Go to content
UR Home

A Histogram-Based Overcomplete ICA Algorithm

Theis, Fabian J. ; Puntonet, Carlos G. ; Lang, Elmar



Abstract

Overcomplete blind source separation (BSS) tries to recover more sources from less sensor signals. We present a new approach based on an estimated histogram of the sensor data; we search for the points fulfilling the overcomplete Geometric Convergence Condition, which has been shown to be a limit condition of overcomplete geometric BSS. The paper concludes with an example and a comparison of various overcomplete BSS algorithms.


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons