Item type: | Article | ||||
---|---|---|---|---|---|
Journal or Publication Title: | Archives of Toxicology | ||||
Publisher: | SPRINGER | ||||
Place of Publication: | NEW YORK | ||||
Volume: | 80 | ||||
Number of Issue or Book Chapter: | 8 | ||||
Page Range: | pp. 465-472 | ||||
Date: | 2006 | ||||
Institutions: | Medicine > Lehrstuhl für Hals-Nasen-Ohren-Heilkunde | ||||
Identification Number: |
| ||||
Keywords: | IN-VITRO; LEACHABLE COMPONENTS; RELEASE; CELLS; TOXICITY; MERCURY; RESTORATIONS; CULTURES; HEMA; cytotoxicity; lactate dehydrogenase assay; bromodeoxyuridine assay; comonomers; amalgam; gingival cells | ||||
Dewey Decimal Classification: | 600 Technology > 610 Medical sciences Medicine | ||||
Status: | Published | ||||
Refereed: | Yes, this version has been refereed | ||||
Created at the University of Regensburg: | Yes | ||||
Item ID: | 69877 |
Abstract
Unpolymerized resin (co)monomers or mercury (Hg) can be released from restorative dental materials (e.g. composites and amalgam). They can diffuse into the tooth pulp or the gingiva. They can also reach the gingiva and organs by the circulating blood after the uptake from swallowed saliva. The cytotoxicity of dental composite components hydroxyethylmethacrylate (HEMA), ...

Abstract
Unpolymerized resin (co)monomers or mercury (Hg) can be released from restorative dental materials (e.g. composites and amalgam). They can diffuse into the tooth pulp or the gingiva. They can also reach the gingiva and organs by the circulating blood after the uptake from swallowed saliva. The cytotoxicity of dental composite components hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (Bis-GMA) as well as the amalgam component Hg2+ (as HgCl2) and methyl mercury chloride (MeHgCl) was investigated on human gingival fibroblasts (HGFs) at two time intervals. To test the cytotoxicity of substances, the bromodeoxyuridine (BrdU) assay and the lactate dehydrogenase (LDH) assay were used. The test substances were added in various concentrations and cells were incubated for 24 or 48 h. The EC50 values were obtained as half-maximum-effect concentrations from fitted curves. Following EC50 values were found [BrdU: mean (mmol/l); SEM in parentheses; n=12]: (24 h/48 h) HEMA 8.860 (0.440)/6.600(0.630), TEGDMA 1.810(0.130)/1.220(0.130), UDMA 0.120(0.010)/0.140(0.010), BisGMA 0.060(0.004)/0.040(0.002), HgCl2 0.015(0.001)/0.050(0.006), and MeHgCl 0.004(0.001)/0.005(0.001). Following EC50 values were found [LDH: mean (mmol/l); SEM in parentheses; n=12]: (24 h/48 h) HEMA 9.490(0.300)/7.890(1.230), TEGDMA 2.300(0.470)/1.950(0.310), UDMA 0.200(0.007)/0.100(0.007), BisGMA 0.070(0.005)/0.100(0.002), and MeHgCl 0.014(0.006)/0.010(0.003). In both assays, the following range of increased toxicity was found for composite components (24 and 48 h): HEMA < TEGDMA < UDMA < BisGMA. In both assays, MeHgCl was the most toxic substance. In the BrdU assay, Hg2+ was about fourfold less toxic than MeHgCl but Hg2+ was about fourfold more toxic than BisGMA. In the BrdU test, a significantly (P < 0.05) decreased toxicity was observed for Hg2+ at 48 h, compared to the 24 h Hg2+-exposure. A time depending decreased toxicity was observed only for Hg2+ which can then reach the toxic level of BisGMA.
Metadata last modified: 19 Dec 2024 14:35