Abstract
Recently, several studies of non-Hermitian Hamiltonians having PT symmetry have been conducted. Most striking about these complex Hamiltonians is how closely their properties resemble those of conventional Hermitian Hamiltonians. This paper presents further evidence of the similarity of these Hamiltonians to Hermitian Hamiltonians by examining the summation of the divergent weak-coupling ...
Abstract
Recently, several studies of non-Hermitian Hamiltonians having PT symmetry have been conducted. Most striking about these complex Hamiltonians is how closely their properties resemble those of conventional Hermitian Hamiltonians. This paper presents further evidence of the similarity of these Hamiltonians to Hermitian Hamiltonians by examining the summation of the divergent weak-coupling perturbation series for the ground-state energy of the PT-symmetric Hamiltonian H=p(2) + 1/4 x(2)+i lambdax(3) recently studied by Bender and Dunne. For this purpose the first 193 (nonzero) coefficients of the Rayleigh-Schrodinger perturbation series in powers of lambda (2) for the ground-state energy were calculated. Pade-summation and Pade-prediction techniques recently described by Weniger are applied to this perturbation series. The qualitative features of the results obtained in this way are indistinguishable from those obtained in the case of the perturbation series for the quartic anharmonic oscillator, which is known to be a Stieltjes series. (C) 2001 American Institute of Physics.