Go to content
UR Home

Étale duality of semistable schemes over local rings of positive characteristic

Zhao, Yigeng (2016) Étale duality of semistable schemes over local rings of positive characteristic. PhD, Universität Regensburg.

License: Publishing license for publications excluding print on demand
PDF - Published Version
Download (531kB)
Date of publication of this fulltext: 24 May 2016 11:48

Abstract (English)

In this thesis, we study duality theorems for the relative logarithmic de Rham-Witt sheaves on semi-stable schemes $X$ over a local ring $\mathbb{F}_q[[t]]$, for a finite field $\mathbb{F}_q$. As an application, we obtain a new filtration on the maximal abelian quotient $\pi^{\text{ab}}_1(U)$ of the \'etale fundamental groups $\pi_1(U)$ of an open subscheme $U \subseteq X$, which gives a measure ...


Translation of the abstract (German)

In dieser Dissertation studieren wir Dualitätssatze für relative logarithmische de Rham-Witt Garben auf semi-stabilen Schemata über einem lokalen Ring $\mathbb{F}_q[[t]]$, wobei $\mathbb{F}_q$ ein endlicher Körper ist. Als Anwendung erhalten wir eine neue Filtrierung auf dem maximalen abelschen Quotienten $\pi^{\text{ab}}_1(U)$ der \'etalen Fundamentalgruppe auf einem offenen Unterschema $U ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:24 May 2016
Referee:Prof. Dr. Uwe Jannsen
Date of exam:28 April 2016
Institutions:Mathematics > Prof. Dr. Uwe Jannsen
Keywords:Étale duality, relative logarithmic de Rham-Witt sheaves, purity, semi-stable schemes, ramification, class field theory.
Dewey Decimal Classification:500 Science > 510 Mathematics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Item ID:33788
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons