Go to content
UR Home

A Study of Biomedical Time Series Using Empirical Mode Decomposition : Extracting event-related modes from EEG signals recorded
during visual processing of contour stimuli

Al-Subari, Karema S. A. (2017) A Study of Biomedical Time Series Using Empirical Mode Decomposition : Extracting event-related modes from EEG signals recorded
during visual processing of contour stimuli.
PhD, Universität Regensburg.

[img]
Preview
License: Publishing license for publications excluding print on demand
PDF
Download (9MB)
Date of publication of this fulltext: 21 Sep 2017 07:33

Abstract (English)

Noninvasive neuroimaging techniques like functional Magnetic Resonance Imaging (fMRI) and/or Electroencephalography (EEG) allow researchers to investigate and analyze brain activities during visual processing. EEG offers a high temporal resolution at a level of submilliseconds which can be combined favorably with fMRI which has a good spatial resolution on small spatial scales in the millimeter ...

plus

Translation of the abstract (German)

Nichtinvasive bildgebendeVerfahren der Hirnforschung wie etwa funktionelleMagnetresonanz-Tomographie (fMRT) oder Elektroenzephalographie (EEG) ermöglichen Forschern die Untersuchung und Analyse von Gehirnaktivitätenwährend der Verarbeitung visueller Information. EEG bietet eine hohe zeitliche Auflösung im sub-Millisekunden Bereich und kann vorteilhaft mit der Funktionellen MRT kombiniert werden, ...

plus


Export bibliographical data



Item type:Thesis of the University of Regensburg (PhD)
Date:21 September 2017
Referee:Prof. Dr. Bernd Ludwig and Prof. Dr. Elmar Wolfgang Lang
Date of exam:21 June 2017
Institutions:Languages and Literatures > Institut für Information und Medien, Sprache und Kultur (I:IMSK) > Lehrstuhl für Informationswissenschaft
Biology, Preclinical Medicine > Institut für Biophysik und physikalische Biochemie > Prof. Dr. Elmar Lang
Keywords:Empirical Mode Decomposition; Contour Integration; EEG; IMF; ERP; ERM
Dewey Decimal Classification:000 Computer science, information & general works > 004 Computer science
000 Computer science, information & general works > 020 Library & information sciences
100 Philosophy & psychology > 150 Psychology
500 Science > 530 Physics
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:35858
Owner only: item control page

Downloads

Downloads per month over past year

  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons