Zusammenfassung
Aims: The renal pelvis shows spontaneous rhythmic contractile activity. We assessed to what extent this activity depends on renal innervation and studied the role of connexins in pelvic contractions. Methods: Rats underwent unilateral renal denervation or renal transplantation. Renal pelvic pressure and diuresis were measured in vivo. Spontaneous and agonist-induced contractions of isolated renal ...
Zusammenfassung
Aims: The renal pelvis shows spontaneous rhythmic contractile activity. We assessed to what extent this activity depends on renal innervation and studied the role of connexins in pelvic contractions. Methods: Rats underwent unilateral renal denervation or renal transplantation. Renal pelvic pressure and diuresis were measured in vivo. Spontaneous and agonist-induced contractions of isolated renal pelves were investigated by wire myography. Rat and human renal pelvic connexin mRNA abundances and connexin localization were studied by real-time PCR and immunofluorescence respectively. Results: Renal denervation or transplantation increased renal pelvic pressure in vivo by about 60 and 150%, respectively, but did not significantly affect pelvic contraction frequency. Under in vitro conditions, isolated pelvic preparations from innervated or denervated kidneys showed spontaneous contractions. Pelves from denervated kidneys showed about 50% higher contraction frequencies than pelves from innervated kidneys, whereas contraction force was similar in pelves from denervated and innervated kidneys. There was no denervation-induced supersensitivity to noradrenaline or endothelin-1. Renal denervation did not increase pelvic connexin37, 40, 43 or 45 mRNA abundances. Gap junction blockade had no effect on spontaneous pelvic contractile activity. Conclusions: The denervation-induced effect on pelvic pressure may be the consequence of the enhanced diuresis. The mechanisms underlying the denervation-induced effects on pelvic contraction frequency remain unknown. Our data rule out a major role for two important candidates, by showing that renal denervation neither induced supersensitivity to contractile agonists nor increased connexin mRNA abundance in the pelvic wall.