Dokumentenart: | Artikel | ||||
---|---|---|---|---|---|
Titel eines Journals oder einer Zeitschrift: | Genetics in Medicine | ||||
Verlag: | Nature | ||||
Ort der Veröffentlichung: | NEW YORK | ||||
Band: | 22 | ||||
Nummer des Zeitschriftenheftes oder des Kapitels: | 7 | ||||
Seitenbereich: | S. 1235-1246 | ||||
Datum: | 2020 | ||||
Institutionen: | Medizin > Lehrstuhl für Augenheilkunde Medizin > Lehrstuhl für Humangenetik | ||||
Identifikationsnummer: |
| ||||
Stichwörter / Keywords: | MATERNAL UNIPARENTAL ISODISOMY; DEEP-INTRONIC VARIANTS; RETINAL DYSTROPHY; GENE; MUTATION; CHROMOSOME-1; PATIENT; REVEALS; REPAIR; RPE65; ABCA4; Stargardt disease; smMIPs; deep-intronic variants; structural variants | ||||
Dewey-Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin | ||||
Status: | Veröffentlicht | ||||
Begutachtet: | Ja, diese Version wurde begutachtet | ||||
An der Universität Regensburg entstanden: | Ja | ||||
Dokumenten-ID: | 50099 |
Zusammenfassung
Purpose Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. Methods Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on ...
Zusammenfassung
Purpose Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. Methods Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. Results In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. Conclusion Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.
Metadaten zuletzt geändert: 11 Okt 2021 12:51