Go to content
UR Home

Enhancing the Efficiency in Privacy Preserving Learning of Decision Trees in Partitioned Databases

Lory, Peter



Abstract

This paper considers a scenario where two parties having private databases wish to cooperate by computing a data mining algorithm on the union of their databases without revealing any unnecessary information. In particular, they want to apply the decision tree learning algorithm ID3 in a privacy preserving manner. Lindell and Pinkas (2002) have presented a protocol for this purpose, which enjoys ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons