Abstract
Mammalian Müller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Müller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Müller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For ...
Abstract
Mammalian Müller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Müller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Müller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Müller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Müller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.