Abstract
In recent years atomic force microscopy (AFM) at highest resolution was widely applied to mostly planar molecules, while its application toward exploring species with structural flexibility and a distinct 3D character remains a challenge. Herein, the scope of noncontact AFM is widened by investigating subtle conformational differences occurring in the well-studied reference systems 2H-TPP and ...
Abstract
In recent years atomic force microscopy (AFM) at highest resolution was widely applied to mostly planar molecules, while its application toward exploring species with structural flexibility and a distinct 3D character remains a challenge. Herein, the scope of noncontact AFM is widened by investigating subtle conformational differences occurring in the well-studied reference systems 2H-TPP and Cu-TPP on Cu(111). Different saddle shape conformations of both species can be recognized in conventional constant-height AFM images. To unambiguously identify the behavior of specific molecular moieties, we extend data acquisition to distances that are inaccessible with constant height measurements by introducing vertical imaging, that is, AFM mapping in a plane perpendicular to the sample surface. Making use of this novel technique the vertical displacement of the central Cu atom upon tip-induced conformational switching of Cu-TPP is quantified. Further, for 2H-TPP two drastically different geometries are observed, which are systematically characterized. Our results underscore the importance of structural flexibility in adsorbed molecules with large conformational variability and, consequently, the objective to characterize their geometry at the single-molecule level in real space.