Go to content
UR Home

Absence of sign problem in two-dimensional $ \mathcal{N} = \left( {2,2} \right) $ super Yang-Mills on lattice

Hanada, Masanori ; Kanamori, Issaku



Abstract

We show that N = (2, 2) SU(N) super Yang-Mills theory on lattice does not have sign problem in the continuum limit, that is, under the phase-quenched simulation phase of the determinant localizes to 1 and hence the phase-quench approximation becomes exact. Among several formulations, we study models by Cohen-Kaplan-Katz-Unsal (CKKU) and by Sugino. We confirm that the sign problem is absent in ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons