Abstract
A green protocol has been developed for preparation of the wide variety of colored xanthene derivatives using a new efficient magnetic solid acid catalyst bearing polyamidoamine dendrimer moiety as a nanoscopic compound. Dendrimers, highly symmetric molecules around a core and 3D spherical morphology, show interesting traits based on their functionalized groups on the branched surface. They can ...
Abstract
A green protocol has been developed for preparation of the wide variety of colored xanthene derivatives using a new efficient magnetic solid acid catalyst bearing polyamidoamine dendrimer moiety as a nanoscopic compound. Dendrimers, highly symmetric molecules around a core and 3D spherical morphology, show interesting traits based on their functionalized groups on the branched surface. They can be designed to provide water soluble structures or pseudo-active sites of biomolecules. The catalyst was assembled via a polyamidoamine dendrimer immobilized on the surface of gamma-Fe2O3 followed by the sulfonylation of the amine groups by chlor osulfonic acid resulting in gamma-Fe2O3@PAMAM-SO3H. Herein, PAMAM dendrimer with repeating amine/amide branches as catchable sites of sulfonic acid groups was introduced as transformer of homogeneous to heterogeneous acidic catalysts. The physicochemical properties of synthesized catalyst were studied using by FT-IR, FE-SEM, XRD, VSM, EDS, TGA/DTG, and TEM. Finally, the catalytic activity of gamma-Fe2O3@PAMAM-SO3H was evaluated for the preparation of xanthene derivatives via a one-pot, three components reaction of aromatic aldehydes with i) 13-naphthol, ii) cyclic 1,3-dicarbonyl, iii)beta-naphthol and cyclic 1,3-dicarbonyl compounds, iv) 2-hydroxy-1,4-naphthoquinone, leading to the eco-riendly preparation of the target compounds in good to excellent yields. The catalyst could be easily recycled for at least five consecutive runs without significant loss in its catalytic activity.