Bruckmann, Falk ; Gattringer, Christof ; Kloiber, Thomas ; Sulejmanpasic, Tin
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Physical Review D |
---|
Verlag: | AMER PHYSICAL SOC |
---|
Ort der Veröffentlichung: | COLLEGE PK |
---|
Band: | 94 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 11 |
---|
Datum: | 2016 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1103/PhysRevD.94.114503 | DOI |
|
---|
Stichwörter / Keywords: | FACTORIZED S-MATRIX; PHASE-TRANSITIONS; ISOTOPIC SYMMETRY; 2 DIMENSIONS; MASS GAP; SYSTEMS; FERMIONS; NUMBER; O(N); QCD; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 42723 |
---|
Zusammenfassung
We discuss the thermodynamics of the O(3) nonlinear sigma model in 1 + 1 dimensions at nonzero chemical potential (equivalent to a magnetic field). In its conventional field theory representation the model suffers from a sign problem. By dualizing the model, we are able to fully access the nonzero density regime of an asymptotically free theory with dynamical mass gap at arbitrary chemical ...
Zusammenfassung
We discuss the thermodynamics of the O(3) nonlinear sigma model in 1 + 1 dimensions at nonzero chemical potential (equivalent to a magnetic field). In its conventional field theory representation the model suffers from a sign problem. By dualizing the model, we are able to fully access the nonzero density regime of an asymptotically free theory with dynamical mass gap at arbitrary chemical potential values. We find a quantum phase transition at zero temperature where as a function of the chemical potential the density assumes a nonzero value. Measuring the spin stiffness we present evidence for a corresponding dynamical critical exponent z close to 2. The low energy O(3) model is conjectured to be described by a massive boson triplet with repulsive interactions. We confirm the universal square-root behavior expected for such a system at low density (and temperature) and compare our data to the results of Bethe Ansatz solutions of the relativistic and nonrelativistic one-dimensional Bose gas. We also comment on a potential Berezinskii-Kosterlitz- Thouless transition at nonzero density.