Abstract
We explore the acoustic-phonon-based interaction between two neighboring coplanar circuits containing semiconductor quantum point contacts in a perpendicular magnetic field B. In a drag-type experiment, a current flowing in one of the circuits (unbiased) is measured in response to an external current in the other. In moderate B the sign of the induced current is determined solely by the polarity ...
Abstract
We explore the acoustic-phonon-based interaction between two neighboring coplanar circuits containing semiconductor quantum point contacts in a perpendicular magnetic field B. In a drag-type experiment, a current flowing in one of the circuits (unbiased) is measured in response to an external current in the other. In moderate B the sign of the induced current is determined solely by the polarity of B. This indicates that the spatial regions where the phonon emission/reabsorption is efficient are controlled by magnetic field. The results are interpreted in terms of nonequilibrium transport via skipping orbits in a two-dimensional electron system.