Zusammenfassung
We investigate the solvent shift of phthalocyanine (Pc) doped into superfluid helium droplets and probed by optical spectroscopy at the electronic origin. Our present work complements extant studies and provides results that in part contradict previous conclusions. In particular, the solvent shift does not increase monotonously with droplet radius all the way up to the bulk limit, but exhibits ...
Zusammenfassung
We investigate the solvent shift of phthalocyanine (Pc) doped into superfluid helium droplets and probed by optical spectroscopy at the electronic origin. Our present work complements extant studies and provides results that in part contradict previous conclusions. In particular, the solvent shift does not increase monotonously with droplet radius all the way up to the bulk limit, but exhibits just the reverse dependence instead. Moreover, a substructure is resolved, whose characteristics depend on the droplet size. This behavior can hardly be reconciled with that of a freely rotating Pc-helium complex. (C) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).