Startseite UR

Nonlinear Geometric ICA

Theis, Fabian J. ; Puntonet, Carlos G. ; Lang, Elmar



Zusammenfassung

We present a new algorithm for nonlinear blind source separation, which is based on the geometry of the mixture space. This space is decomposed in a set of concentric rings, in which we perform ordinary linear ICA after central transformation; we show that this transformation can be left out if we use linear geometric ICA. In any case, we get a set of images of ring points under the original ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner