Zusammenfassung
Fabricating plasmon-enhanced organic nanomaterials with technologically relevant supporting architectures on planar solids remains a challenging task in the chemistry of thin films and interfaces. In this work, we report a bottom-up assembly of ultrathin layered composites of conductive polymers with photophysical properties enhanced by gold nanoparticles. The polydiacetylene component was formed ...
Zusammenfassung
Fabricating plasmon-enhanced organic nanomaterials with technologically relevant supporting architectures on planar solids remains a challenging task in the chemistry of thin films and interfaces. In this work, we report a bottom-up assembly of ultrathin layered composites of conductive polymers with photophysical properties enhanced by gold nanoparticles. The polydiacetylene component was formed by photopolymerization of a catanionic mixture of pentacosadiynoic surfactants on a surface of citrate-stabilized gold hydrosol monitored by a fiber optic spectrometer. Microscopic examination of the 3 nm thick solid-immobilized film showed that gold nanoparticles (AuNPs) do not aggregate within the monolayer upon polymerization. This polydiacetylene/AuNPs monolayer was coupled with 60 nm thick polyaniline-based layer deposited atop. The resulting polymer composite with an integrated 4-stripe electric cell showed nonadditive electric behavior due to the formation of electron hole pairs with increased charge carrier mobility at the interface between the polymer layers. Under visible light irradiation of the composite film, a plasmonic effect of the gold nanoparticles was observed at the onset of photoconductivity, although neither polydiacetylene nor the polyaniline component alone are photoconductive polymers. The results indicate that our bottom-up strategy can be expanded to design other plasmon-enhanced ultrathin polymer composites with potential applications in optoelectronics and photovoltaics.