Startseite UR

How to generalize Geometric ICA to higher dimensions

Theis, Fabian J. ; Lang, Elmar



Zusammenfassung

The geometric approach to ICA, proposed by Puntonet and Prieto, has one major drawback --- an exponentially rising number of samples and convergence times with increasing dimensiononality --- thus basically restricting geometric ICA to low-dimensional cases. We propose to apply overcomplete ICA to geometric ICA to reduce high-dimensional problems to lower-dimensional ones, thus generalizing geometric ICA to higher dimensions.


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner