Startseite UR

Connecting geometric independent component analysis to unsupervised learning algorithms

Theis, Fabian J. ; Gruber, Peter ; Puntonet, Carlos G. ; Lang, Elmar



Zusammenfassung

The goal of independent component analysis (ICA) lies in transforming a mixed random vector in order to render it as independent as possible. This paper shows how to use adaptive learning and clustering algorithms to approximate mixture space densities thus learning the mixing model. Here, a linear square-model is assumed, and as learning algorithm either a self-organizing map (SOM) or a neural ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner