Startseite UR

Meta-Heuristics hybridizing independent component analysis with genetic algorithms

Górriz, J. M. ; Puntonet, Carlos G. ; Martin-Clemente, R. ; Lang, Elmar



Zusammenfassung

In this work we present a novel method for blindly separating unobservable independent component signals from their linear mixtures, using meta- heuristics such as genetic algorithms (GA) to minimize the nonconvex and nonlinear cost functions. This approach is very useful in many fields such as forecasting indexes in financial stock markets where the search for independent components is the ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner