Zusammenfassung
We present a nonlinear, recurrent neural network model of the primary visual cortex with separate ON/OFF-pathways and modifiable afferent as well as intracortical synaptic couplings. Orientation maps emerge driven by random input stimuli. Lateral coupling structures self-organize into DOG profiles under the influence of pronounced emerging cortical activity blobs. The model’s architecture and features are, compared with former models, well justified neurobiologically.
Nur für Besitzer und Autoren: Kontrollseite des Eintrags