Zusammenfassung
Applying molecular imprinting techniques to the surface of functionalized unilammelar fluid vesicles allows the preparation of specific and high-affinity luminescent chemosensors. We have photopolymerized diacetylene containing vesicles in the presence of small peptides as templates yielding imprinted polydiacetylene (PDA) patches in the membrane. They serve as multivalent receptor sites with ...
Zusammenfassung
Applying molecular imprinting techniques to the surface of functionalized unilammelar fluid vesicles allows the preparation of specific and high-affinity luminescent chemosensors. We have photopolymerized diacetylene containing vesicles in the presence of small peptides as templates yielding imprinted polydiacetylene (PDA) patches in the membrane. They serve as multivalent receptor sites with significantly increased rebinding affinity for the template. All binding sites are surface exposed and accessible for analyte binding. The presence of analytes is signaled with high sensitivity by emission intensity changes of amphiphilic carboxyfluorescein, which is coembedded into the fluid DOPC membrane. The merger of PDA imprinting with dynamic functionalized vesicles overcomes some of the current limitations of molecular imprinting in chemosensor design and may be applied to many different target analytes