-
Peller, Dominik, Roelcke, Carmen , Kastner, Lukas Z., Buchner, Thomas , Neef, Alexander, Hayes, Johannes , Bonafé, Franco, Sidler, Dominik, Ruggenthaler, Michael, Rubio, Angel , Huber, Rupert und Repp, Jascha
(2020)
Quantitative sampling of atomic-scale electromagnetic waveforms.
Nature Photonics 15 (2), S. 143-147.
[Gegenwärtig angezeigt]
- Peller, Dominik , Roelcke, Carmen , Kastner, Lukas Z., Buchner, Thomas , Neef, Alexander, Hayes, Johannes, Bonafé, Franco, Sidler, Dominik, Ruggenthaler, Michael, Rubio, Angel, Huber, Rupert und Repp, Jascha (2020) Data archive of 'Quantitative sampling of atomic-scale electromagnetic waveforms'. [Datensatz]
Dokumentenart: | Artikel | ||||
---|---|---|---|---|---|
Titel eines Journals oder einer Zeitschrift: | Nature Photonics | ||||
Verlag: | Nature | ||||
Ort der Veröffentlichung: | BERLIN | ||||
Band: | 15 | ||||
Nummer des Zeitschriftenheftes oder des Kapitels: | 2 | ||||
Seitenbereich: | S. 143-147 | ||||
Datum: | November 2020 | ||||
Institutionen: | Physik > Institut für Experimentelle und Angewandte Physik > Lehrstuhl Professor Giessibl > Arbeitsgruppe Jascha Repp Physik > Institut für Experimentelle und Angewandte Physik > Lehrstuhl Professor Huber > Arbeitsgruppe Rupert Huber | ||||
Sonstige Projekte: | SFB 1277: Emergente relativistische Effekte in der Kondensierten Materie: Von grundlegenden Aspekten zu elektronischer Funktionalität, DFG HU1598/3, DFG HU1598/8 | ||||
Identifikationsnummer: |
| ||||
Stichwörter / Keywords: | SINGLE-MOLECULE; ATTOSECOND CONTROL; FIELD ENHANCEMENT; TERAHERTZ; SPECTROSCOPY; ELECTRONS; | ||||
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie | ||||
Status: | Veröffentlicht | ||||
Begutachtet: | Ja, diese Version wurde begutachtet | ||||
An der Universität Regensburg entstanden: | Ja | ||||
Dokumenten-ID: | 44182 |
Zusammenfassung
Ultrafast lightwave sampling based on scanning tunnelling microscopy is developed to resolve near fields with sub-picosecond time resolution and sub-nanometre spatial resolution. Parameter-free quantitative measurement is achieved by using a single-molecule switch. Tailored nanostructures can confine electromagnetic waveforms in extremely sub-wavelength volumes, opening new avenues in lightwave ...
Zusammenfassung
Ultrafast lightwave sampling based on scanning tunnelling microscopy is developed to resolve near fields with sub-picosecond time resolution and sub-nanometre spatial resolution. Parameter-free quantitative measurement is achieved by using a single-molecule switch. Tailored nanostructures can confine electromagnetic waveforms in extremely sub-wavelength volumes, opening new avenues in lightwave sensing and control down to sub-molecular resolution. Atomic light-matter interaction depends critically on the absolute strength and the precise time evolution of the near field, which may be strongly influenced by quantum-mechanical effects. However, measuring atom-scale field transients has remained out of reach. Here we introduce quantitative atomic-scale waveform sampling in lightwave scanning tunnelling microscopy to resolve a tip-confined near-field transient. Our parameter-free calibration employs a single-molecule switch as an atomic-scale voltage standard. Although salient features of the far-to-near-field transfer follow classical electrodynamics, we develop a comprehensive understanding of the atomic-scale waveforms with time-dependent density functional theory. The simulations validate our calibration and confirm that single-electron tunnelling ensures minimal back-action of the measurement process on the electromagnetic fields. Our observations access an uncharted domain of nano-opto-electronics where local quantum dynamics determine femtosecond atomic near fields.
Metadaten zuletzt geändert: 29 Sep 2021 07:42