Go to content
UR Home

Nonlinear Geometric ICA

Theis, Fabian J. ; Puntonet, Carlos G. ; Lang, Elmar


We present a new algorithm for nonlinear blind source separation, which is based on the geometry of the mixture space. This space is decomposed in a set of concentric rings, in which we perform ordinary linear ICA after central transformation; we show that this transformation can be left out if we use linear geometric ICA. In any case, we get a set of images of ring points under the original ...


Owner only: item control page
  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons