l<=12

      Reflections collected / unique 2323 / 2013 [R(int) = 0.0289]
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      Completeness to theta = 59.99 99.7 %

      Refinement method Full-matrix least-squares on F2

      Data / restraints / parameters 2013 / 0 / 164

      Goodness-of-fit on F2 1.097

      Final R indices [I>2sigma(I)] R1 = 0.0582, wR2 = 0.1552

      R indices (all data) R1 = 0.0595, wR2 = 0.1569

      Extinction coefficient 0.074(5)

      Largest diff. peak and hole 0.258 and -0.319 e. Å-3

Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2 x 103)
for (±)-34. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U (eq)
C01 5453(3) 5423(2) 3276(2) 65(1)
C0 5132(2) 4426(1) 2888(2) 48(1)
O0 5526(2) 3757(1) 3531(1) 68(1)
N1 4385(2) 4323(1) 1789(1) 47(1)
C1 4071(2) 3416(1) 1261(2) 43(1)
C2 5225(2) 2967(1) 484(2) 42(1)
C3 3806(2) 3391(1) -120(2) 44(1)
C4 6690(2) 3454(1) 329(2) 43(1)
O1 6799(2) 4105(1) -414(1) 58(1)
NT 7878(2) 3154(1) 1029(2) 49(1)
CT1 7799(2) 2435(1) 1994(2) 55(1)
CT2 8357(3) 1490(2) 1589(3) 84(1)
CT3 9340(2) 3607(2) 893(2) 64(1)
CT4 9478(3) 4536(2) 1557(3) 84(1)
C5 2671(2) 2757(1) -726(2) 49(1)
O2 2005(2) 2922(1) -1698(1) 71(1)
O3 2479(2) 1978(1) -73(1) 61(1)
C6 1515(3) 1278(2) -660(3) 80(1)
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Table 3. Bond lengths [Å] and angles [deg] for (±)-34.

C01-C0 1.500(3) N1-C1-C3 115.82(15)
C0-O0 1.219(2) N1-C1-C2 118.88(16)
C0-N1 1.338(3) C3-C1-C2 60.32(12)
N1-C1 1.432(2) C4-C2-C1 119.45(15)
C1-C3 1.502(3) C4-C2-C3 118.45(15)
C1-C2 1.505(3) C1-C2-C3 59.75(12)
C2-C4 1.491(3) C5-C3-C1 121.42(17)
C2-C3 1.511(2) C5-C3-C2 118.62(16)
C3-C5 1.478(3) C1-C3-C2 59.92(12)
C4-O1 1.235(2) O1-C4-NT 121.52(17)
C4-NT 1.333(2) O1-C4-C2 121.53(16)

NT-CT3 1.464(3) NT-C4-C2 116.95(15)
NT-CT1 1.466(2) C4-NT-CT3 118.57(16)
CT1-CT2 1.506(3) C4-NT-CT1 124.12(16)
CT3-CT4 1.506(4) CT3-NT-CT1 117.19(16)

C5-O2 1.201(2) NT-CT1-CT2 112.60(19)
C5-O3 1.331(3) NT-CT3-CT4 112.7(2)
O3-C6 1.437(3) O2-C5-O3 123.91(18)

O0-C0-N1 122.35(18) O2-C5-C3 123.99(19)
O0-C0-C01 122.24(17) O3-C5-C3 112.10(15)
N1-C0-C01 115.41(17) C5-O3-C6 115.62(17)
C0-N1-C1 121.98(15)

Table 4. Anisotropic displacement parameters (Å2 x 103) for (±)-34. The anisotropic displacement
factor exponent takes the form: -2 pi2 [ h2 a*2 U11 + ... + 2 h k a* b* U12]

U11 U22 U33 U23 U13 U12
C01 95(2) 47(1) 54(1) -9(1) -5(1) -1(1)
C0 65(1) 41(1) 39(1) -1(1) 1(1) 4(1)
O0 106(1) 48(1) 48(1) 5(1) -16(1) 7(1)
N1 67(1) 32(1) 42(1) 1(1) -4(1) 5(1)
C1 54(1) 34(1) 41(1) 2(1) -3(1) 1(1)
C2 51(1) 31(1) 44(1) 1(1) -6(1) 3(1)
C3 50(1) 40(1) 42(1) 1(1) -4(1) 4(1)
C4 52(1) 31(1) 45(1) 2(1) -3(1) 4(1)
O1 60(1) 48(1) 65(1) 21(1) -5(1) -1(1)
NT 47(1) 39(1) 59(1) 10(1) -7(1) 0(1)
CT1 58(1) 48(1) 58(1) 13(1) -10(1) 3(1)
CT2 87(2) 51(1) 114(2) 27(1) 13(2) 21(1)
CT3 49(1) 56(1) 85(2) 14(1) -9(1) -3(1)
CT4 81(2) 57(1) 110(2) 10(1) -31(2) -17(1)
C5 47(1) 54(1) 45(1) -6(1) -3(1) 7(1)
O2 71(1) 83(1) 56(1) -4(1) -23(1) 1(1)
O3 62(1) 54(1) 64(1) -3(1) -13(1) -13(1)
C6 71(2) 74(2) 93(2) -17(1) -9(1) -25(1)



202 Appendix of NMR and X-ray data

Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2 x 103) for (±)-34.

U11 U22 U33 U23 U13 U12
C01 95(2) 47(1) 54(1) -9(1) -5(1) -1(1)
C0 65(1) 41(1) 39(1) -1(1) 1(1) 4(1)
O0 106(1) 48(1) 48(1) 5(1) -16(1) 7(1)
N1 67(1) 32(1) 42(1) 1(1) -4(1) 5(1)
C1 54(1) 34(1) 41(1) 2(1) -3(1) 1(1)
C2 51(1) 31(1) 44(1) 1(1) -6(1) 3(1)
C3 50(1) 40(1) 42(1) 1(1) -4(1) 4(1)
C4 52(1) 31(1) 45(1) 2(1) -3(1) 4(1)
O1 60(1) 48(1) 65(1) 21(1) -5(1) -1(1)
NT 47(1) 39(1) 59(1) 10(1) -7(1) 0(1)
CT1 58(1) 48(1) 58(1) 13(1) -10(1) 3(1)
CT2 87(2) 51(1) 114(2) 27(1) 13(2) 21(1)
CT3 49(1) 56(1) 85(2) 14(1) -9(1) -3(1)
CT4 81(2) 57(1) 110(2) 10(1) -31(2) -17(1)
C5 47(1) 54(1) 45(1) -6(1) -3(1) 7(1)
O2 71(1) 83(1) 56(1) -4(1) -23(1) 1(1)
O3 62(1) 54(1) 64(1) -3(1) -13(1) -13(1)
C6 71(2) 74(2) 93(2) -17(1) -9(1) -25(1)

Table 6. Torsion angles [deg] for (±)-34.

O0-C0-N1-C1 -3.6(3) C3-C2-C4-NT 169.40(15)
C01-C0-N1-C1 176.40(18) O1-C4-NT-CT3 -0.8(3)
C0-N1-C1-C3 -156.56(17) C2-C4-NT-CT3 179.29(17)
C0-N1-C1-C2 -87.7(2) O1-C4-NT-CT1 175.06(18)
N1-C1-C2-C4 2.7(2) C2-C4-NT-CT1 -4.9(3)
C3-C1-C2-C4 107.70(18) C4-NT-CT1-CT2 102.5(2)
N1-C1-C2-C3 -104.96(17) CT3-NT-CT1-CT2 -81.6(2)
N1-C1-C3-C5 -142.86(17) C4-NT-CT3-CT4 79.1(3)
C2-C1-C3-C5 107.15(19) CT1-NT-CT3-CT4 -97.0(2)
N1-C1-C3-C2 109.99(18) C1-C3-C5-O2 151.01(19)
C4-C2-C3-C5 138.91(17) C2-C3-C5-O2 -138.6(2)
C1-C2-C3-C5 -111.74(19) C1-C3-C5-O3 -29.4(2)
C4-C2-C3-C1 -109.36(18) C2-C3-C5-O3 41.0(2)
C1-C2-C4-O1 -79.9(2) O2-C5-O3-C6 6.0(3)
C3-C2-C4-O1 -10.5(3) C3-C5-O3-C6 -173.57(18)
C1-C2-C4-NT 100.0(2)
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Table 7. Hydrogen bonds for (±)-34 [Å and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N1-H1...O1#1 0.86 2.00 2.853(2) 174.4

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z.
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