Go to content
UR Home

Scaling Theory of the Anderson Transition in Random Graphs: Ergodicity and Universality

URN to cite this document:
urn:nbn:de:bvb:355-epub-371644
DOI to cite this document:
10.5283/epub.37164
García-Mata, I. ; Giraud, O. ; Georgeot, B. ; Martin, J. ; Dubertrand, Rémy ; Lemarié, G.
[img]
Preview
License: Creative Commons Attribution 4.0
PDF - Published Version
(381kB)
Date of publication of this fulltext: 23 Apr 2018 12:51


Abstract

We study the Anderson transition on a generic model of random graphs with a tunable branching parameter 1 < K < 2, through large scale numerical simulations and finite-size scaling analysis. We find that a single transition separates a localized phase from an unusual delocalized phase that is ergodic at large scales but strongly nonergodic at smaller scales. In the critical regime, multifractal ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons