Go to content
UR Home

Neural network generated parametrizations of deeply virtual Compton form factors

Kumerički, Krešimir ; Müller, Dieter ; Schäfer, Andreas



Abstract

We have generated a parametrization of the Compton form factor (CFF) H based on data from deeply virtual Compton scattering (DVCS) using neural networks. This approach offers an essentially model-independent fitting procedure, which provides realistic uncertainties. Furthermore, it facilitates propagation of uncertainties from experimental data to CFFs. We assumed dominance of the CFF H and used ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons