Zusammenfassung
In the primary visual cortex of monkeys, the development of ocular dominance and orientation selectivity is at least partially driven by neural activity. We propose a modified Hebb-type learning mechanism, which takes into account non-specific components of activity-dependent synaptic modification. It is shown analytically, that ocular dominance and ON-OFF-segregation occur simultaneously in a ...
Zusammenfassung
In the primary visual cortex of monkeys, the development of ocular dominance and orientation selectivity is at least partially driven by neural activity. We propose a modified Hebb-type learning mechanism, which takes into account non-specific components of activity-dependent synaptic modification. It is shown analytically, that ocular dominance and ON-OFF-segregation occur simultaneously in a linear network as soon as left-eye and right-eye synapses tend to cluster on the surface of the postsynaptic neuron. Simulations show, that this mechanism is robust against the introduction of network nonlinearities such as rectifying transfer functions and intracortical recurrency. The results imply, that details of single cell properties can have considerable influence on the behaviour of high level developmental models.