Dokumentenart: | Artikel | ||||
---|---|---|---|---|---|
Titel eines Journals oder einer Zeitschrift: | Nature | ||||
Verlag: | Nature | ||||
Ort der Veröffentlichung: | LONDON | ||||
Band: | 539 | ||||
Nummer des Zeitschriftenheftes oder des Kapitels: | 7628 | ||||
Seitenbereich: | S. 263-267 | ||||
Datum: | 10 November 2016 | ||||
Zusätzliche Informationen (Öffentlich): | Letter | ||||
Institutionen: | Physik > Institut für Experimentelle und Angewandte Physik > Lehrstuhl Professor Giessibl > Arbeitsgruppe Jascha Repp Physik > Institut für Experimentelle und Angewandte Physik > Lehrstuhl Professor Huber > Arbeitsgruppe Rupert Huber | ||||
Sonstige Projekte: | GRK 1570, Elektronische Eigenschaften von Nanostrukturen auf Kohlenstoff-Basis | ||||
Identifikationsnummer: |
| ||||
Stichwörter / Keywords: | SCANNING-TUNNELING-MICROSCOPY; ATTOSECOND CONTROL; REAL-SPACE; RESOLUTION; DYNAMICS; ELECTRONS; SPECTROSCOPY; MANIPULATION; | ||||
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie | ||||
Status: | Veröffentlicht | ||||
Begutachtet: | Ja, diese Version wurde begutachtet | ||||
An der Universität Regensburg entstanden: | Ja | ||||
Dokumenten-ID: | 34820 |
Zusammenfassung
Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution(1-8) with atomic spatial resolution(9-30). Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy(9-11) ...
Zusammenfassung
Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution(1-8) with atomic spatial resolution(9-30). Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy(9-11) or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution(26-28). But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated(18) by combining scanning tunnelling microscopy with so-called lightwave electronics(1-8), which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule's highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-angstrom spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics(1-8) and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.
Metadaten zuletzt geändert: 28 Mai 2018 06:51