Zusammenfassung
High-resolution optical spectroscopy of organometallic triplet emitters reveals detailed insights into the lowest triplet states and the corresponding electronic and vibronic transitions to the singlet ground state. As case studies, the blue-light emitting materials Pt(4,6-dFppy)(acac) and Ir(4,6-dFppy)₂(acac) are investigated and characterized in detail. The compounds' photophysical properties, ...
Zusammenfassung
High-resolution optical spectroscopy of organometallic triplet emitters reveals detailed insights into the lowest triplet states and the corresponding electronic and vibronic transitions to the singlet ground state. As case studies, the blue-light emitting materials Pt(4,6-dFppy)(acac) and Ir(4,6-dFppy)₂(acac) are investigated and characterized in detail. The compounds' photophysical properties, being markedly different, are largely controlled by spin-orbit coupling (SOC). Therefore, we study the impact of SOC on the triplet state and elucidate the dominant SOC and state-mixing paths. These depend distinctly on the compounds' coordination geometry. Relatively simple rules and relations are pointed out. The combined experimental and theoretical results lead us towards structure-efficiency rules and guidelines for the design of new organic light emitting diode (OLED) emitter materials.