Go to content
UR Home

Local Features in Biomedical Image Clusters extracted with Independent Component Analysis

Bauer, Christoph ; Theis, F. ; Baeumler, W. ; Lang, Elmar W.


A neural network model for the identification and classification of malign and benign skin lesions from ALA-induced fluorescence images is presented. A self-organizing feature map or generative topographic mapping is used to cluster images patches according to their inherent local features which then can be extracted with ICA. These components are used to distinguish skin cancer from benign lesions achieving an average classification rate of 70% so far.

Owner only: item control page
  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons