Go to content
UR Home

Uniqueness of non-gaussian subspace analysis

Theis, Fabian J. ; Kawanabe, M. Rosca, J. , eds.


Dimension reduction provides an important tool for preprocessing large scale data sets. A possible model for dimension reduction is realized by projecting onto the non-Gaussian part of a given multivariate recording. We prove that the subspaces of such a projection are unique given that the Gaussian subspace is of maximal dimension. This result therefore guarantees that projection algorithms uniquely recover the underlying lower dimensional data signals.

Owner only: item control page
  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons