Go to content
UR Home

Hidden Variable Models for Market Basket Data. Statistical Performance and Managerial Implications

Hruschka, Harald (2016) Hidden Variable Models for Market Basket Data. Statistical Performance and Managerial Implications. Regensburger Diskussionsbeiträge zur Wirtschaftswissenschaft 489, Working Paper, Fac. of Business, Economics and Management Information Systems, Univ. of Regensburg, Regensburg. (Unpublished)

PDF - Published Version
Download (223kB)
Date of publication of this fulltext: 19 Dec 2016 12:28


We compare the performance of several hidden variable models, namely binary factor analysis, topic models (latent Dirichlet allocation, correlated topic model), the restricted Boltzmann machine and the deep belief net. We shortly present these models and outline their estimation. Performance is measured by log likelihood values of these models for a holdout data set of market baskets. For each ...


Export bibliographical data

Item type:Monograph (Working Paper)
Series of the University of Regensburg:Regensburger Diskussionsbeiträge zur Wirtschaftswissenschaft
Date:15 December 2016
Institutions:Business, Economics and Information Systems > Institut für Betriebswirtschaftslehre > Lehrstuhl für Marketing (Prof. Dr. Harald Hruschka)
Keywords:Marketing; Market Basket Analysis; Factor Analysis; Topic Models; Restricted Boltzmann Machine; Deep Belief Net
Dewey Decimal Classification:300 Social sciences > 330 Economics
Refereed:No, this document will not be refereed
Created at the University of Regensburg:Yes
Item ID:34994
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons