Zusammenfassung
Chimeric antigen receptor (CAR)-engineered T cells are efficacious in controlling advanced leukemia and lymphoma, however, they fail in the treatment of solid cancer, which is thought to be due to insufficient T cell activation. We revealed that the immune response of CAR T cells with specificity for carcinoembryonic antigen (CEA) was more efficacious against CEA(+) cancer cells when ...
Zusammenfassung
Chimeric antigen receptor (CAR)-engineered T cells are efficacious in controlling advanced leukemia and lymphoma, however, they fail in the treatment of solid cancer, which is thought to be due to insufficient T cell activation. We revealed that the immune response of CAR T cells with specificity for carcinoembryonic antigen (CEA) was more efficacious against CEA(+) cancer cells when simultaneously incubated with an anti-CD30 immunotoxin or anti-CD30 CAR T cells, although the targeted cancer cells lack CD30. The same effect was achieved when the anti-CD30 single-chain variable fragment (scFv) was integrated into the extracellular domain of the anti-CEA CAR. Improvement in T cell activation was due to interfering with the T cell CD30-CD30L interaction by the antagonistic anti-CD30 scFv HRS3; an agonistic anti-CD30 scFv or targeting the high-affinity interleukin-2 (IL-2) receptor was not effective. T cells with the anti-CD30/CEA CAR showed superior immunity against established CEA(+) CD30(-) tumors in a mouse model. The concept is broadly applicable since anti-CD30/TAG72 CAR T cells also showed improved elimination of TAG72(+) CD30(-) cancer cells. Taken together, targeting CD30 on CAR T cells by the HRS3 scFv within the anti-tumor CAR improves the redirected immune response against solid tumors.