Abstract
Reductive diffusion of Ni2+ into SnS particles was shown to selectively form Sn2Ni3S2, hybrid, or even core-shell Ni@SnS, Ni1.523Sn, and Ni3S2, by tuning the reaction conditions at low temperatures. The mechanism of Ni2+ reduction and diffusion into SnS was observed in ethylene glycol, which served both as solvent and reducing agent. Tuning of reaction temperature and duration, morphology of the ...
Abstract
Reductive diffusion of Ni2+ into SnS particles was shown to selectively form Sn2Ni3S2, hybrid, or even core-shell Ni@SnS, Ni1.523Sn, and Ni3S2, by tuning the reaction conditions at low temperatures. The mechanism of Ni2+ reduction and diffusion into SnS was observed in ethylene glycol, which served both as solvent and reducing agent. Tuning of reaction temperature and duration, morphology of the template SnS, and the application of ethylenediamine as supporting chelating agent, influence the formation of the final products. Their formation was controlled by carefully adjusting redox and equilibrium reactions. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy analysis (EDX).