Zusammenfassung
Objective: Human dental follicle cells (DFCs) are genuine precursor cells of cementoblasts and alveolar bone osteoblasts. MicroRNAs (miRNAs) represent a class of non-coding endogenous RNAs that silence gene expression post-transcriptionally. miRNA101 actively regulates the osteogenic differentiation of periodontal ligament cells. Therefore the aim of this study was to investigate the role of ...
Zusammenfassung
Objective: Human dental follicle cells (DFCs) are genuine precursor cells of cementoblasts and alveolar bone osteoblasts. MicroRNAs (miRNAs) represent a class of non-coding endogenous RNAs that silence gene expression post-transcriptionally. miRNA101 actively regulates the osteogenic differentiation of periodontal ligament cells. Therefore the aim of this study was to investigate the role of miRNA101 during the osteogenic differentiation in DFCs. Materials and methods: DFCs were isolated, cultivated and osteogenic differentiated in differentiation medium. Total RNA including miRNAs was isolated and the expression of miRNA101 was examined by real-time RT-PCRs. The expression of miRNA101 was induced by miRNA101-mimic transfection and the gene expression of osteogenic transcription factors was obtained by real-time RT-PCRs. Moreover the induction of the osteogenic differentiation was evaluated by the activity of alkaline phosphatase. Results: miRNA101 was regulated in DFCs during the osteogenic differentiation. After miRNA101-mimic transfection the alkaline phosphatase was increased and the gene expression of typical osteogenic transcription factors such as SP7 (osterix) was up-regulated. Conclusion: Our results suggest that miRNA101 sustains the osteogenic differentiation of DFCs. (C) 2016 Elsevier Ltd. All rights reserved.