Abstract
We have investigated the ability of optical oxygen sensors incorporated in a microplate to determine the respiratory activity of cell fractions. Different cell fractions were monitored, in particular to evaluate the long term functionality of isolated mitochondria. It is possible to continuously sense respiratory activity of isolated mitochondria over time. We found that they are functional for ...
Abstract
We have investigated the ability of optical oxygen sensors incorporated in a microplate to determine the respiratory activity of cell fractions. Different cell fractions were monitored, in particular to evaluate the long term functionality of isolated mitochondria. It is possible to continuously sense respiratory activity of isolated mitochondria over time. We found that they are functional for three hours but stop respiring at a critical limit of 20% air saturation in the system. Furthermore, inhibition and enhancement of respiratory activity were detected. In conclusion, oxygen sensors are a powerful tool to evaluate the functionality of isolated mitochondria. (C) 2012 Elsevier Inc. All rights reserved.