Abstract
The prolonged life span of chronic lymphocytic leukemia (CLL) cells in vivo is assumed to depend on the surrounding microenvironment since this biologic feature is lost in vitro. We studied here the molecular interactions between CLL cells and their surrounding stroma to identify factors that help CLL cells to resist apoptosis. Sorted CLL cells from 21 patients were cultured in vitro on ...
Abstract
The prolonged life span of chronic lymphocytic leukemia (CLL) cells in vivo is assumed to depend on the surrounding microenvironment since this biologic feature is lost in vitro. We studied here the molecular interactions between CLL cells and their surrounding stroma to identify factors that help CLL cells to resist apoptosis. Sorted CLL cells from 21 patients were cultured in vitro on allogenous, normal bone marrow stromal cells (BMSCs) in the presence/absence of CD40 ligand or in culture medium alone. Surface and mRNA expression of interaction molecules, cytokine production, and apoptosis rate was measured by flow cytometric, real-time PCR and standard immunologic assays. The interaction between CLL cells and BMSCs rescued CLL cells from apoptosis. BMSCs co-cultured with CLL cells showed a strong increase in IL-8 and IL-6 secretion and up-regulated the expression of ICAM-1 and CD40 mRNA. The mRNA expression of CXCL12 and VCAM1 remained unchanged. In turn, CLL cells in interaction with BMSCs significantly up-regulated the expression of CD18 and CD49d that are ligands for the critical adhesion molecules on BMSCs. As a validation of the in vitro data, we found a significant higher expression of CD49d on CLL cells in bone marrow aspirates compared to peripheral blood CLL cells in patient samples. Up-regulation of adhesion molecules and their ligands in CLL–BMSCs interaction along with the increased cytokine production of BMSCs indicate a strong effect of CLL cells on BMSCs in favor of their apoptosis resistance.