Abstract
In the oral cavity, omnipresent salivary protein films (pellicle) mediate bacterial adhesion and biofilm formation on natural tissues as well as on artificial implant surfaces, which may cause serious infectious diseases like periimplantitis. The purpose of this in vitro study was to investigate the adsorption/desorption behavior of human saliva on model surfaces grafted with polyamidoamine ...
Abstract
In the oral cavity, omnipresent salivary protein films (pellicle) mediate bacterial adhesion and biofilm formation on natural tissues as well as on artificial implant surfaces, which may cause serious infectious diseases like periimplantitis. The purpose of this in vitro study was to investigate the adsorption/desorption behavior of human saliva on model surfaces grafted with polyamidoamine (PAMAM) dendrimer mols. compared to self-assembled monolayers (SAMs) exhibiting the same terminal functions (-NH2, -COOH) by two complementary anal. methods. Furthermore, the role of saliva conditioning of PAMAM and analogous SAM modifications on the adhesion of Streptococcus gordonii DL1, an early oral colonizer, was investigated. In contrast to SAMs, PAMAM-grafted surfaces showed reduced streptococcal adherence in the absence of pre-adsorbed saliva similar to the level obtained for poly(ethylene glycol) (PEG) coatings. Moreover, coatings of PAMAM-NH2 maintained their bacteria-repellent behavior even after saliva-conditioning. As a general outcome, it was found that lower amts. of protein adsorbed on PAMAM coatings than on analogous SAMs. Since this study demonstrates that covalently bound PAMAM dendrimers can modulate the oral bacterial response, this approach has significant potential for the development of anti-adhesive biomaterial surfaces that are conditioned with proteinaceous films.