Magarkar, Aniket ; Jurkiewicz, Piotr ; Allolio, Christoph ; Hof, Martin ; Jungwirth, Pavel
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | The Journal of Physical Chemistry Letters |
---|
Verlag: | AMER CHEMICAL SOC |
---|
Ort der Veröffentlichung: | WASHINGTON |
---|
Band: | 8 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 2 |
---|
Seitenbereich: | S. 518-523 |
---|
Datum: | 2017 |
---|
Institutionen: | Chemie und Pharmazie > Institut für Physikalische und Theoretische Chemie |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1021/acs.jpclett.6b02818 | DOI |
|
---|
Stichwörter / Keywords: | MOLECULAR-DYNAMICS SIMULATIONS; SOLVENT RELAXATION; LIPID-BILAYERS; BENDING ELASTICITY; FORCE-FIELD; CURVATURE; FLUCTUATIONS; FLUORESCENCE; UNDULATIONS; VALIDATION; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 38803 |
---|
Web of Science
Zusammenfassung
Calcium ion is the ubiquitous messenger in cells and plays a key role in neuronal signaling and fusion of synaptic vesicles. These vesicles are typically similar to 20-50 nm in diameter, and thus their interaction with calcium ions cannot be modeled faithfully with a conventional flat membrane bilayer setup. Within our newly developed molecular dynamics simulations setup, we characterize here ...
Zusammenfassung
Calcium ion is the ubiquitous messenger in cells and plays a key role in neuronal signaling and fusion of synaptic vesicles. These vesicles are typically similar to 20-50 nm in diameter, and thus their interaction with calcium ions cannot be modeled faithfully with a conventional flat membrane bilayer setup. Within our newly developed molecular dynamics simulations setup, we characterize here interactions of the calcium ion with curved membrane interfaces with atomistic detail. The present molecular dynamics simulations together with time-dependent fluorescence shift experiments suggest that the mode and strength of interaction of calcium ion with a phospholipid bilayer depends on its curvature. Potential of mean force calculations demonstrate that the binding of calcium ion to the positively curved side of the bilayer is significantly stronger compared with that to a flat membrane.