Zusammenfassung
A drastic decline of Phragmites australis was observed along the middle reaches of Ichibangawa River in Kiritappu Mire, eastern Hokkaido, Japan, during the last 50 years. In an area of ~30 ha, reed-sedge vegetation and alder forest have been replaced by bare soil and patches of salt marsh vegetation. A gradual increase in frequency of flooding by brackish water probably was the ultimate cause of ...
Zusammenfassung
A drastic decline of Phragmites australis was observed along the middle reaches of Ichibangawa River in Kiritappu Mire, eastern Hokkaido, Japan, during the last 50 years. In an area of ~30 ha, reed-sedge vegetation and alder forest have been replaced by bare soil and patches of salt marsh vegetation. A gradual increase in frequency of flooding by brackish water probably was the ultimate cause of the vegetation change. We measured redox potentials and oxygen and sulfide concentrations in soil profiles using needle electrodes. Measurements were carried out in areas where reed has disappeared and in sites where reed stands were still healthy. The concentration of selected ions in the surface water was also measured at various sites. Surface water in low-lying areas was clearly influenced by seawater. Very high sulfide concentrations were measured in bare peat sites (more than 600 μmol l⁻¹), which exceeded P. australis tolerance 2 – 3 times. In a healthy reed zone adjacent to an area with poor fen vegetation, sulfide concentration in the rooting zone of Phragmites was also high (300–400 μmol l⁻¹), particularly during the night. The fact that Phragmites in this zone was still healthy indicates that sulfide did not reach toxic levels in the direct vicinity of the roots. Sulfide that is produced in this area is probably fixed by iron, which is supplied through a continuous discharge of iron-rich groundwater. An increase in frequency of flooding by brackish water could be related to ongoing subsidence of this part of the Pacific coast which is located at the Kuril subduction zone. Sea level rise could also contribute to a stronger inflow of seawater into the mire system.