Abstract
Background: Empirical mode decomposition (EMD) is an empirical data decomposition technique. Recently there is growing interest in applying EMD in the biomedical field. New method: EMDLAB is an extensible plug-in for the EEGLAB toolbox, which is an open software environment for electrophysiological data analysis. Results: EMDLAB can be used to perform, easily and effectively, four common types of ...
Abstract
Background: Empirical mode decomposition (EMD) is an empirical data decomposition technique. Recently there is growing interest in applying EMD in the biomedical field. New method: EMDLAB is an extensible plug-in for the EEGLAB toolbox, which is an open software environment for electrophysiological data analysis. Results: EMDLAB can be used to perform, easily and effectively, four common types of EMD: plain EMD, ensemble EMD (EEMD), weighted sliding EMD (wSEMD) and multivariate EMD (MEMD) on EEG data. In addition, EMDLAB is a user-friendly toolbox and closely implemented in the EEGLAB toolbox. Comparison with existing methods: EMDLAB gains an advantage over other open-source toolboxes by exploiting the advantageous visualization capabilities of EEGLAB for extracted intrinsic mode functions (IMFs) and Event-Related Modes (ERMs) of the signal. Conclusions: EMDLAB is a reliable, efficient, and automated solution for extracting and visualizing the extracted IMFs and ERMs by EMD algorithms in EEG study. (C) 2015 Elsevier B.V. All rights reserved.