Zusammenfassung
Mn2Au is an important antiferromagnetic (AF) material for spintronics applications. Due to its very high Neel temperature of about 1500 K, some of the basic properties are difficult to explore, such as the AF susceptibility and the exchange constants. Experimental determination of these parameters is further hampered in thin films by the unavoidable presence of uncompensated and quasiloose spins ...
Zusammenfassung
Mn2Au is an important antiferromagnetic (AF) material for spintronics applications. Due to its very high Neel temperature of about 1500 K, some of the basic properties are difficult to explore, such as the AF susceptibility and the exchange constants. Experimental determination of these parameters is further hampered in thin films by the unavoidable presence of uncompensated and quasiloose spins on antisites and at interfaces. Using x-ray magnetic circular dichroism (XMCD), we measured induced perpendicular spin and orbital moments for a Mn2Au(001) film in fields up to +/- 8 T. By performing these measurements at a low temperature of 7 K and at room temperature (RT), we were able to separate the loose spin contribution from the susceptibility of AF coupled spins. The value of the AF exchange constant obtained with this method for a 10-nm-thick Mn2Au(001) film is (22 +/- 5) meV.