| PDF (1MB) |
- URN to cite this document:
- urn:nbn:de:bvb:355-epub-109853
- DOI to cite this document:
- 10.5283/epub.10985
Abstract
We consider a fully practical finite element approximation of the degenerate Cahn-Hilliard equation with elasticity: Find the conserved order parameter, $\theta(x, t)\in [-1, 1]$, and the displacement field, $\underline u(x, t)\in \Bbb R^2$, such that $$\gamma\frac{\partial\theta}{\partial t}=\nabla\cdot (b(\theta)\nabla [-\gamma\Delta\theta + \gamma^{-1}\Psi'(\theta) + \tfrac 12 c' (\theta){\cal ...
Owner only: item control page